WO2007061012A1 - Metal, process for producing metal, metal producing apparatus and use thereof - Google Patents

Metal, process for producing metal, metal producing apparatus and use thereof Download PDF

Info

Publication number
WO2007061012A1
WO2007061012A1 PCT/JP2006/323359 JP2006323359W WO2007061012A1 WO 2007061012 A1 WO2007061012 A1 WO 2007061012A1 JP 2006323359 W JP2006323359 W JP 2006323359W WO 2007061012 A1 WO2007061012 A1 WO 2007061012A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
metal oxide
producing
minus
partial pressure
Prior art date
Application number
PCT/JP2006/323359
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshiyuki Yoshida
Naoki Shirakawa
Shinichi Ikeda
Ryusuke Iwasaki
Hiroshi Nishimura
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Canonmachinary Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology, Canonmachinary Inc. filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to JP2007546478A priority Critical patent/JP5392695B2/en
Publication of WO2007061012A1 publication Critical patent/WO2007061012A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/02Obtaining aluminium with reducing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/10Dry methods smelting of sulfides or formation of mattes by solid carbonaceous reducing agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/22Remelting metals with heating by wave energy or particle radiation
    • C22B9/221Remelting metals with heating by wave energy or particle radiation by electromagnetic waves, e.g. by gas discharge lamps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation

Definitions

  • the present invention relates to a metal, a metal production method, a metal production apparatus, and its use.
  • the oxide is reduced as an operation of removing oxygen in the step of removing the metal.
  • the oxide is reduced as an operation of removing oxygen in the step of removing the metal.
  • the source material exists as a metal oxide, which requires an operation to remove oxygen.
  • it is used to reduce by supplying high heat in the presence of a reducing agent.
  • the molten salt electrolysis method is used.
  • iron and aluminum as metals.
  • iron oxide is produced from the raw iron ore, and oxygen is reduced using a reducing agent.
  • a direct reducing agent such as Kotas or coal and an indirect reducing agent using hydrogen or carbon monoxide are used at the same time.
  • the raw material bauxite which contains iron oxide, silica, etc. in addition to alumina, which is an oxide of aluminum
  • alumina which is an oxide of aluminum
  • the mixture with cryolite is electrolyzed in a molten state by molten salt electrolysis.
  • the molten salt electrolysis method has a problem in that it requires a number of production processes and is expensive to manufacture. Although even reduction method using hydrogen as an indirect reducing agent is employed, in this case, there is a risk of such explosion, there s a problem force that is required installation comprising relative safety.
  • the aluminum obtained by the molten salt electrolysis method cannot be said to have a sufficient purity depending on the purpose of use, and a treatment for further increasing the purity is required.
  • impurities such as Si and Fe that are presumably mixed in the raw material are mixed in the molten aluminum, and these cannot be completely removed.
  • an operation for increasing the purity of metallic aluminum is described.
  • the reducing agent is used in a gaseous state.
  • a compacted body of aluminum oxide powder mixed with Mg is set in a furnace, heated in a rare gas atmosphere to sublimate Mg, and when sintered at a temperature below the melting temperature, nitrogen gas is introduced,
  • magnesium nitride is generated and the aluminum oxide on the powder surface is reduced by this magnesium nitride to expose the aluminum metal.
  • gaseous nitride is formed, thereby precipitating the aluminum. It is known to make it happen (Patent Document 3).
  • This method is a method for producing a sintered body in which a metal is deposited on the surface of the sintered body. It's not about turning aluminum oxide into a gas and producing aluminum metal. Therefore, it is considered that pure aluminum cannot be obtained from aluminum oxide by this method.
  • Patent Document 4 Also known is a method (Patent Document 4) in which aluminum is vacuum-deposited on the surface of a covering material under low oxygen conditions. This method vaporizes metallic aluminum and deposits metallic aluminum on the surface of the object, and does not produce metal from a metal oxide. Also known is a vacuum vapor deposition method in which A1-based vapor deposition is continuously applied to at least one surface of a pre-treated surface of a metal to be plated (Patent Document 5). It vaporizes aluminum and deposits metallic aluminum on the surface of the object, not directly reducing aluminum oxide to produce aluminum metal.
  • a metal synthesis method by vapor phase growth by vaporizing a metal in a solid phase or a liquid phase.
  • a metal having a specific physical property can be obtained according to the intended property such as fine particles, powder, whisker, and thin film.
  • Materials obtained from gas phase synthesis methods are being actively developed because they have useful properties.
  • the obtained metal material can be controlled in crystal form since various crystalline and amorphous materials are obtained, it can be expected to selectively produce crystalline forms such as crystalline and amorphous. Development for that is being done.
  • These methods include irradiating a solid metal source with an electron beam or laser in vacuum, or using a physical phenomenon such as sputtering or ion plating (PVD) and a reaction that reacts multiple source gases.
  • PVD sputtering or ion plating
  • CVD chemical vapor deposition
  • the high-purity metal is a metal having its own characteristics
  • the high-purity metal is a metal having unique characteristics depending on its properties.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-294953
  • Patent Document 2 JP 2004-43972 A
  • Patent Document 3 JP-A-8-35025
  • Patent Document 4 JP-A-7-97689
  • Patent Document 5 JP-A-6_158285
  • An object of the present invention is a metal having an intrinsic characteristic inherent in a substance having a high purity obtained by directly reducing a target metal from a metal oxide, and the production of the metal It is to provide a method and a manufacturing apparatus.
  • the inventors of the present invention manufactured a sintered body from a metal oxide, and then heated the sintered body to a high temperature under an extremely low partial pressure of oxygen to obtain a pure metal from the metal oxide. As a result, the present invention has been completed.
  • heating at a specific temperature is performed under these conditions.
  • the upper limit can be adopted without any problem, but the lowest temperature in the above-mentioned range may be adopted from an economical point of view.
  • the extremely low oxygen partial pressure is not less than 10 minus 30th atmospheric pressure and not more than 10 minus 20th atmospheric pressure.
  • the metal oxide is heated to 850 ° C or higher.
  • the extremely low partial pressure of oxygen is not less than 10 minus 30th atmospheric pressure and not more than 10 minus 20th atmospheric pressure, and this specific atmosphere is in an inert gas. Heating to 850 degrees Celsius or higher.
  • the Ellingham diagram expresses the equilibrium relationship of the reaction system, with the vertical axis representing the standard free energy change (AG 0 ) for producing metal from the metal oxide and the horizontal axis representing temperature.
  • the reaction conditions oxygen partial pressure and heating temperature for producing metals from metal oxides can be determined (Figure 1).
  • the calculation method using the Ellingham diagram can be applied as long as it has a standard free energy for producing a metal from a metal oxide having a value larger than the standard free energy for producing aluminum from aluminum oxide.
  • the metal obtained from the metal oxide is as follows. Cobalt, chromium, silicon, nickel cane, zinc and copper can be mentioned.
  • the metal obtained by reducing the metal oxide is the metal oxide in the Ellingham diagram in an atmosphere having an oxygen partial pressure S10 of minus 30th atmospheric pressure or more and 10 minus 20th atmospheric pressure or less. Standard generation when producing metal from metal oxide, and a straight line connecting the oxygen position of the vertical line (indicating the standard free energy of production indicated by C, H, and O) and the assumed oxygen partial pressure A metal material obtained by processing at a temperature equal to or higher than a temperature obtained from an intersection connecting straight lines indicating a change in free energy ( ⁇ G °).
  • the metal oxide is subjected to an oxygen partial pressure in an atmosphere having an oxygen partial pressure of 10 minus 30th atmospheric pressure or more and 10 minus 20th atmospheric pressure or less as shown in the Ellingham diagram.
  • Standards for metal production from metal oxides and a straight line connecting the oxygen position of the vertical line (indicating the standard free energy of generation indicated by C, H, ⁇ ) and the assumed oxygen partial pressure A method for producing a metal material, characterized in that a metal is deposited on the surface of a substrate by processing at a temperature equal to or higher than a temperature obtained from an intersection point connecting straight lines showing a change in free energy of generation (AG °).
  • the metal oxide is placed in the vertical direction of the Ellingham diagram in an atmosphere having an oxygen partial pressure of minus 30 to atmospheric pressure of minus 30 to atmospheric pressure.
  • the straight line connecting the oxygen position on the line (showing the standard free energy of generation indicated by C, H, and O) and the assumed oxygen partial pressure, and the standard free energy of production when producing metal from metal oxide An apparatus for producing a metal material, characterized in that the metal material is deposited as a metal on a substrate surface by processing at a temperature equal to or higher than a temperature obtained from an intersection that connects straight lines indicating change (AG °).
  • An infrared heating lamp in which the metal oxide is fixed by a rotatable fixing means and an ellipsoidal mirror for condensing is installed behind is a metal at one focal point of the elliptical mirror and a metal at the other focal point. A heated portion of oxide is provided, and the metal oxide is vaporized by heating and melting, and is deposited as a metal on the surface of the substrate provided at the top (11) or (12) The metal material manufacturing apparatus of description.
  • the temperature required for reducing the metal oxide is lowered to a low temperature, and the metal can be removed from the metal oxide safely and easily than conventionally known methods. It is a novel method that can be obtained. In addition, a new apparatus can be obtained that performs the method for producing the metal under the above conditions.
  • FIG. 1 is an Ellingham diagram of a reaction for producing a metal oxide or metal.
  • FIG. 2 is a diagram showing aluminum deposited on a quartz substrate.
  • FIG. 3 is a diagram showing the results of X-ray diffraction of aluminum obtained from dialuminum trioxide. The peak obtained is only quartz, which is a material based on aluminum.
  • FIG. 4 is a diagram showing an example of an apparatus for producing a metal from a metal oxide.
  • a metal oxide is used to obtain the metal of the present invention.
  • the target metal oxides are It is necessary to consider whether it can be reduced.
  • the standard production free energy change ( ⁇ G °) when producing metal from metal oxide is plotted on the vertical axis, and the temperature during the reaction is plotted on the horizontal axis to express the equilibrium relationship of the reaction system.
  • ⁇ G ° standard production free energy change
  • the oxygen assumed on the vertical line on the left side of the diagram (here, the standard free energy of formation shown by C, H, 0) is assumed. It is obtained by processing at the temperature of the intersection that connects the partial pressure (shown on the right and bottom of the figure) and the straight line indicating the standard free energy change ( ⁇ G °) when producing metal from metal oxide. It is done.
  • 10 minus 24 is a straight line connecting the position of ⁇ and the lower right corner.
  • the temperature is specified as the intersection of the drawn straight line and the straight line showing the equilibrium relation of various element standard formation free energies shown in the Ellingham diagram.
  • dialuminum trioxide whose oxygen atmosphere is 10 minus 28.
  • the temperature at which di-aluminum trioxide is reduced is the temperature at the intersection of the straight line connecting the position of O and the minus 28th power of 10 and the standard free energy of formation of di-aluminum trioxide, That is, 1300 ° C. It can also be seen from the figure that if the temperature of dialuminum trioxide becomes higher, the oxygen partial pressure required for reduction will be correspondingly higher.
