JPS6138625A - Method and apparatus for producing ultrafine particle - Google Patents

Method and apparatus for producing ultrafine particle

Info

Publication number
JPS6138625A
JPS6138625A JP16126884A JP16126884A JPS6138625A JP S6138625 A JPS6138625 A JP S6138625A JP 16126884 A JP16126884 A JP 16126884A JP 16126884 A JP16126884 A JP 16126884A JP S6138625 A JPS6138625 A JP S6138625A
Authority
JP
Japan
Prior art keywords
gas
ultrafine particles
crucible
collector
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16126884A
Other languages
Japanese (ja)
Other versions
JPH0142741B2 (en
Inventor
Tokumitsu Kurihara
栗原 得光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP16126884A priority Critical patent/JPS6138625A/en
Publication of JPS6138625A publication Critical patent/JPS6138625A/en
Publication of JPH0142741B2 publication Critical patent/JPH0142741B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J10/00Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor
    • B01J10/005Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor carried out at high temperatures in the presence of a molten material

Abstract

PURPOSE:To increase the collected quantity per unit time and to increase remarkably the production efficiency of ultrafine particles by feeding a gas into the molten bath of substance which is the material of the ultrafine particles, accelerating the evaporation of the above-mentioned substance and cooling this vapor. CONSTITUTION:The material of ultrafine particles is packed into a crucible 2 and a vessel 1 is kept airtight and exhausted till 10<-5>Torr through a conduit 13 to remove an activated gas such as oxygen therefrom. Then, electricity is conducted to a heating means 3 stuck tightly to the crucible 2 and the sample is melted while supervising the temp. of the sample with a thermocouple and kept at the fixed temp. An inert gas or the like is fed to a gas distributor 22 of the crucible through a conduit 23 to accelerate the evaporation of the sample. The evaporated gaseous material contacts the atmosphere cooled by a collector 4, is solidified into the ultrafine particles having several ten - several hundred Angstrom diameter and stuck on the inside wall of copper cylinder 43 of the collector 4. Thereby, nearly 100% of the evaporated material is recovered by the collector 4.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、磁性材料、触、媒、その池特殊なセラミッ
クスなどの素材として重要な超微粒子の製造技術に関す
る。超微粒子は拳位重量尚たシの表面積を甑めて大きく
することができるため6揮の分野で注目されておシ、谷
′#i成分の超微粒子のtaが望まれている。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a technology for producing ultrafine particles, which are important materials for magnetic materials, catalysts, catalysts, special ceramics, and the like. Ultrafine particles are attracting attention in the field of 6-volume gas because they can increase the surface area of a metal with a weight as heavy as a fist, and the ta of ultrafine particles of the tani'#i component is desired.

(従来技術) これまで、この種の微粒子を製造するために、塩化物、
有機金属蒸気の水素還元、金楓塩浴液からの析出法、及
びガス蒸発法が知られている。
(Prior art) Until now, in order to produce this type of fine particles, chloride,
Hydrogen reduction of organometallic vapors, precipitation from a gold maple salt bath, and gas evaporation are known.

析出法は化学反応を伴うため純度の高い微粒子を得るこ
とが困難であった。ガス蒸発法は、試料を高温に熱し、
発生する蒸気を雰囲気のガスで冷却して微粒子を得る方
法であり、数T。rrから十数T。rr■H,、Ar等
の不活性ガスの雰囲気中で粒子の素材となる金属をルツ
ボに入れて加熱浴解し、溶湯表面から発生する蒸気を雰
囲気のガスで冷却して超微粒子を得る。
Since the precipitation method involves chemical reactions, it has been difficult to obtain fine particles with high purity. The gas evaporation method heats the sample to a high temperature,
This is a method of obtaining fine particles by cooling the generated vapor with atmospheric gas, and the temperature is several T. Ten T from rr. In an atmosphere of an inert gas such as H, Ar, etc., the metal to be the material of the particles is placed in a crucible and decomposed in a heating bath, and the vapor generated from the surface of the molten metal is cooled by the gas in the atmosphere to obtain ultrafine particles.

しかし、このカス蒸発法は溶湯表面から自然発生する蒸
気の鎗により超微粒子の生産斌が制限され、かつ、得ら
れる微粒子の勢位址当たシの消費エネルギーは莫大なも
のとなっていた。
However, in this scum evaporation method, the production of ultrafine particles is limited by the steam naturally generated from the surface of the molten metal, and the amount of energy consumed for dispersing the resulting fine particles is enormous.

また、袈造条汀の設定もかなシの試行錯誤を要するもの
であった。このため、この方法は純度の高いものが得ら
れる反面、生産コストが高くなシ、超微粒子の!産に必
ずしも通したものとは舊えなかった。
In addition, setting the kezo-jo-kei required a lot of trial and error. For this reason, although this method yields highly pure particles, it also requires high production costs. This cannot be said to have necessarily passed through the child's life.

(解決すべき問題点) 公知のガス蒸発法による超微粒子製造方法における最大
の欠陥でおった尋位時間当たシの収it (’A産効率
)の制限を、素材(試料)の蒸発方法を改良することに
よシ、大幅に改善することをこの出願の発明の課題とす
る。
(Problems to be solved) The biggest flaw in the known ultrafine particle production method using the gas evaporation method, which is the limit on the yield per fathom hour ('A production efficiency), can be solved by the evaporation method of the material (sample). It is an object of the invention of this application to significantly improve this by improving.

そして、この発明は前記問題点を解決したガス蒸発法に
よる超微粒子の製造方法、及びこの方法を実施するのに
好適な超微粒子製造装置を提供する。
The present invention also provides a method for producing ultrafine particles by a gas evaporation method that solves the above problems, and an apparatus for producing ultrafine particles suitable for carrying out this method.

(問題点を解決するための手段及びその作用)この発明
は、超微粒子の素材となる物質の溶湯中に気体を送り込
むことによシ、素材・(試料)の蒸発を促進し超微粒子
の生産効率を高くする口素材(試料)を不活性ガス、還
元性ガス、またはそれらの混合ガスからなる雰囲気中で
溶解し、浴湯中に不活性ガス、還元性ガス、またはそれ
らの混合ガスを好ましくは微細な気泡にして送り込むと
、溶湯(素材が加熱されて溶融したもの)の表面積が増
加し、さらに素材の蒸気を含まないガスが次々と供給さ
れ、蒸気で飽和したガスが搬送されるため蒸発が促進さ
れる。素材となる物質はNl 、COs F6 % ”
i) s等の金槁、非金属が用いられる。蒸発した素材
の蒸気は、冷却された、または室温の雰囲気に触れて超
微粒子として固化する。雰囲気の圧力は高いと冷却効率
は高いが試料の蒸発が助けられる。逆に雰囲気の圧力が
低いと試料の蒸発は妨げられないが冷却効率が低くなる
。したがって、実験的に最適雰囲気會圧力を求め、それ
を一定に保つ必斐がある。
(Means for Solving the Problems and Their Effects) This invention promotes the evaporation of the material/(sample) by sending gas into the molten metal of the substance that is the material of the ultrafine particles, thereby producing ultrafine particles. The mouth material (sample) for which efficiency is to be increased is dissolved in an atmosphere consisting of an inert gas, a reducing gas, or a mixture thereof, and an inert gas, a reducing gas, or a mixture thereof is preferably added to the bath water. When it is fed into fine bubbles, the surface area of the molten metal (material heated and melted) is increased, gas that does not contain the vapor of the material is supplied one after another, and the gas saturated with steam is transported. Evaporation is accelerated. Materials are Nl, COs F6%
i) Metals such as S and non-metals are used. The vapor of the evaporated material solidifies into ultrafine particles when it comes into contact with a cooled or room temperature atmosphere. When the pressure of the atmosphere is high, the cooling efficiency is high and the evaporation of the sample is facilitated. On the other hand, if the pressure of the atmosphere is low, the evaporation of the sample is not hindered, but the cooling efficiency becomes low. Therefore, it is necessary to experimentally find the optimum atmospheric pressure and keep it constant.