  • the reduction temperature at the assumed oxygen partial pressure from the intersection with the straight line showing the equilibrium relationship of the reaction system.
  • silicon dioxide silicon can be obtained by reduction when heated to about 1000 ° C under an oxygen partial pressure of 10 minus 27 square atmospheres or less, and in the case of copper oxide, 10 minus 27 square atmospheres. When heated to 700 ° C under the following oxygen partial pressure, it can be reduced to obtain copper.
  • a pure element can be obtained from an oxide by reduction using an extremely low oxygen partial pressure as shown in the Ellingham diagram.
  • these oxygen partial pressure and temperature ranges are the results of calculation based on the Ellingham diagram of the target metal oxide, and the conditions may be further narrowed individually.
  • any metal oxide having a value larger than the standard free energy of reaction for producing aluminum from dialuminum trioxide can be obtained as the metal.
  • Metal oxides corresponding to the metal are as follows.
  • Co O Cobalt oxide
  • Nickel oxide Ni O
  • Zinc oxide Zinc oxide (Zn O)
  • the metal can be produced from these metal oxides.
  • a metal oxide is compressed into a molded body to produce a sintered body.
  • the metal oxide sintered body is subjected to reduction treatment under an extremely low oxygen partial pressure.
  • the above metal oxide is used as a starting material.
  • the metal oxide may be obtained according to a normal industrial process. Even if it is obtained as a raw material for mineral resources, there is no problem, but since it results in containing a large amount of impurities, it is difficult to obtain good results when producing pure metal. In such a case, it is used as a metal oxide having as little impurity content as possible by removing impurities as much as possible.
  • the metal oxide is powdery or granular. In some cases, it may be a single crystal rod-like, but if it is a single crystal, the raw material is expensive, and it is not necessary to use such a raw material.
  • a sintered product having a particle size that is easy to manufacture is used.
  • the particle size can be appropriately determined in consideration of the production of the sintered body. If the particle size is larger than necessary, it is difficult to obtain a uniform sintered body. Also, it is difficult to obtain a uniform sintered body even when the particle size is smaller than necessary. In general, those having an average particle size of about 0.1 ⁇ m to 100 ⁇ m are used.
  • the process for producing a metal oxide molded body for producing a sintered body from a metal oxide is as follows.
  • Containers that can withstand pressure even when pressure is applied are used.
  • a compacting machine used to produce ceramics is used for compacting the powder.
  • the metal oxide powder is pressed at a pressure of 100 to 3000 atmospheres to form a molded body having a diameter of 3 to 20 mm and a length of 20 to 100 mm, for example. It is desirable that the press pressure be under hydrostatic pressure rather than uniaxial pressure. It is more desirable to press under a hydrostatic pressure of 500 to 3000 atmospheres.
  • the size to be molded may be cylindrical or prismatic, but is determined by the processing capacity and scale of the equipment for heating and melting. If the processing capacity and scale of the manufacturing equipment are expanded, further increase A large shape can be used. However, when using a method of condensing and irradiating infrared rays as a heating means, a cylindrical shape is desirable.
  • Sintering is performed in a sintering furnace using air as an atmospheric gas.
  • the heating means of the sintering furnace may be any means, and the most common is force resistance heating in which electric heating or infrared heating is used in addition to gas.
  • the heating temperature is lower than the melting point of the metal, and heat treatment is performed for several hours.
  • the heating temperature is a temperature at which the raw material oxide is sintered and the shape of the metal oxide compact can be maintained.
  • the smaller the particle size the faster the sintering start temperature.
  • the larger the particle system the higher the sintering temperature.
  • dialuminum trioxide the sintered body is completed after sintering for 4 hours at 1300 degrees Celsius.
  • the sintered body is cooled and taken out from the furnace.
  • the heating step of the metal oxide sintered body is as follows.
  • a sintered body made of the metal oxide is fixed in the reaction furnace.
  • a plate made of an appropriate and stable material is held on the upper part of the furnace as a substrate for depositing metal.
  • This board Can be made of quartz glass. Metal is adhered to the surface of the plate.
  • the inside of the reactor Prior to the heating operation, the inside of the reactor is set to an atmosphere having a low oxygen partial pressure.
  • the partial pressure of oxygen is 10 minus 30th atmospheric pressure or more and 10 minus 4th atmospheric pressure or less.
  • the oxygen partial pressure control method disclosed in Japanese Patent Application Laid-Open No. 2004-250283 (Japanese Patent Application No. 2003-42403) and Japanese Patent No. 374991 described in the present inventors and An oxygen partial pressure control device is used.
  • the oxygen partial pressure in the inert gas can be controlled from 2 X 10 minus 1 to 1 X 10 minus 30 to atmospheric pressure at atmospheric pressure.
  • the inert gas used at this time is nitrogen, argon, or helium gas.
  • the oxygen partial pressure is preferably 2 x 10 minus 10 to 1 x 10 minus 30 atm.
  • the oxygen partial pressure in the inert gas is controlled by an oxygen partial pressure control device mainly composed of dinoleconia, which is a solid electrolyte, and the oxygen partial pressure is controlled.
  • an oxygen partial pressure control device mainly composed of dinoleconia, which is a solid electrolyte
  • the oxygen partial pressure of the inert gas in the sample preparation chamber can be controlled from 2 x 10 minus 1 power to 1 x 10 minus 30 power. Become.
  • the heating temperature is unique to each metal and is determined in consideration of the relationship between the standard free energy change ( ⁇ G °) and temperature shown in the Ellingham diagram shown in FIG.
  • dialuminum trioxide is about 1300 ° C
  • silicon dioxide is about 1000 ° C
  • chromium oxide power is about 800T
  • It is 700 ° C.
  • dialuminum trioxide As an example, consider the case of dialuminum trioxide.
  • a sintered body of dialuminum trioxide is heated to 1500 degrees Celsius under an oxygen partial pressure of 1 X 10 minus 27 or less, dialuminum trioxide is reduced and converted to aluminum.
  • the temperature of the heated portion is 1500 degrees Celsius, aluminum having a melting point of 660 degrees Celsius is in a liquid state, and gaseous aluminum is evaporated from there. Since the aluminum vapor is cooled away from the heated portion, it is possible to obtain solid aluminum metal by attaching it to the substrate surface (eg, quartz glass).
  • the substrate surface eg, quartz glass
  • the temperature can be calculated from the values shown in the Ellingham diagram as described above. Above As shown in the figure, when the oxygen partial pressure of the inert gas X is minus 10 to the 28th atmospheric pressure, it is about 1300 ° C or higher. When the oxygen partial pressure is lower, the temperature can be further lowered, but conversely, when the oxygen partial pressure is high, a higher temperature and temperature are required.
  • the following known heating method is applied to the sintered body.
  • a resistance heating method for heating the sintered body by concentrating or condensing the electron beam flow, infrared rays, and laser, respectively.
  • Infrared heating or laser heating that gives heat to the metal oxide is particularly effective. More specifically, infrared heating is used. In infrared heating, a halogen lamp or xenon lamp placed behind a condensing elliptical mirror is placed at one focal point of the elliptical mirror. Another focus is on the target metal oxide, such as a sintered aluminum oxide body fixed in the reactor. Infrared rays from halogen lamps or xenon lamps, including those reflected by mirrors, are condensed and heated on the surface of the sintered aluminum trioxide. A high temperature of 850 ° C or higher can be obtained by this heating.
  • the heating operation in the first stage, the generation of oxygen is detected under the influence of oxygen generated from the surface of the heated sintered body. Along with this, the amount of oxygen in the processing apparatus increases slightly. After that, the oxygen partial pressure decreases again, but when the temperature exceeds the temperature at which the metal oxide is reduced, the oxygen concentration value of the oxygen concentration meter of the oxygen partial pressure control device increases again, and the generation of oxygen can be confirmed. When heated further, metal deposits and evaporation begins.
  • the evaporated metal is allowed to adhere to the quartz glass installed on the upper part of the heating portion. Board surface
  • the substrate is placed in a processing apparatus and placed under the low oxygen partial pressure. Hold this state for a certain period of time to remove impurities such as gaseous substances adhering to or adsorbing to the substrate surface.
  • the metal obtained by this operation is a metal with high purity.
  • the shape is formed as a film on the substrate surface. These vary depending on the amount of metal oxide used and the heating temperature. Whether or not the oxide is actually reduced can be confirmed by conducting an X-ray diffraction experiment on the formed film.
  • the metal oxide sintered body (39) is fixed to the upper part of the rotatable metal oxide sintered body fixing means (38).
  • the top and bottom of the tubular reaction tube have an upper lid (40), a substrate fixing means (36), a tubular reaction tube wall holding and fixing means (11), a lower lid (41), a metal oxide sintered body fixing means (38 ) And means for holding and fixing the tubular reaction tube wall (12).
  • the condensing elliptical mirrors (31, 32) of the infrared heating device (30) are installed, and the infrared heating lamps (33, 34) are located at one focal point of the elliptical mirror.
  • the metal oxide on the fixing means of the tubular reaction tube is arranged at another focal point.
  • the tubular reaction tube lower lid (41) and the tubular reaction tube upper lid (40) are provided with an oxygen partial pressure control device (not shown) and a gas circulation device (not shown) for maintaining an inert gas atmosphere.
  • the circulation path (15, 16) is connected.
  • the heated portion (35) of the metal oxide sintered body (39) on the fixing means (38) inside the tubular reaction tube wall (43) of the reactor is irradiated with infrared light.
  • the tubular reaction tube wall (43) needs to transmit infrared light and is made of quartz glass because of its high temperature.
  • the oxide sintered body of the heated part (35) evaporates after being heated and melted, and adheres to the surface of the substrate (37) placed on the upper side in a reduced metal state.
  • quartz glass is placed under a low oxygen partial pressure.
  • the substrate (37) is fixed to the rotatable substrate fixing means (36).
  • Fixing method is quartz Any means is applicable as long as the lath plate can be fixed. For example, a method of fixing to a quartz glass plate with a fine platinum wire can be used. This method is detachable and has both operability and stability.
  • the substrate fixing means (36) and the metal oxide sintered body fixing means (38) are provided with a driving means for allowing the substrate to be moved up and down and simultaneously rotating. Further, the substrate (37) can be detachably attached to the substrate fixing means (36) using auxiliary means such as a fastener.
  • the oxide sintered body is uniformly heated and melted.
  • Holding and fixing means (12) of the tubular reaction tube wall (43), a tubular reaction tube lower lid (41), and a tubular reaction tube upper lid (40) are fixed to the top and bottom of the reactor.
  • the tubular reaction tube lower lid (41) and the tubular reaction tube upper lid (40) are supplied with oxygen and inert gas in the circulation path from the oxygen partial pressure control device and the gas circulation device to maintain the inert gas atmosphere.
  • the extremely low oxygen partial pressure state in the reactor (1) becomes an inert gas atmosphere. It is maintained by. Specifically, it is in an inert gas atmosphere having an oxygen partial pressure of 10 minus 30th atmospheric pressure or more and 10 minus 4th atmospheric pressure or less.
  • the partial pressure of oxygen in the inert gas in the reactor can be controlled from 2 X 10 minus 1 to 1 X 10 minus 30 at atmospheric pressure. Use at this time
  • inert gas nitrogen, argon, or helium gas is used, and argon or helium gas is preferable.
  • a halogen lamp or xenon lamp (33, 34) as an infrared heating means is provided at the focal point of the condensing elliptical mirror (31, 32) of the infrared heating device (30).
  • the metal oxide sintered body of the heated part (35) is arranged at another focal point.
  • the metal oxide sintered body of the heated portion (35) is heated and melted by being given a temperature of 850 ° C. or more by the infrared ray from the halogen lamp or xenon lamp and the infrared ray reflected by the mirror.
  • Infrared light needs to be uniformly irradiated, and the metal oxide is rotated so that the infrared light is uniformly irradiated.
  • the desired rotation speed is 5 to 50 mm, and 10 to 30 mm is desired. More desirable.
  • the growth rate is preferably 0.1 to 50 mm / hr, more preferably 1 to 10 mm / hr.
  • the metal cooling treatment and extraction are performed as follows.
  • the metal obtained by the melting operation is opened to the atmosphere after the melting operation is completed, with the circulation of the inert gas for controlling the oxygen partial pressure stopped. Thereafter, the single crystal fixed to the fixing means and the sintered aluminum trioxide are removed from the fixing means, and the single crystal is taken out of the reactor.
  • Dialuminum trioxide (A10) is reduced to an aluminum metal when it reaches 1500 ° C or higher under an oxygen partial pressure of 10 minus 24 or less atmospheric pressure (Fig. 1). This example is as follows.
  • dialuminum trioxide (Al 2 O 3) powder (average particle size: 2 zm) was pressed under a hydrostatic pressure of 3000 atmospheres and shaped to 8 mm in diameter and 100 mm in length. The shaped material was heat-treated at 1300 degrees Celsius for 4 hours in air to prepare a sintered bar of dialuminum trioxide.
  • the atmosphere inside the furnace was 10 atmospheres of oxygen minus the negative 29th power in 1 atmosphere of argon gas.
  • the sintered body obtained in the previous step was heated by infrared heating.
  • Quartz glass for evaluation was previously suspended on the upper part of the heated portion with a platinum wire.
  • the partial pressure of oxygen in the furnace rises due to desorption of adsorbed gas during the heating process of the sintering rod.
  • the oxygen partial pressure decreased again.
  • the metal oxide By using a metal oxide as a raw material, the metal oxide can be directly reduced to obtain a metal having a high purity and inherent characteristics inherent in the substance. Since these have high purity, they can be used as electric materials and electronic materials. A specific metal production method and production apparatus for this purpose will be shown. The industrial applicability is great, too.

Abstract

[PROBLEMS] To provide a highly purified metal obtained by direct reduction of a metal oxide, or a metal with peculiar properties; a process for producing the same; and a relevant production apparatus. [MEANS FOR SOLVING PROBLEMS] There is provided a metal material obtained by fixing sintered metal oxide (39) with rotatable fixing means (38), disposing infrared heating lamp (33,34) equipped on its backside with an elliptical mirror for light focusing at one focal point of the elliptical mirror, disposing a region to be heated of metal oxide at the other focal point, and treating the sintered metal oxide in an atmosphere of 10-30 to 10-20 atm oxygen partial pressure at a temperature not lower than the temperature obtained from the intersection of, on the Ellingham diagram, straight line linking the position of oxygen on vertical line (indicating standard free energies of formation represented by C, H and O) with presumed oxygen partial pressure with straight line indicating a change of standard free energy of formation (ΔG°) at production of a metal from a metal oxide. Further, there are provided a process for producing the same and a relevant apparatus.

Description

明 細 書  Specification
金属、金属の製造方法、金属の製造装置及びその用途  Metal, metal manufacturing method, metal manufacturing apparatus and use thereof
技術分野  Technical field
[0001] 本発明は、金属、金属の製造方法、金属の製造装置及びその用途に関するもの である。  [0001] The present invention relates to a metal, a metal production method, a metal production apparatus, and its use.
背景技術  Background art
[0002] 金属を製造する場合には、原料となる硫化物などの金属塩や酸素と結合している 金属酸化物から、これらに含まれる硫黄や酸素を取り除いて金属のみを取り出すこと により行われる。  [0002] In the case of producing a metal, it is carried out by removing only the metal by removing sulfur and oxygen contained in the metal salt such as sulfide as a raw material and the metal oxide combined with oxygen. .
[0003] 原料が金属酸化物の場合には、金属をとり出す工程で、酸素を取り除く操作として 酸化物を還元することが行われる。この還元方法にはさまざまな方法がある。それら の方法のうちからどの方法を選択するかは、取り出そうとしている金属のイオン化傾 向の大きさに応じて決定される。したがって、金属のイオン化傾向の大きさにより金属 の製造方法を分類することができる。  [0003] When the raw material is a metal oxide, the oxide is reduced as an operation of removing oxygen in the step of removing the metal. There are various methods for this reduction. Which method to select is determined depending on the ionization tendency of the metal to be extracted. Therefore, metal production methods can be classified according to the magnitude of the metal ionization tendency.
イオンィ匕傾向が小さな金属である白金や金等ではもともと単体として金属は産出す る。当然、酸素を取り除くために格別な操作を必要としない。  Originally, metals such as platinum and gold, which have a small ionic tendency, are produced alone. Of course, no special operation is required to remove oxygen.
イオンィ匕傾向が大きくなるにつれて、原料物質は金属酸化物として存在するので、 酸素を取り除く操作が必要となる。一般的には,酸素を取り除くためには還元剤の存 在下に強熱を供給し還元することが用いられる。イオン化傾向がさらに大きい場合は 、融解塩電解法が用いられる。例えば、金属として、鉄とアルミニウムについて検討す る。中間的なイオン化傾向をもつ鉄は、原料の鉄鉱石から酸化鉄を製造し、還元剤 を用いて酸素を還元する方法が用いられている。その還元剤としてはコータス、石炭 などの直接還元剤と水素や一酸化炭素を使用する間接還元剤が同時に使用される 。これに対して、鉄より大きなイオン化傾向をもつアルミニウムの場合は、その原料で あるボーキサイト(アルミニウムの酸化物であるアルミナ以外に酸化鉄、シリカ等を含 んでいる。)をアルカリ処理して、アルミナを取り出し、そのアルミナの融点を下げるた めに氷晶石と混合したものが融解された状態で電気分解をする融解塩電解法により 、アルミニウムを製造している。 As the ionic tendency increases, the source material exists as a metal oxide, which requires an operation to remove oxygen. In general, in order to remove oxygen, it is used to reduce by supplying high heat in the presence of a reducing agent. If the ionization tendency is even greater, the molten salt electrolysis method is used. For example, consider iron and aluminum as metals. For iron with an intermediate ionization tendency, iron oxide is produced from the raw iron ore, and oxygen is reduced using a reducing agent. As the reducing agent, a direct reducing agent such as Kotas or coal and an indirect reducing agent using hydrogen or carbon monoxide are used at the same time. On the other hand, in the case of aluminum, which has a higher ionization tendency than iron, the raw material bauxite (which contains iron oxide, silica, etc. in addition to alumina, which is an oxide of aluminum) is treated with an alkali to produce alumina. In order to lower the melting point of the alumina, the mixture with cryolite is electrolyzed in a molten state by molten salt electrolysis. Manufactures aluminum.
[0004] 上記融解塩電解法は、数多くの生産過程を必要とし、製造費用もかかるという問題 点がある。また,間接還元剤として水素を用いる還元方法も採用されるが、この場合 には、爆発事故等の危険があり、安全に対して備える設備が必要であるという問題点 力 sある。 [0004] The molten salt electrolysis method has a problem in that it requires a number of production processes and is expensive to manufacture. Although even reduction method using hydrogen as an indirect reducing agent is employed, in this case, there is a risk of such explosion, there s a problem force that is required installation comprising relative safety.
アルミニウムの製造に関して言えば、融解塩電解法で得られたアルミニウムは、使 用目的によっては純度が十分とはいえず、さらに純度をあげる処理が必要となる。例 えば、特許文献 1や特許文献 2では、原料に予め混入されていると見られる Si、 Fe等 の不純物が溶融アルミニウム中に混入しており、これらを完全には除去できなレ、ので 、それに対応するための金属アルミニウムの純度を上げるための操作が記載されて いる。また、間接還元剤として水素を使用して、摂氏 2000°C以下の温度で処理して も、原料である三酸化二アルミニウムを直接還元することができないという問題がある  Regarding the production of aluminum, the aluminum obtained by the molten salt electrolysis method cannot be said to have a sufficient purity depending on the purpose of use, and a treatment for further increasing the purity is required. For example, in Patent Document 1 and Patent Document 2, impurities such as Si and Fe that are presumably mixed in the raw material are mixed in the molten aluminum, and these cannot be completely removed. To cope with this, an operation for increasing the purity of metallic aluminum is described. In addition, there is a problem that even when using hydrogen as an indirect reducing agent and treating at a temperature of 2000 degrees Celsius or less, the raw material, dialuminum trioxide cannot be reduced directly
[0005] 還元剤の存在下に加熱する場合にあっても、還元剤を気体状で利用することも行 われる。例えば、 Mgを混合した酸化アルミニウム粉末の圧粉成形体を炉内にセットし 、希ガス雰囲気で加熱して Mgを昇華させ、溶融温度以下の温度で焼結するにあたり 、窒素ガスを導入し、チッ化マグネシウムを生成させ、このチッ化マグネシウムにより、 粉末表面の酸化アルミニウムを還元してアルミニウム金属を露出させる方法があり、こ の方法では気体状態の窒化物を形成させて、これによりアルミニウムを析出させる事 が知られている(特許文献 3)。この方法は焼結体の表面に金属を析出させる焼結体 の製法である。酸化アルミニウムを気体に変化させ、そしてアルミニウム金属を製造 するというものではなレ、。したがって、この方法によったのでは、酸化アルミニウムから 純粋なアルミニウムを得ることはできないと考えられる。 [0005] Even when heating is performed in the presence of a reducing agent, the reducing agent is used in a gaseous state. For example, a compacted body of aluminum oxide powder mixed with Mg is set in a furnace, heated in a rare gas atmosphere to sublimate Mg, and when sintered at a temperature below the melting temperature, nitrogen gas is introduced, There is a method in which magnesium nitride is generated and the aluminum oxide on the powder surface is reduced by this magnesium nitride to expose the aluminum metal. In this method, gaseous nitride is formed, thereby precipitating the aluminum. It is known to make it happen (Patent Document 3). This method is a method for producing a sintered body in which a metal is deposited on the surface of the sintered body. It's not about turning aluminum oxide into a gas and producing aluminum metal. Therefore, it is considered that pure aluminum cannot be obtained from aluminum oxide by this method.