また、この発明の超微粒子製造装置は、前記の方法を実
施するために、超微粒子の素材を溶融するため、のルツ
ボ、ルツボを加熱する手段、捕集器及びこれらを内部に
収納し、一定の圧力の雰囲気を満たした容器からなり、
ガスを素材oh揚湯中分配するためのガス分配器をルツ
ボに設けることにより素材の蒸発を促進している□(実
施列) この発明の方法を実施するための装置を第1図に示す。
Further, in order to carry out the method described above, the ultrafine particle manufacturing apparatus of the present invention includes a crucible, a means for heating the crucible, a collector, and a collector for melting the ultrafine particle material. It consists of a container filled with an atmosphere of pressure,
Evaporation of the material is promoted by providing the crucible with a gas distributor for distributing gas into the material oh-fried hot water (implementation row) An apparatus for carrying out the method of the present invention is shown in FIG.

装置は気密性のある容器1、ルツボ2、加熱手段3、及
び捕集器4からなる。容器1は例えばステンレスなどか
らなる円筒状○容器であシ、ルツボ2、捕集ki4など
O操作のため開閉できるように2つの半体11.12か
らなる0また容器1には、排気及び雰囲気ガス注入のた
めの導管13、ルツボ2に結合された熱延対用アルミナ
管24、ガス分配器22に結合された導管23、加熱手
段3に結きされた電線、捕集器4を強制的に冷却するた
めに銅パイプ44に水等の冷却媒体を循環させる導v4
1.42などを各器内の気智を保って外部へ収シ出す手
段が設けられている。容器底部に配置されるルツボ2は
、第2図(a)に示すように、耐熱性を有し、素材と反
応しないアルミナ等の円筒状ルツボ容器21からなシ、
円筒の底部にアルミナセメント等からなる多孔質のガス
分配′#i22が同着されている0ガス分配話22には
導管23が結合され、また素材の−kを検出するためQ
熱電対を納めたアルミナ管24が)jaして@シ付けら
れている。分配器22の匠面には、導管23から供給さ
れる気体が下方に漏出しないよう気@層25が設けられ
ている。このガス分配器22は、ルツボの一部を兼ねて
いるが、第2図(b)に示すように、ガス分配器22を
ルツボ容器21とは別体として、ルツボ容器の底部に載
置するようにしてもよい。また分配器22の形状は任意
であシ、学に任意数の導管23から直接、溶湯中に気体
を吹き込んでも良いロルツボは黒鉛パイプ等の加熱+股
3に血嵐することによシ加熱される。超微粒子を付着さ
せる捕集b4は銅円筒43及び鋼バイブ44からなり専
管41.42を介して流れる水等の冷却媒体によシ強制
的に冷却するのが好ましい0抽集呆の、形状は任意であ
り、円筒の上部を覆った形状とす −ることもできる。
The apparatus consists of an airtight container 1, a crucible 2, a heating means 3, and a collector 4. The container 1 is a cylindrical container made of stainless steel, for example, and consists of two halves 11 and 12, such as a crucible 2 and a collection container 4, which can be opened and closed for operation. A conduit 13 for gas injection, an alumina tube 24 for the hot rolling pair connected to the crucible 2, a conduit 23 connected to the gas distributor 22, an electric wire connected to the heating means 3, and a collector 4 forcibly A guide v4 that circulates a cooling medium such as water through the copper pipe 44 to cool the
1.42, etc., are provided to the outside while maintaining the integrity of each vessel. The crucible 2 placed at the bottom of the container is, as shown in FIG.
A porous gas distribution pipe 22 made of alumina cement or the like is attached to the bottom of the cylinder. A conduit 23 is connected to the gas distribution pipe 22, and a conduit 23 is connected to the gas distribution pipe 22 to detect -k of the material.
An alumina tube 24 containing a thermocouple is attached with an @ symbol. An air layer 25 is provided on the surface of the distributor 22 to prevent the gas supplied from the conduit 23 from leaking downward. This gas distributor 22 also serves as a part of the crucible, but as shown in FIG. 2(b), the gas distributor 22 is placed separately from the crucible container 21 at the bottom of the crucible container. You can do it like this. Further, the shape of the distributor 22 can be arbitrary, and gas may be directly blown into the molten metal from any number of conduits 23. Ru. The collector b4 to which the ultrafine particles are attached is composed of a copper cylinder 43 and a steel vibrator 44, and is preferably forcibly cooled by a cooling medium such as water flowing through a dedicated pipe 41, 42. The shape of the collector is It is optional, and it can also be shaped to cover the top of the cylinder.