また、アルミニウムを低酸素条件下に被めつき材の表面に真空蒸着させる方法 (特 許文献 4)が知られている。この方法は金属アルミニウムを気化させて、物体の表面に 金属アルミニウムを蒸着めつきするものであり、金属酸化物から金属を製造するという ものではない。また、予め前処理された被めつき材表面の少なくとも片面に連続的に A1系蒸着めつきを施す真空蒸着法も知られているが (特許文献 5)、この方法も金属 アルミニウムを気化させて、物体の表面に金属アルミニウムを蒸着めつきするものであ り、酸化アルミニウムを直接還元し、アルミニウム金属を製造するというものではない。 Also known is a method (Patent Document 4) in which aluminum is vacuum-deposited on the surface of a covering material under low oxygen conditions. This method vaporizes metallic aluminum and deposits metallic aluminum on the surface of the object, and does not produce metal from a metal oxide. Also known is a vacuum vapor deposition method in which A1-based vapor deposition is continuously applied to at least one surface of a pre-treated surface of a metal to be plated (Patent Document 5). It vaporizes aluminum and deposits metallic aluminum on the surface of the object, not directly reducing aluminum oxide to produce aluminum metal.
[0006] 従来、金属材料を合成する方法の一つに、固相、又は液相の状態にある金属を気 化することによる気相成長による金属合成法がある。この気相成長によれば、微粒子 、粉体、ゥイスカー,薄膜などの目的とする性状に応じて、固有の物理性状を有する 金属を得ることができる。気相合成法より得られる材料は、有用な特性を有することか ら積極的に開発が進められている。又、得られる金属材料は種々な結晶質や非晶質 が得られることから結晶形を制御することができることから、結晶質や非晶質などの結 晶形を選択的に製造することが期待でき、そのための開発が行なわれている。  [0006] Conventionally, as one method of synthesizing a metal material, there is a metal synthesis method by vapor phase growth by vaporizing a metal in a solid phase or a liquid phase. According to this vapor phase growth, a metal having a specific physical property can be obtained according to the intended property such as fine particles, powder, whisker, and thin film. Materials obtained from gas phase synthesis methods are being actively developed because they have useful properties. In addition, since the obtained metal material can be controlled in crystal form since various crystalline and amorphous materials are obtained, it can be expected to selectively produce crystalline forms such as crystalline and amorphous. Development for that is being done.
これらの方法には、固体金属原料に電子ビームやレーザーを真空中で照射する、 あるいは、スパッタリング、イオンプレーティングなどの物理的な現象を利用する方法 (PVD)と複数の原料ガスを反応させる化学反応を利用する方法(CVD)などがある 。これらの方法では、 目的とする金属を含むものを原料にすることに限られており、金 属酸化物を還元して金属物質を直接製造しょうとすることは行われていない。  These methods include irradiating a solid metal source with an electron beam or laser in vacuum, or using a physical phenomenon such as sputtering or ion plating (PVD) and a reaction that reacts multiple source gases. There is a method using reaction (CVD). These methods are limited to using a material containing the target metal as a raw material, and no attempt is made to directly produce a metal material by reducing a metal oxide.
[0007] 以上のことから、金属酸化物から純度が高い金属を直接製造することが求められて おり、その場合には、純度が高い金属は、その固有の特性を有する金属である金属 、又その性状に応じて固有の特性を有する金属を得ることが求められている。  [0007] From the above, there is a demand for directly producing a high-purity metal from a metal oxide. In this case, the high-purity metal is a metal having its own characteristics, There is a demand for obtaining a metal having unique characteristics depending on its properties.
特許文献 1:特開 2001— 294953号公報  Patent Document 1: Japanese Patent Laid-Open No. 2001-294953
特許文献 2:特開 2004— 43972号公報  Patent Document 2: JP 2004-43972 A
特許文献 3 :特開平 8— 35025号公報  Patent Document 3: JP-A-8-35025
特許文献 4 :特開平 7— 97689号公報  Patent Document 4: JP-A-7-97689
特許文献 5:特開平 6 _ 158285号公報  Patent Document 5: JP-A-6_158285
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 本発明の課題は、 目的とする金属については金属酸化物から直接還元して得られ る、純度が高 物質本来が有している固有の特性を有する金属であり、その金属の 製造方法及び製造装置を提供することである。 [0008] An object of the present invention is a metal having an intrinsic characteristic inherent in a substance having a high purity obtained by directly reducing a target metal from a metal oxide, and the production of the metal It is to provide a method and a manufacturing apparatus.
課題を解決するための手段 [0009] 本発明者らは、金属酸化物からその焼結体を製造し、次にこの焼結体を極低酸素 分圧下で、高温に加熱することにより、金属酸化物から純粋な金属を得ることができ ることを見出し、本発明を完成させた。 Means for solving the problem [0009] The inventors of the present invention manufactured a sintered body from a metal oxide, and then heated the sintered body to a high temperature under an extremely low partial pressure of oxygen to obtain a pure metal from the metal oxide. As a result, the present invention has been completed.
[0010] この場合に、「極低酸素分圧下」は必須の条件であり、以下の範囲に限定される。  In this case, “under extremely low oxygen partial pressure” is an essential condition and is limited to the following range.
又、この条件下に特定の温度で加熱することが行われる。温度に関しては、その上限 は、問題とすることなく採用できるが、経済的な見地から前記範囲の最も低い温度を 採用すればよい。  Also, heating at a specific temperature is performed under these conditions. Regarding the temperature, the upper limit can be adopted without any problem, but the lowest temperature in the above-mentioned range may be adopted from an economical point of view.
具体的には、以下の通りである。  Specifically, it is as follows.
前記極低酸素分圧は 10のマイナス 30乗気圧以上、 10のマイナス 20乗気圧以下 のであり、この特定の雰囲気において、金属酸化物を摂氏 850°C以上に加熱するこ とである。  The extremely low oxygen partial pressure is not less than 10 minus 30th atmospheric pressure and not more than 10 minus 20th atmospheric pressure. In this specific atmosphere, the metal oxide is heated to 850 ° C or higher.
また、前記極低酸素分圧は 10のマイナス 30乗気圧以上、 10のマイナス 20乗気圧 以下のであり、この特定の雰囲気が不活性ガス中であり、この特定の雰囲気におい て、金属酸化物を摂氏 850°C以上に加熱することである。  In addition, the extremely low partial pressure of oxygen is not less than 10 minus 30th atmospheric pressure and not more than 10 minus 20th atmospheric pressure, and this specific atmosphere is in an inert gas. Heating to 850 degrees Celsius or higher.
これらの条件は以下の手段により算出される結果である。  These conditions are results calculated by the following means.
[0011] 前記算出方法には、エリンガム図が用いられる。 [0011] An Ellingham diagram is used for the calculation method.
エリンガム図は前記金属酸化物から金属を製造する標準生成自由エネルギー変化 ( A G0 )を縦軸に、温度を横軸にとり、反応系の平衡関係を表現するものである。こ のエリンガム図を用いることにより、金属酸化物から金属を製造する反応の条件(酸 素分圧及び加熱温度)を定めることができる(図 1)。 The Ellingham diagram expresses the equilibrium relationship of the reaction system, with the vertical axis representing the standard free energy change (AG 0 ) for producing metal from the metal oxide and the horizontal axis representing temperature. By using this Ellingham diagram, the reaction conditions (oxygen partial pressure and heating temperature) for producing metals from metal oxides can be determined (Figure 1).
エリンガム図の縦線(C,H,〇で示されている標準生成自由エネルギーを示す)の酸 素の位置と想定している酸素分圧を結ぶ直線と、金属酸化物から金属を製造する際 の標準生成自由エネルギ—変化(A G° )を示す直線を結ぶ交点から得られる温度 以上の温度で処理することにより行われる。  When producing metal from metal oxide, a straight line connecting the position of oxygen on the vertical line of the Ellingham diagram (indicating the standard free energy of formation shown by C, H, ○) and the assumed oxygen partial pressure. It is performed by processing at a temperature equal to or higher than the temperature obtained from the intersection connecting the straight lines indicating the standard free energy of change (AG °).
酸化アルミニウムからアルミニウムを生成する標準生成自由エネルギーより大きい値 となる金属酸化物から金属を製造する標準生成自由エネルギーを有するものであれ ば、エリンガム図を用いる算出方法が適用できる。  The calculation method using the Ellingham diagram can be applied as long as it has a standard free energy for producing a metal from a metal oxide having a value larger than the standard free energy for producing aluminum from aluminum oxide.
その金属酸化物から得られる金属としては、以下の通りである。 コバルト、クロム、シリコン、ニッケノレ、亜鉛、銅を挙げることができる。 The metal obtained from the metal oxide is as follows. Cobalt, chromium, silicon, nickel cane, zinc and copper can be mentioned.
本発明によれば、以下の発明が提供される。  According to the present invention, the following inventions are provided.
(1)金属酸化物を還元することにより得られる金属が、前記金属酸化物を、酸素分圧 力 S10のマイナス 30乗気圧以上、 10のマイナス 20乗気圧以下の雰囲気中で、エリン ガム図の縦線(C、 H、〇で示されている標準生成自由エネルギーを示す)の酸素の 位置と想定している酸素分圧を結ぶ直線と、金属酸化物から金属を製造する際の標 準生成自由エネルギー変化( Δ G° )を示す直線を結ぶ交点から得られる温度以上 の温度で処理することにより得られることを特徴とする金属材料。  (1) The metal obtained by reducing the metal oxide is the metal oxide in the Ellingham diagram in an atmosphere having an oxygen partial pressure S10 of minus 30th atmospheric pressure or more and 10 minus 20th atmospheric pressure or less. Standard generation when producing metal from metal oxide, and a straight line connecting the oxygen position of the vertical line (indicating the standard free energy of production indicated by C, H, and O) and the assumed oxygen partial pressure A metal material obtained by processing at a temperature equal to or higher than a temperature obtained from an intersection connecting straight lines indicating a change in free energy (ΔG °).
(2)前記酸素分圧が 10のマイナス 30乗気圧以上、マイナス 20乗気圧以下の雰囲気 が不活性ガス中であることを特徴とする(1)記載の金属材料。  (2) The metal material as set forth in (1), wherein an atmosphere having an oxygen partial pressure of 10 minus 30th atmospheric pressure or more and minus 20th atmospheric pressure or less is in an inert gas.
(3)前記金属酸化物が焼結体であることを特徴とする(1)又は(2)記載の金属材料。 (3) The metal material according to (1) or (2), wherein the metal oxide is a sintered body.
(4)前記金属酸化物の焼結体が、金属酸化物粒子を圧縮して成形体とし、焼結処理 を行ったことを特徴とする(3)記載の金属材料。 (4) The metal material according to (3), wherein the sintered body of the metal oxide is obtained by compressing metal oxide particles into a molded body and performing a sintering treatment.
(5)前記金属酸化物が三酸化二アルミニウムであり、金属がアルミニウムであることを 特徴とする(1)から (4)のいずれか記載の金属材料。  (5) The metal material according to any one of (1) to (4), wherein the metal oxide is dialuminum trioxide and the metal is aluminum.
(6)金属酸化物を還元して金属を製造する方法において、前記金属酸化物を、酸素 分圧が 10のマイナス 30乗気圧以上、 10のマイナス 20乗気圧以下の雰囲気中で、 エリンガム図の縦線(C,H,〇で示されている標準生成自由エネルギ—を示す)の酸 素の位置と想定している酸素分圧を結ぶ直線と、金属酸化物から金属を製造する際 の標準生成自由エネルギ—変化(A G° )を示す直線を結ぶ交点から得られる温度 以上の温度で処理して基板表面に金属を析出させることを特徴とする金属材料の製 造方法。  (6) In the method of producing a metal by reducing a metal oxide, the metal oxide is subjected to an oxygen partial pressure in an atmosphere having an oxygen partial pressure of 10 minus 30th atmospheric pressure or more and 10 minus 20th atmospheric pressure or less as shown in the Ellingham diagram. Standards for metal production from metal oxides and a straight line connecting the oxygen position of the vertical line (indicating the standard free energy of generation indicated by C, H, ○) and the assumed oxygen partial pressure A method for producing a metal material, characterized in that a metal is deposited on the surface of a substrate by processing at a temperature equal to or higher than a temperature obtained from an intersection point connecting straight lines showing a change in free energy of generation (AG °).
(7)前記酸素分圧が 10のマイナス 30乗気圧以上、マイナス 20乗気圧以下の雰囲気 が不活性ガス中であることを特徴とする(6)記載の金属材料の製造方法。  (7) The method for producing a metal material according to (6), wherein the atmosphere in which the oxygen partial pressure is 10 minus 30th atmospheric pressure or more and minus 20th atmospheric pressure or less is in an inert gas.
(8)前記金属酸化物が焼結体であることを特徴とする(6)又は(7)記載の金属材料 の製造方法。  (8) The method for producing a metal material according to (6) or (7), wherein the metal oxide is a sintered body.
(9)前記金属酸化物の焼結体が、金属酸化物粒子を圧縮して成形体とし、焼結処理 を行ったことを特徴とする(6)から(8) V、ずれか記載の金属材料の製造方法。 (10) (9) The metal according to any one of (6) to (8), wherein the metal oxide sintered body is formed by compressing metal oxide particles into a compact and performing a sintering treatment. Material manufacturing method. (Ten)
前記金属酸化物が三酸化二アルミニウムであり、金属がアルミニウムであることを特 徴とする(6)から(9)レ、ずれか記載の金属材料の製造方法。  The method for producing a metal material according to any one of (6) to (9), wherein the metal oxide is dialuminum trioxide and the metal is aluminum.
(11) 金属酸化物を還元して金属を製造する装置において、前記金属酸化物を、 酸素分圧が 10のマイナス 30乗気圧以上、マイナス 20乗気圧以下の雰囲気中で、ェ リンガム図の縦線 (C、 H、 Oで示されている標準生成自由エネルギーを示す)の酸素 の位置と想定している酸素分圧を結ぶ直線と、金属酸化物から金属を製造する際の 標準生成自由エネルギー変化(A G° )を示す直線を結ぶ交点から得られる温度以 上の温度で処理して基板表面に金属として析出させることを特徴とする金属材料の 製造装置。  (11) In an apparatus for producing a metal by reducing a metal oxide, the metal oxide is placed in the vertical direction of the Ellingham diagram in an atmosphere having an oxygen partial pressure of minus 30 to atmospheric pressure of minus 30 to atmospheric pressure. The straight line connecting the oxygen position on the line (showing the standard free energy of generation indicated by C, H, and O) and the assumed oxygen partial pressure, and the standard free energy of production when producing metal from metal oxide An apparatus for producing a metal material, characterized in that the metal material is deposited as a metal on a substrate surface by processing at a temperature equal to or higher than a temperature obtained from an intersection that connects straight lines indicating change (AG °).
(12)前記酸素分圧が 10のマイナス 30乗気圧以上、マイナス 20乗気圧以下の雰囲 気が不活性ガス中であることを特徴とする(11)記載の金属材料の製造装置。  (12) The apparatus for producing a metal material according to (11), wherein the atmosphere in which the oxygen partial pressure is 10 minus 30th atmospheric pressure or more and minus 20th atmospheric pressure or less is in an inert gas.
(13)前記金属酸化物が回転可能な固定手段により固定されており、集光用の楕円 ミラーが背後に設置されている赤外線加熱用ランプが楕円ミラーの一つの焦点に、 他の焦点に金属酸化物の被加熱部が設けられており、金属酸化物は加熱溶融によ り気化して、上部に設けられている基板表面に金属として析出させることを特徴とする (11)又は(12)記載の金属材料製造装置。  (13) An infrared heating lamp in which the metal oxide is fixed by a rotatable fixing means and an ellipsoidal mirror for condensing is installed behind is a metal at one focal point of the elliptical mirror and a metal at the other focal point. A heated portion of oxide is provided, and the metal oxide is vaporized by heating and melting, and is deposited as a metal on the surface of the substrate provided at the top (11) or (12) The metal material manufacturing apparatus of description.
(14)前記金属酸化物が焼結体であることを特徴とする(11)から(13)いずれか記載 の金属材料の製造装置。  (14) The metal material manufacturing apparatus according to any one of (11) to (13), wherein the metal oxide is a sintered body.
(15)前記金属酸化物の焼結体が、金属酸化物粒子を圧縮して成形体とし、焼結処 理を行ったことを特徴とする(14)記載の金属材料の製造装置。  (15) The apparatus for producing a metal material according to (14), wherein the sintered body of the metal oxide is formed by compressing metal oxide particles into a molded body and performing a sintering process.
(16)前記金属酸化物が三酸化二アルミニウムであり、金属がアルミニウムであること を特徴とする(11)から(15)レ、ずれか記載の金属材料の製造装置。  (16) The apparatus for producing a metal material according to any one of (11) to (15), wherein the metal oxide is dialuminum trioxide and the metal is aluminum.
発明の効果 The invention's effect
本発明によれば、極低酸素分圧を利用することで金属酸化物を還元するために必要 な温度を低温に下げ、従来から知られる方法より安全に、簡便に金属酸化物から金 属を得ることができる新規な方法である。また、前記条件下にその金属を製造する方 法を行う新規な装置を得ることができる。 図面の簡単な説明 According to the present invention, by utilizing an extremely low oxygen partial pressure, the temperature required for reducing the metal oxide is lowered to a low temperature, and the metal can be removed from the metal oxide safely and easily than conventionally known methods. It is a novel method that can be obtained. In addition, a new apparatus can be obtained that performs the method for producing the metal under the above conditions. Brief Description of Drawings
[0014] [図 1]金属酸化物か金属を製造する反応のエリンガム図である。  FIG. 1 is an Ellingham diagram of a reaction for producing a metal oxide or metal.
[図 2]石英基盤上に付着したアルミニウムを示す図である。  FIG. 2 is a diagram showing aluminum deposited on a quartz substrate.
[図 3]三酸化二アルミニウムより得られたアルミニウムの X線回折の結果を示す図であ る。得られたピークはアルミニウムを基盤の材質である石英のみである。  FIG. 3 is a diagram showing the results of X-ray diffraction of aluminum obtained from dialuminum trioxide. The peak obtained is only quartz, which is a material based on aluminum.
[図 4]金属酸化物から金属を製造する装置の一例を示す図である。  FIG. 4 is a diagram showing an example of an apparatus for producing a metal from a metal oxide.
符号の説明  Explanation of symbols
[0015] 1:管状反応器 [0015] 1: Tubular reactor
15:酸素分圧制御装置及び不活性ガス雰囲気に維持するための気体循環装置から の循環経路の酸素及び不活性ガス供給口  15: Oxygen and inert gas supply port of circulation path from oxygen partial pressure control device and gas circulation device to maintain inert gas atmosphere
16:酸素分圧制御装置及び不活性ガス雰囲気に維持するための気体循環装置から の循環経路の酸素及び不活性ガス排出口  16: Oxygen and inert gas outlet in circulation path from oxygen partial pressure control device and gas circulation device to maintain inert gas atmosphere
30:赤外線加熱装置  30: Infrared heating device
31:楕円ミラー  31: Elliptical mirror
32:楕円ミラー  32: Elliptical mirror
33:赤外線加熱ランプ  33: Infrared heating lamp
34:赤外線加熱ランプ  34: Infrared heating lamp
35:被加熱部  35: heated part
36:基板固定手段  36: Board fixing means
37:基板  37: Board
38:金属酸化物焼結体固定手段  38: Metal oxide sintered body fixing means
39:金属酸化物焼結体  39: Metal oxide sintered body
40:管状反応管上蓋、  40: Tubular reaction tube top lid,
41:管状反応管下蓋  41: Tubular reaction tube lower lid
43:管状反応管壁 発明を実施するための最良の形態  43: Tubular reaction tube wall Best mode for carrying out the invention
[0016] 本発明の金属を得るためには金属酸化物が用いられる。対象となる金属酸化物は 、還元可能であるかを検討する必要がある。それには、金属酸化物から金属を製造 する際の標準生成自由エネルギー変化( Δ G° )を縦軸に、また、その反応の際の温 度を横軸にとり、反応系の平衡関係を表現するエリンガム図を用いることにより、特定 の温度及び酸素分圧の条件下に金属酸化物から金属を製造することができるかどう かを検討することができる(図 1)。 [0016] A metal oxide is used to obtain the metal of the present invention. The target metal oxides are It is necessary to consider whether it can be reduced. For this purpose, the standard production free energy change (Δ G °) when producing metal from metal oxide is plotted on the vertical axis, and the temperature during the reaction is plotted on the horizontal axis to express the equilibrium relationship of the reaction system. Using the Ellingham diagram, it is possible to examine whether metals can be produced from metal oxides under specific temperature and oxygen partial pressure conditions (Figure 1).
具体的には、前記のエリンガム図において、まず、図の左側にある縦線上(ここでは C,H,0で示されている標準生成自由エネルギーを示す)の酸素の位置と想定してい る酸素分圧(図の右側及び下側に示される)と、金属酸化物から金属を製造する際の 標準生成自由エネルギー変化( Δ G° )を示す直線を結ぶ交点の温度で処理するこ とにより得られる。  Specifically, in the Ellingham diagram, first, the oxygen assumed on the vertical line on the left side of the diagram (here, the standard free energy of formation shown by C, H, 0) is assumed. It is obtained by processing at the temperature of the intersection that connects the partial pressure (shown on the right and bottom of the figure) and the straight line indicating the standard free energy change (Δ G °) when producing metal from metal oxide. It is done.