また加熱手段3と捕集に14との間には、円筒形の強制
的に冷却する手段を伽えた熱遮蔽体5を配置するのが好
゛ましい。
Moreover, it is preferable to arrange a cylindrical heat shield 5 provided with forced cooling means between the heating means 3 and the collecting means 14.

次に第1図の装置の作動を説明する◎−のように配置し
たルツボに超微粒子の素材を充填し、容器1を気密に保
って導管13から1O−5TO4rまで排気し、02、
H2Oなどの活性ガスを除去する。その&Ar%H0等
の不活性ガス、H2などの還元性ガス、またはそれらの
混合ガスを、素材の蒸気圧に応じて定めた一所定の圧力
(数’I’orrから数+TOrr)となるように導管
13を介して注入する。次にルツボ2に密着した加熱手
段3に通電し、熱電対で試料の温度を監視しながら、試
料を浴融し一定の@葭に保つ口このとき、ルツボのガス
分配*=22に前記不活性ガス、還元性ガス、または、
これらの混合ガスを導管23を介して供給して試料の蒸
発を促進する。蒸発した気体状の素材は、捕集詣4によ
シ冷却された雰囲気に触れて数十からし百Aの匝υ超微
粒子となって固化し、補集b4の銅円筒430内壁に付
着する。こうして蒸発した素材のほぼ100%が捕集k
i4によシ回収される。
Next, the operation of the apparatus shown in Fig. 1 will be explained.A crucible arranged as shown by ◎- is filled with ultrafine particle material, the container 1 is kept airtight, and the conduit 13 is evacuated to 1O-5TO4r.
Remove active gases such as H2O. The inert gas such as &Ar%H0, the reducing gas such as H2, or a mixture thereof is adjusted to a predetermined pressure (several 'I'orr to several + TOrr) determined according to the vapor pressure of the material. via conduit 13. Next, the heating means 3 in close contact with the crucible 2 is energized, and while monitoring the temperature of the sample with a thermocouple, the sample is melted in the bath and maintained at a constant temperature. active gas, reducing gas, or
A mixture of these gases is supplied via conduit 23 to facilitate evaporation of the sample. The evaporated gaseous material comes into contact with the atmosphere cooled by the collection chamber 4, solidifies into ultrafine particles of tens to hundreds of A, and adheres to the inner wall of the copper cylinder 430 of the collection chamber b4. . Almost 100% of the evaporated material is collected in this way.
It is collected by i4.

なお、長時1i4j %蒸発を持続させる場合、雰囲気
の圧力が上昇して生絨幼率が低下する場合には、容積の
大きい谷すを用いたシ、ガス分配器22からの給気量と
同量の雰囲気を導管13から排気し、排気を専管へ循環
さぜれば良い。また雰囲気及びガス分配器への給気成分
として、還元性ガスを用いる場合は、還元作用によシ眩
化物■少ない純庇の高い超微粒子を得ることができる。
If 1i4j % evaporation is to be sustained for a long period of time, and if the atmospheric pressure increases and the growth rate decreases, it is recommended to use a valley with a large volume or to reduce the amount of air supplied from the gas distributor 22. The same amount of atmosphere may be exhausted from the conduit 13 and the exhaust gas may be circulated to the dedicated pipe. In addition, when a reducing gas is used as the atmosphere and the air supply component to the gas distributor, it is possible to obtain ultrafine particles with high purity and low glare due to the reducing action.

さらに捕粂器と答蕗とを兼用させることも可能であり、
その摘片、半体12の外側から冷却し、その内壁に超微
粒子をit着せしめる。
Furthermore, it is also possible to use it as both a catcher and an answerer.
The picked piece or half body 12 is cooled from the outside to coat the inner wall with ultrafine particles.

次に素材としてPbを用い7ζ場会の具体的データを示
す。
Next, we will show specific data on the 7ζ field using Pb as the material.

ルツボ:内匣2 On1mの高密度アルミナ管谷i :
各横70A Pb溶融温i: 1300 c 雰囲気:60Torr17)He及びH2の混合ガスル
ツボへV)専管23からの給気量が0〜3.8mt1分
の一部の捕集敞億ンを図3に示す。ただし蒸発時間はそ
れぞれ1時間とし、試料表面からルツボの口1での距離
を8mmとする。
Crucible: Inner box 2 On 1m high-density alumina pipe valley i:
Each side 70A Pb melting temperature i: 1300 c Atmosphere: 60 Torr 17) To the mixed gas crucible of He and H2 show. However, the evaporation time is 1 hour for each, and the distance from the sample surface to the mouth 1 of the crucible is 8 mm.