例えば 10のマイナス 24乗では〇の位置と右下の角とを結ぶ直線となる。そうすると、 描かれた直線はエリンガム図中に示されている各種元素標準生成自由エネルギー の平衡関係を示した直線との交点として温度は特定される。一例として、酸素雰囲気 が 10のマイナス 28乗である三酸化二アルミニウムを取り上げる。三酸化二アルミニゥ ムが還元される温度は Oの位置と 10のマイナス 28乗を結んだ直線と三酸化二アルミ 二ゥムの標準生成自由エネルギーの平衡関係を示した直線の交点での温度、つまり 、 1300°Cとなる。もし、三酸化二アルミニウムの温度がより高温になった場合は、還 元のために必要な酸素分圧はそれに対応して高くなることも図から読み取ることがで きる。さらに、三酸化二アルミニウム以外のその他の酸化物に関しても同様に反応系 の平衡関係を示した直線との交点から、想定している酸素分圧での還元温度を知る こと力 Sできる。二酸化シリコンの場合は 10のマイナス 27乗気圧以下の酸素分圧下で 、 1000°C程度まで加熱されると還元されてシリコンを得ることが出来、また、酸化銅 の場合では 10のマイナス 27乗気圧以下の酸素分圧下で、 700°Cまで加熱されると 還元されて銅を得ることが出来る。 For example, 10 minus 24 is a straight line connecting the position of 〇 and the lower right corner. Then, the temperature is specified as the intersection of the drawn straight line and the straight line showing the equilibrium relation of various element standard formation free energies shown in the Ellingham diagram. As an example, let us consider dialuminum trioxide whose oxygen atmosphere is 10 minus 28. The temperature at which di-aluminum trioxide is reduced is the temperature at the intersection of the straight line connecting the position of O and the minus 28th power of 10 and the standard free energy of formation of di-aluminum trioxide, That is, 1300 ° C. It can also be seen from the figure that if the temperature of dialuminum trioxide becomes higher, the oxygen partial pressure required for reduction will be correspondingly higher. In addition, for other oxides other than dialuminum trioxide, it is also possible to know the reduction temperature at the assumed oxygen partial pressure from the intersection with the straight line showing the equilibrium relationship of the reaction system. In the case of silicon dioxide, silicon can be obtained by reduction when heated to about 1000 ° C under an oxygen partial pressure of 10 minus 27 square atmospheres or less, and in the case of copper oxide, 10 minus 27 square atmospheres. When heated to 700 ° C under the following oxygen partial pressure, it can be reduced to obtain copper.
このように、エリンガム図に示されているところにしたがって、極低酸素分圧を利用 することで還元することにより、酸化物から純元素を得ることができることを理解できる 。し力 ながら、これら酸素分圧と温度の範囲は対象である金属酸化物のエリンガム 図による算出結果であり、個別には更に条件が狭くなる可能性がある。 [0017] 本発明では、三酸化二アルミニウムからアルミニウムを製造する反応の標準生成自 由エネルギーより大きい値の金属酸化物であれば、その金属として得られる。 Thus, it can be understood that a pure element can be obtained from an oxide by reduction using an extremely low oxygen partial pressure as shown in the Ellingham diagram. However, these oxygen partial pressure and temperature ranges are the results of calculation based on the Ellingham diagram of the target metal oxide, and the conditions may be further narrowed individually. [0017] In the present invention, any metal oxide having a value larger than the standard free energy of reaction for producing aluminum from dialuminum trioxide can be obtained as the metal.
具体的には、ァノレミニゥム、コバルト、クロム、シリコン、鉄、ニッケル、スズ、チタン、亜 鉛,銅の各酸化物を挙げることができる。  Specific examples include oxides of anoleminium, cobalt, chromium, silicon, iron, nickel, tin, titanium, zinc, and copper.
[0018] 前記金属に対応する金属酸化物を挙げると、以下のとおりである。 [0018] Metal oxides corresponding to the metal are as follows.
酸化アルミニウム (Al O )  Aluminum oxide (Al O)
2 3  twenty three
酸化コバルト(Co O )  Cobalt oxide (Co O)
2 3  twenty three
酸ィ匕クロム(Cr O )  Acid chrome (Cr 2 O 3)
2 3  twenty three
酸化シリコン(SiO )  Silicon oxide (SiO 2)
2  2
酸化ニッケル(Ni O )  Nickel oxide (Ni O)
2 3  twenty three
酸化亜鉛 (Zn O )  Zinc oxide (Zn O)
2 3  twenty three
酸化銅(Cu O)  Copper oxide (Cu 2 O)
2  2
[0019] これらの金属酸化物からその金属を製造することができる。具体的な工程としては、 まず、金属酸化物を圧縮して成形体とし、焼結体を製造する。次に、その金属酸化物 の焼結体に対して極低酸素分圧下での還元処理を行う。  [0019] The metal can be produced from these metal oxides. As a specific process, first, a metal oxide is compressed into a molded body to produce a sintered body. Next, the metal oxide sintered body is subjected to reduction treatment under an extremely low oxygen partial pressure.
[0020] 出発材料としては上記の金属酸化物を用いる。金属酸化物は通常の工業的プロセ スにしたがって得られたものでよい。又、鉱物資源の原料として得られるものであって も問題ないが不純物を多く含まれる結果となるので、純粋な金属を生成する場合に は良好な結果を得ることが難しい。このような場合には、できるだけ不純物を除去して 得られる不純物の含有量が少ない金属酸化物として用いる。  [0020] The above metal oxide is used as a starting material. The metal oxide may be obtained according to a normal industrial process. Even if it is obtained as a raw material for mineral resources, there is no problem, but since it results in containing a large amount of impurities, it is difficult to obtain good results when producing pure metal. In such a case, it is used as a metal oxide having as little impurity content as possible by removing impurities as much as possible.
[0021] 金属酸化物は、粉状、粒状のものを用いる。また、場合によっては単結晶で棒状の もであっても差し支えはないが、単結晶であれば原料が高価であり、敢えてこのような 原料物質を用レ、る必要はなレ、。  [0021] The metal oxide is powdery or granular. In some cases, it may be a single crystal rod-like, but if it is a single crystal, the raw material is expensive, and it is not necessary to use such a raw material.
用いる原料金属酸化物の粒径については、この焼結体として製造しやすい粒径の ものを用いる。粒径は焼結体の製造を考慮して適宜決定することができる。粒径が必 要以上に大きい場合には均一な焼結体を得ることが困難となる。又、粒径が必要以 上に小さい場合にも均一な焼結体を得にくい。これらのこと力 、一般的には、平均 粒径は 0.1 μ mから 100 μ m程度のものが用いられる。 [0022] 金属酸化物から焼結体を製造するための金属酸化物の成形体を製造する工程は 、以下の通りである。 Regarding the particle size of the raw material metal oxide to be used, a sintered product having a particle size that is easy to manufacture is used. The particle size can be appropriately determined in consideration of the production of the sintered body. If the particle size is larger than necessary, it is difficult to obtain a uniform sintered body. Also, it is difficult to obtain a uniform sintered body even when the particle size is smaller than necessary. In general, those having an average particle size of about 0.1 μm to 100 μm are used. [0022] The process for producing a metal oxide molded body for producing a sintered body from a metal oxide is as follows.
原料の金属酸化物の粉末を容器に充填する。容器は圧力がかけられても、それに 耐えることができるものが用いられる。粉末の成形には、セラミックを製造する際の圧 縮機を用いる。金属酸化物粉末を、 100〜3000気圧の圧力でプレスし、例えば、直 径 3〜20mm、長さ 20〜100mmの成形体にする。プレスの圧力は一軸性の圧力より も静水圧力下であることが望ましぐ 500〜3000気圧の静水圧力下でプレスすること 力 り望ましい。  Fill the container with the raw metal oxide powder. Containers that can withstand pressure even when pressure is applied are used. For compacting the powder, a compacting machine used to produce ceramics is used. The metal oxide powder is pressed at a pressure of 100 to 3000 atmospheres to form a molded body having a diameter of 3 to 20 mm and a length of 20 to 100 mm, for example. It is desirable that the press pressure be under hydrostatic pressure rather than uniaxial pressure. It is more desirable to press under a hydrostatic pressure of 500 to 3000 atmospheres.
成形する大きさは、円柱状又は角柱状でよいが、加熱溶融するための装置の処理 能力や規模によって定まることであり、製造装置の処理能力や規模の拡大をはかつ た場合には、更に大きな形状のものを用いることができる。し力 ながら、加熱手段と して赤外線を集光照射する方法を用いる場合には円柱状の形状が望ましい。  The size to be molded may be cylindrical or prismatic, but is determined by the processing capacity and scale of the equipment for heating and melting. If the processing capacity and scale of the manufacturing equipment are expanded, further increase A large shape can be used. However, when using a method of condensing and irradiating infrared rays as a heating means, a cylindrical shape is desirable.
[0023] 金属酸化物を成形して得られる成形体の焼結は以下のようにして行う。 [0023] Sintering of a molded body obtained by molding a metal oxide is performed as follows.
焼結は空気を雰囲気ガスとする焼結炉内で行う。焼結炉の加熱手段はどんな手段 でもよく、ガスなどのほか電気加熱或いは赤外線加熱が用いられる力 抵抗加熱が 最も一般的である。加熱温度は、金属の融点よりも低い温度とし、数時間加熱処理を する。加熱温度は、原料酸化物の焼結が行われ、金属酸化物の成形体の形状が維 持できる温度とする。一般に、粒子径が小さければ小さいほど焼結開始温度が早ぐ 逆に粒子系が大きければ焼結温度が高くなる。例えば、三酸化二アルミニウムの場 合では、摂氏 1300度、 4時間の焼結で焼結体は完成する。酸化コバルトの場合は 1 000°C程度、酸化シリコンの場合は 1000°C、酸化ニッケルの場合は 1000°C、酸化 亜鉛の場合では 1000°C、酸化クロムの場合では 1000°C、酸化銅の場合は 700°C の焼結温度で良い。  Sintering is performed in a sintering furnace using air as an atmospheric gas. The heating means of the sintering furnace may be any means, and the most common is force resistance heating in which electric heating or infrared heating is used in addition to gas. The heating temperature is lower than the melting point of the metal, and heat treatment is performed for several hours. The heating temperature is a temperature at which the raw material oxide is sintered and the shape of the metal oxide compact can be maintained. In general, the smaller the particle size, the faster the sintering start temperature. Conversely, the larger the particle system, the higher the sintering temperature. For example, in the case of dialuminum trioxide, the sintered body is completed after sintering for 4 hours at 1300 degrees Celsius. About 1 000 ° C for cobalt oxide, 1000 ° C for silicon oxide, 1000 ° C for nickel oxide, 1000 ° C for zinc oxide, 1000 ° C for chromium oxide, copper oxide In this case, a sintering temperature of 700 ° C is sufficient.
このような操作により金属酸化物成形体力 金属酸化物の焼結体を製造する。焼結 体を冷却後、炉内から取り出す。  By such an operation, the metal oxide compact strength is produced. The sintered body is cooled and taken out from the furnace.
[0024] 金属酸化物焼結体の加熱工程は以下の通りである。 [0024] The heating step of the metal oxide sintered body is as follows.
反応炉内に、前記の金属酸化物からなる焼結体を固定する。この炉内の上部に適 当な安定な物質からなる板を、金属を析出させるための基板として保持する。この板 は石英ガラス板などで差し支えなレ、。この板の表面に金属を付着させる。 A sintered body made of the metal oxide is fixed in the reaction furnace. A plate made of an appropriate and stable material is held on the upper part of the furnace as a substrate for depositing metal. This board Can be made of quartz glass. Metal is adhered to the surface of the plate.
加熱操作に先立って、この反応炉内を、低酸素分圧の雰囲気とする。酸素分圧が 1 0のマイナス 30乗気圧以上、 10のマイナス 4乗気圧以下とする。  Prior to the heating operation, the inside of the reactor is set to an atmosphere having a low oxygen partial pressure. The partial pressure of oxygen is 10 minus 30th atmospheric pressure or more and 10 minus 4th atmospheric pressure or less.
この酸素分圧を得るには、本発明者らの特開 2004— 250283号公報(特願 2003- 4 2403号)及び特許第 374991号明細書記載に示されている酸素分圧制御方法及 び酸素分圧制御装置が用レ、られる。この酸素分圧制御方法及び酸素分圧制御装置 によれば、不活性ガス中の酸素分圧を大気圧で 2 X 10のマイナス 1乗から 1 X 10の マイナス 30乗気圧に制御することができる。このとき用いる不活性ガスは窒素、アル ゴン、ヘリウムガスが望ましぐ酸素分圧は 2 X 10のマイナス 10乗から 1 X 10のマイナ ス 30乗気圧で行うことが望ましレ、。  In order to obtain this oxygen partial pressure, the oxygen partial pressure control method disclosed in Japanese Patent Application Laid-Open No. 2004-250283 (Japanese Patent Application No. 2003-42403) and Japanese Patent No. 374991 described in the present inventors and An oxygen partial pressure control device is used. According to the oxygen partial pressure control method and the oxygen partial pressure control apparatus, the oxygen partial pressure in the inert gas can be controlled from 2 X 10 minus 1 to 1 X 10 minus 30 to atmospheric pressure at atmospheric pressure. . The inert gas used at this time is nitrogen, argon, or helium gas. The oxygen partial pressure is preferably 2 x 10 minus 10 to 1 x 10 minus 30 atm.
[0025] この酸素分圧制御方法では, 固体電解質であるジノレコニァを主成分とする酸素分 圧制御装置により不活性ガス中の酸素分圧を制御し、さらにその酸素分圧が制御さ れた不活性ガスを閉じられた系内で循環させることにより、試料作成室の不活性ガス の酸素分圧を 2 X 10のマイナス 1乗力ら 1 X 10のマイナス 30乗気圧に制御すること が可能となる。 [0025] In this oxygen partial pressure control method, the oxygen partial pressure in the inert gas is controlled by an oxygen partial pressure control device mainly composed of dinoleconia, which is a solid electrolyte, and the oxygen partial pressure is controlled. By circulating the active gas in the closed system, the oxygen partial pressure of the inert gas in the sample preparation chamber can be controlled from 2 x 10 minus 1 power to 1 x 10 minus 30 power. Become.
[0026] 加熱温度は、各金属固有のものであり、図 1に示されたエリンガム図に示される標準 生成自由エネルギー変化( Δ G° )と温度の関係を考慮して決定する。  [0026] The heating temperature is unique to each metal and is determined in consideration of the relationship between the standard free energy change (ΔG °) and temperature shown in the Ellingham diagram shown in FIG.
具体的には、不活性ガスの酸素分圧力 X 10のマイナス 27乗気圧の場合では、例 えば、三酸化二アルミニウムが約 1300°C、二酸化シリコンが約 1000°C、酸化クロム 力約 800T、酸ィ匕同 700°Cである。  Specifically, in the case of an oxygen partial pressure of inert gas X10 minus 27 to the atmospheric pressure, for example, dialuminum trioxide is about 1300 ° C, silicon dioxide is about 1000 ° C, chromium oxide power is about 800T, It is 700 ° C.
[0027] 一例として、三酸化二アルミニウムの場合を考える。 1 X 10のマイナス 27乗以下の 酸素分圧下で、三酸化二アルミニウムの焼結体を、摂氏 1500度まで加熱すると、三 酸化二アルミニウムは還元され、アルミニウムへと変化する。この時、加熱部分の温度 は摂氏 1500度であるので、融点が摂氏 660度のアルミニウムは液体状態であり、そ こから気体状のアルミニウムが蒸発する。加熱部分から離れるとアルミニウム蒸気は 冷却されるので、これを基板表面 (例えば、石英ガラス)に付着させることにより、固体 状のアルミニウム金属を得ることが可能になる。  As an example, consider the case of dialuminum trioxide. When a sintered body of dialuminum trioxide is heated to 1500 degrees Celsius under an oxygen partial pressure of 1 X 10 minus 27 or less, dialuminum trioxide is reduced and converted to aluminum. At this time, since the temperature of the heated portion is 1500 degrees Celsius, aluminum having a melting point of 660 degrees Celsius is in a liquid state, and gaseous aluminum is evaporated from there. Since the aluminum vapor is cooled away from the heated portion, it is possible to obtain solid aluminum metal by attaching it to the substrate surface (eg, quartz glass).
温度については、前記の通りエリンガム図に示されている値から算出できる。上述 の通り不活性ガスの酸素分圧力 X 10のマイナス 28乗気圧の場合では、約 1300°C 以上である。酸素分圧がより低い場合はさらに温度を低くすることができるが、逆に、 酸素分圧が高レ、場合はより高レ、温度が必要となる。 The temperature can be calculated from the values shown in the Ellingham diagram as described above. Above As shown in the figure, when the oxygen partial pressure of the inert gas X is minus 10 to the 28th atmospheric pressure, it is about 1300 ° C or higher. When the oxygen partial pressure is lower, the temperature can be further lowered, but conversely, when the oxygen partial pressure is high, a higher temperature and temperature are required.
[0028] 酸化物からなる焼結体の温度を昇温させる際には以下のようにして行う。 [0028] The temperature of the sintered body made of oxide is raised as follows.
前記焼結体に対して以下の、公知の加熱方法が適用される。  The following known heating method is applied to the sintered body.
具体的には、抵抗加熱法、高周波誘導加熱法、アーク放電法、電子線加熱法、赤外 線加熱、レーザビーム加熱などを挙げることができる(特開平 6— 158285号公報)。 抵抗加熱、高周波誘導加熱法、アーク放電法では、全てるつぼを使用し、それぞれ 抵抗に電流を流した際に発生するジュール熱、高周波による金属るつぼ中の誘導電 流による発熱、るつぼと電極間のアーク放電による加熱により、るつぼ中にある焼結 体は加熱される。一方、電子線加熱法、赤外線集光加熱、レーザビーム加熱はそれ ぞれ電子線流、赤外線、レーザーを集中もしくは集光させることで焼結体を加熱する 方法である。  Specific examples include a resistance heating method, a high frequency induction heating method, an arc discharge method, an electron beam heating method, an infrared ray heating, and a laser beam heating (Japanese Patent Laid-Open No. 6-158285). The resistance heating, high-frequency induction heating method, and arc discharge method all use a crucible, and Joule heat generated when a current is passed through the resistance, heat generation due to induction current in a metal crucible due to high frequency, and between crucible and electrode The sintered body in the crucible is heated by heating by arc discharge. On the other hand, the electron beam heating method, infrared condensing heating, and laser beam heating are methods for heating the sintered body by concentrating or condensing the electron beam flow, infrared rays, and laser, respectively.
[0029] 上記の加熱方法の中でも、焼結体を直接加熱し、ルツボ内で加熱するなどの方法 を取らないために、ルツボ材からの不純物混入やルツボ材との反応の可能性がなぐ 固定した金属酸化物に熱を与える赤外線加熱,レーザー加熱が特に有効である。 より具体的には、赤外線加熱を用いる。赤外線加熱では集光用の楕円ミラーを背 後に設置されたハロゲンランプもしくはキセノンランプを楕円ミラーの一つの焦点に設 置する。もう一つの焦点に、反応器内に固定されている三酸化二アルミニウム焼結体 などの対象としている金属酸化物を置く。ハロゲンランプもしくはキセノンランプからの 赤外線及びミラーにより反射させたものを含めて、三酸化二アルミニウム焼結体の表 面に集光させて加熱する。この加熱により 850°C以上の高温を得ることができる。  [0029] Among the above heating methods, there is no possibility of contamination from the crucible material or reaction with the crucible material because the sintered body is not directly heated and heated in the crucible. Infrared heating or laser heating that gives heat to the metal oxide is particularly effective. More specifically, infrared heating is used. In infrared heating, a halogen lamp or xenon lamp placed behind a condensing elliptical mirror is placed at one focal point of the elliptical mirror. Another focus is on the target metal oxide, such as a sintered aluminum oxide body fixed in the reactor. Infrared rays from halogen lamps or xenon lamps, including those reflected by mirrors, are condensed and heated on the surface of the sintered aluminum trioxide. A high temperature of 850 ° C or higher can be obtained by this heating.
[0030] 加熱操作にともなって、最初の段階では、加熱焼結体の表面から発生する酸素の 影響を受けて酸素の発生が検知される。それに伴い、処理装置内の酸素量は僅か ではあるが上昇する。その後、酸素分圧は再び低下するが、金属酸化物が還元され る温度以上になると、酸素分圧制御装置の酸素濃度計の酸素濃度の値が再度上昇 し、酸素の発生が確認できる。さらに加熱すると、金属析出し,蒸発が始まる。  [0030] With the heating operation, in the first stage, the generation of oxygen is detected under the influence of oxygen generated from the surface of the heated sintered body. Along with this, the amount of oxygen in the processing apparatus increases slightly. After that, the oxygen partial pressure decreases again, but when the temperature exceeds the temperature at which the metal oxide is reduced, the oxygen concentration value of the oxygen concentration meter of the oxygen partial pressure control device increases again, and the generation of oxygen can be confirmed. When heated further, metal deposits and evaporation begins.
[0031] 蒸発した金属は加熱部分の上部に設置している石英ガラスに付着させる。基板表 面に金属を析出させるにあたっては、基板を、処理装置内に設置して前記低酸素分 圧下におく。一定時間この状態を保持し、基板表面などに付着或いは吸着されてい る気体物質などの不純物質を取り除いておく。 [0031] The evaporated metal is allowed to adhere to the quartz glass installed on the upper part of the heating portion. Board surface In depositing the metal on the surface, the substrate is placed in a processing apparatus and placed under the low oxygen partial pressure. Hold this state for a certain period of time to remove impurities such as gaseous substances adhering to or adsorbing to the substrate surface.