捕集会4で捕呆した粒子はアセトン中で超音波分散させ
、沈V4連にの赳から粒匝毎に選別することかできる。
The particles caught in the collecting assembly 4 can be dispersed by ultrasonic waves in acetone, and can be sorted by particle size from the sedimentation V4 series.

(効果) この発明■方法及び、製造装置によれば、従来のガス蒸
発法に比べて曝位時間当シの捕集蓋が1.4@以上に向
上し超微粒子の生産効率が飛躍的に増大する。また製造
条件の設定も開学であυ、従来のガス蒸発法に比べて給
気量と温度の制御とが独立にできるので蒸発状態を長時
間安定に保つことができる。さらに還元性■気体をWA
、料に吹き込むことができるので高純度の超微粒子を得
ることもできる。
(Effects) According to the method and manufacturing device of this invention, compared to the conventional gas evaporation method, the collection cap per exposure time is improved to 1.4@ or more, and the production efficiency of ultrafine particles is dramatically improved. increase In addition, the manufacturing conditions can be set easily, and compared to conventional gas evaporation methods, the air supply amount and temperature can be controlled independently, making it possible to keep the evaporation state stable for a long time. Furthermore, reducing gas is WA
Since it can be blown into a material, highly pure ultrafine particles can also be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、ζO発明の超微粒子製造装置の縦断面を示す
。第2図(&)、(b)は、ルツボ及びガス分配器の実
施例を示す図である。第3図は、素材としてPbを用い
た場合の、ガス分配器への給気量と捕粂皺と■関係を示
すグラフである。 特許出願人 !T技術開発事業団 (ほか1名)
FIG. 1 shows a longitudinal section of the ultrafine particle manufacturing apparatus of the ζO invention. FIGS. 2(&) and 2(b) are diagrams showing an example of a crucible and a gas distributor. FIG. 3 is a graph showing the relationship between the amount of air supplied to the gas distributor and the wrinkles in the air when Pb is used as the material. Patent applicant! T Technology Development Corporation (1 other person)

Claims (1)

【特許請求の範囲】 1 超微粒子の素材となる物質の溶湯中に、気体を送り
込み、前記物質の蒸発を促進させ、この蒸気を冷却させ
ることを特徴とする超微粒子の製造方法 2 前記気体は、不活性ガス、還元性ガス、またはこれ
らの混合ガスである特許請求の範囲第1項の方法 3 前記気体は微細な気泡として浴湯中に送り込まれる
特許請求の範囲第1または2項の方法 4 前記気体の送り込む量だけ雰囲気を排気する特許請
求の範囲第1、2、または3項記載の方法 5 気体を溶湯中に送り込むガス分配器を有するルツボ
、加熱手段、超微粒子の補集器、及びこれらを内部に収
容する気密な容器からなる超微粒子製造装置 6 前記ガス分配器はルツボ容器の1部をなす多孔質の
部材からなる特許請求の範囲第5項記載の装置 7 前記ガス分配器はルツボ容器と別体に設けられてい
る特許請求の範囲第5項記載の装置 8 前記捕集器は強制的に冷却されている特許請求の範
囲第5、6、または7項記載の装置 9 前記捕集器は容器の一部を兼ねている特許請求の範
囲第5、6、7、または8項記載の装置
[Scope of Claims] 1. A method for producing ultrafine particles, characterized by feeding a gas into a molten metal of a substance that is a material for ultrafine particles, promoting evaporation of the substance, and cooling the vapor. 2. The gas is , an inert gas, a reducing gas, or a mixture thereof. Method 3 according to claim 1. The method according to claim 1 or 2, wherein the gas is sent into the bath water as fine bubbles. 4. The method according to claim 1, 2, or 3, in which the atmosphere is exhausted by the amount of the gas to be fed. and an ultrafine particle manufacturing apparatus 6 comprising an airtight container accommodating them therein. An apparatus 7 according to claim 5, wherein the gas distributor comprises a porous member forming a part of a crucible container. The device 8 according to claim 5, wherein the collector is provided separately from the crucible container. The device 9 according to claim 5, 6, or 7, wherein the collector is forcibly cooled. The device according to claim 5, 6, 7, or 8, wherein the collector also serves as a part of the container.
JP16126884A 1984-07-31 1984-07-31 Method and apparatus for producing ultrafine particle Granted JPS6138625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16126884A JPS6138625A (en) 1984-07-31 1984-07-31 Method and apparatus for producing ultrafine particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16126884A JPS6138625A (en) 1984-07-31 1984-07-31 Method and apparatus for producing ultrafine particle

Publications (2)

Publication Number Publication Date
JPS6138625A true JPS6138625A (en) 1986-02-24
JPH0142741B2 JPH0142741B2 (en) 1989-09-14

Family

ID=15731874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16126884A Granted JPS6138625A (en) 1984-07-31 1984-07-31 Method and apparatus for producing ultrafine particle

Country Status (1)

Country Link
JP (1) JPS6138625A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01148084A (en) * 1987-12-03 1989-06-09 Mitsubishi Heavy Ind Ltd Thermoelectric converter
JPH01254241A (en) * 1988-04-01 1989-10-11 Shinagawa Refract Co Ltd Electric resistance heating type fusion-gasification furnace
JP2007503973A (en) * 2003-08-28 2007-03-01 テクナ・プラズマ・システムズ・インコーポレーテッド Methods for the synthesis, separation and purification of powder materials

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01148084A (en) * 1987-12-03 1989-06-09 Mitsubishi Heavy Ind Ltd Thermoelectric converter
JPH01254241A (en) * 1988-04-01 1989-10-11 Shinagawa Refract Co Ltd Electric resistance heating type fusion-gasification furnace
JPH0551335B2 (en) * 1988-04-01 1993-08-02 Shinagawa Refractories Co
JP2007503973A (en) * 2003-08-28 2007-03-01 テクナ・プラズマ・システムズ・インコーポレーテッド Methods for the synthesis, separation and purification of powder materials
JP4754488B2 (en) * 2003-08-28 2011-08-24 テクナ・プラズマ・システムズ・インコーポレーテッド Methods for the synthesis, separation and purification of powder materials

Also Published As

Publication number Publication date
JPH0142741B2 (en) 1989-09-14

Similar Documents

Publication Publication Date Title
CN101959793B (en) Carbon nano-tube manufacturing method and carbon nano-tube manufacturing apparatus
US7531156B2 (en) Method and device for synthesizing high orientationally arranged carbon nano-tube by using organic liquid
JPS60175537A (en) Preparation of ultra-fine ceramic particles
JPS6138625A (en) Method and apparatus for producing ultrafine particle
AU2021267936C1 (en) Magnetic carbon nanomaterials and methods of making same
Kingston et al. Recent advances in laser synthesis of single-walled carbon nanotubes
WO2007061012A1 (en) Metal, process for producing metal, metal producing apparatus and use thereof
Hogg et al. Particle growth in flowing inert gases
JP2508506B2 (en) Spherical fine powder manufacturing method and manufacturing apparatus
CN107986259A (en) Single-walled carbon nanotube and its preparation method and application
RU2055698C1 (en) Method of obtaining ultrafinely divided powders
JP2671384B2 (en) Metal compound forming equipment
JPH02192499A (en) Continuous production of zinc oxide whisker
US2935420A (en) Method of coating metals
JPS6250098A (en) Power metallurgical device for metallic compound
JPS63267431A (en) Preparation of ultrafine particles
Xu et al. Formation of a new electric material: Fullerene/metal polycrystalline film
JPS63266001A (en) Production of composite spherical powder
JPH11349307A (en) Production of functional carbonaceous material
Hernandez-Tabares et al. Review of the Design and Operation Criteria of a DC Submerged Arc Discharge Carbon Nanostructure Synthesis Installation
JPS62294179A (en) Production of high-purity metallic body
JP2006335592A (en) Manufacturing method of metal-including carbon nanocapsule
KR101477573B1 (en) Method and apparatus for processing nano particle using thermal plasma
CN106986392B (en) The synthetic method and synthesizer of a kind of troilite
JPWO2019030890A1 (en) Manufacturing member and manufacturing device for carbon nanohorn aggregate