[0032] この操作により得られる金属は、純度が高い金属である。その形状は、基板表面に 膜状で形成される。これらは金属酸化物の使用量や加熱温度により変化する。酸化 物が実際に還元したかどうかは生成された膜を X線回折の実験を行うことにより確認 すること力 Sできる。 [0032] The metal obtained by this operation is a metal with high purity. The shape is formed as a film on the substrate surface. These vary depending on the amount of metal oxide used and the heating temperature. Whether or not the oxide is actually reduced can be confirmed by conducting an X-ray diffraction experiment on the formed film.
[0033] 図 4により、金属酸化物を加熱溶融し還元することにより得られる金属を製造する装 置の一例を説明する。  An example of an apparatus for producing a metal obtained by heating, melting, and reducing a metal oxide will be described with reference to FIG.
管状反応管の管状反応管壁 (43)の内部には、金属酸化物焼結体(39)が、回転 可能な金属酸化物焼結体固定手段(38)の上部に固定されている。管状反応管頂 部及び底部は、上蓋 (40)、基板固定手段(36)及び管状反応管壁の保持固定手段 (11)、並びに下蓋 (41)、金属酸化物焼結体固定手段(38)及び管状反応管壁の保 持固定手段(12)により閉鎖されている。  Inside the tubular reaction tube wall (43) of the tubular reaction tube, the metal oxide sintered body (39) is fixed to the upper part of the rotatable metal oxide sintered body fixing means (38). The top and bottom of the tubular reaction tube have an upper lid (40), a substrate fixing means (36), a tubular reaction tube wall holding and fixing means (11), a lower lid (41), a metal oxide sintered body fixing means (38 ) And means for holding and fixing the tubular reaction tube wall (12).
管状反応管を囲んで、赤外線加熱装置(30)の集光用の楕円ミラー(31、 32)が設 置されており、赤外線加熱用ランプ(33、 34)が楕円ミラーの一つの焦点に、他の焦 点に管状反応管の固定手段上の金属酸化物が配置されている。又、管状反応管下 蓋 (41)及び管状反応管上蓋 (40)には、酸素分圧制御装置(図示せず)及び不活性 ガス雰囲気に維持するための気体循環装置(図示せず)からの循環経路(15、 16) が接続されている。これらの装置により管状反応管内の条件が所定の条件に維持さ れる。  Surrounding the tubular reaction tube, the condensing elliptical mirrors (31, 32) of the infrared heating device (30) are installed, and the infrared heating lamps (33, 34) are located at one focal point of the elliptical mirror. The metal oxide on the fixing means of the tubular reaction tube is arranged at another focal point. Further, the tubular reaction tube lower lid (41) and the tubular reaction tube upper lid (40) are provided with an oxygen partial pressure control device (not shown) and a gas circulation device (not shown) for maintaining an inert gas atmosphere. The circulation path (15, 16) is connected. These devices maintain the conditions in the tubular reaction tube at predetermined conditions.
[0034] 反応器の管状反応管壁 (43)の内部の、固定手段(38)上の金属酸化物焼結体 (3 9)の被加熱部(35)を赤外光照射する。管状反応管壁 (43)は、赤外光を透過させる 必要があり、また高温となることから石英ガラスにより作成させる。  [0034] The heated portion (35) of the metal oxide sintered body (39) on the fixing means (38) inside the tubular reaction tube wall (43) of the reactor is irradiated with infrared light. The tubular reaction tube wall (43) needs to transmit infrared light and is made of quartz glass because of its high temperature.
被加熱部(35)の酸化物焼結体は、加熱溶融後、蒸発し、還元された金属の状態 で上部に設置されている基板(37)表面に付着させる。基板表面に金属を析出させ るにあたっては、石英ガラスは低酸素分圧下に置かれている。  The oxide sintered body of the heated part (35) evaporates after being heated and melted, and adheres to the surface of the substrate (37) placed on the upper side in a reduced metal state. When depositing metal on the substrate surface, quartz glass is placed under a low oxygen partial pressure.
基板(37)は回転可能な基板固定手段(36)に固定されてレ、る。固定方法は石英ガ ラス板が固定できるものであれば任意の手段が適用される。一例を挙げれば、石英 ガラス板に白金の細線により固定する方法を用いることができる。この方法は取り外し 可能であり、操作性もよぐ安定性もある。基板固定手段(36)、金属酸化物焼結体 固定手段(38)には昇降可能と同時に回転可能とするための駆動手段が設けられて いる。また、基板(37)を基板固定手段(36)に、とめ具などの補助手段を用いて取り 外し可能に取り付けることもできる。 The substrate (37) is fixed to the rotatable substrate fixing means (36). Fixing method is quartz Any means is applicable as long as the lath plate can be fixed. For example, a method of fixing to a quartz glass plate with a fine platinum wire can be used. This method is detachable and has both operability and stability. The substrate fixing means (36) and the metal oxide sintered body fixing means (38) are provided with a driving means for allowing the substrate to be moved up and down and simultaneously rotating. Further, the substrate (37) can be detachably attached to the substrate fixing means (36) using auxiliary means such as a fastener.
基板固定手段(36)、金属酸化物焼結体固定手段(38)を駆動手段により回転させ ることにより、酸化物焼結体は、均一に加熱溶融される。  By rotating the substrate fixing means (36) and the metal oxide sintered body fixing means (38) by the driving means, the oxide sintered body is uniformly heated and melted.
[0035] 反応器の頂部及び底部には、管状反応管壁 (43)の保持固定手段(12)及び管状 反応管下蓋 (41)及び管状反応管上蓋 (40)が固定されてレ、る。管状反応管下蓋 (4 1)及び管状反応管上蓋 (40)には、酸素分圧制御装置及び不活性ガス雰囲気に維 持するための気体循環装置からの循環経路の酸素及び不活性ガス供給口(15)及 びその酸素及び不活性ガス排出口(16)が設けられている。  [0035] Holding and fixing means (12) of the tubular reaction tube wall (43), a tubular reaction tube lower lid (41), and a tubular reaction tube upper lid (40) are fixed to the top and bottom of the reactor. . The tubular reaction tube lower lid (41) and the tubular reaction tube upper lid (40) are supplied with oxygen and inert gas in the circulation path from the oxygen partial pressure control device and the gas circulation device to maintain the inert gas atmosphere. There is a mouth (15) and its oxygen and inert gas outlet (16).
[0036] 反応器内は、酸素分圧制御装置及び不活性ガス雰囲気に維持するための気体循 環装置の作用により、反応器(1)内の極低酸素分圧状態は、不活性ガス雰囲気によ り維持されている。具体的には、酸素分圧が 10のマイナス 30乗気圧以上、 10のマイ ナス 4乗気圧以下の不活性ガス雰囲気中である。反応器内の不活性ガス中の酸素 分圧は大気圧で 2 X 10のマイナス 1乗から 1 X 10のマイナス 30乗気圧に制御するこ とが出来る。このとき用いる  [0036] Due to the action of the oxygen partial pressure control device and the gas circulation device for maintaining the inert gas atmosphere in the reactor, the extremely low oxygen partial pressure state in the reactor (1) becomes an inert gas atmosphere. It is maintained by. Specifically, it is in an inert gas atmosphere having an oxygen partial pressure of 10 minus 30th atmospheric pressure or more and 10 minus 4th atmospheric pressure or less. The partial pressure of oxygen in the inert gas in the reactor can be controlled from 2 X 10 minus 1 to 1 X 10 minus 30 at atmospheric pressure. Use at this time
不活性ガスは窒素、アルゴン、ヘリウムガスが用いられ、このうちアルゴン、ヘリウムガ スが望ましい。  As the inert gas, nitrogen, argon, or helium gas is used, and argon or helium gas is preferable.
[0037] 赤外線加熱装置(30)の集光用の楕円ミラー(31、 32)の焦点に赤外線加熱手段 であるハロゲンランプもしくはキセノンランプ(33、 34)が設けられる。もう一つの焦点 に、被加熱部(35)の金属酸化物焼結体が配置される。ハロゲンランプもしくはキセノ ンランプからの赤外線及びミラーにより反射された赤外線により、被加熱部(35)の金 属酸化物焼結体は、 850°C以上の温度が与えられることにより加熱融解される。  [0037] A halogen lamp or xenon lamp (33, 34) as an infrared heating means is provided at the focal point of the condensing elliptical mirror (31, 32) of the infrared heating device (30). The metal oxide sintered body of the heated part (35) is arranged at another focal point. The metal oxide sintered body of the heated portion (35) is heated and melted by being given a temperature of 850 ° C. or more by the infrared ray from the halogen lamp or xenon lamp and the infrared ray reflected by the mirror.
赤外光は均一に照射されることが必要であり、金属酸化物を回転させて赤外光が 均一に照射されるようにする。その回転数は 5から 50卬 mが望ましぐ 10から 30卬 mが より望ましい。また、育成速度は 0.1から 50mm/hrが望まし 1から 10mm/hrがより望 ましい。 Infrared light needs to be uniformly irradiated, and the metal oxide is rotated so that the infrared light is uniformly irradiated. The desired rotation speed is 5 to 50 mm, and 10 to 30 mm is desired. More desirable. The growth rate is preferably 0.1 to 50 mm / hr, more preferably 1 to 10 mm / hr.
[0038] 金属の冷却処理及び取り出しは、以下のようにして行う。溶融操作により得られた金 属を、溶融操作が終了後、酸素分圧の制御のための不活性ガスの循環を停止した 状態で、反応器を大気中に開放する。その後、固定手段に固定されている単結晶、 及び三酸化二アルミニウム焼結体を固定手段からはずし、反応器外に単結晶を取り 出す。  [0038] The metal cooling treatment and extraction are performed as follows. The metal obtained by the melting operation is opened to the atmosphere after the melting operation is completed, with the circulation of the inert gas for controlling the oxygen partial pressure stopped. Thereafter, the single crystal fixed to the fixing means and the sintered aluminum trioxide are removed from the fixing means, and the single crystal is taken out of the reactor.
[0039] 以下に実施例により本発明の内容を詳細に説明する。し力 ながら,本発明は之に 限定されるものではない。  [0039] The contents of the present invention will be described in detail below with reference to examples. However, the present invention is not limited to this.
実施例 1  Example 1
[0040] 三酸化二アルミニウム (A1〇)は、 10のマイナス 24乗気圧以下の酸素分圧下で、摂 氏 1500°C以上になると還元されて、アルミニウム金属になる(図 1)。この実施例は以 下のとおりである。  [0040] Dialuminum trioxide (A10) is reduced to an aluminum metal when it reaches 1500 ° C or higher under an oxygen partial pressure of 10 minus 24 or less atmospheric pressure (Fig. 1). This example is as follows.
[0041] [工程 1]焼結体の製造 [0041] [Step 1] Production of sintered body
99.9%の三酸化二アルミニウム (Al O )粉末(平均粒径: 2 z m)を、 3000気圧の静 水圧力下でプレスし、直径 8mm、長さ 100mmに整形した。整形した材料を空気中に おいて、摂氏 1300度で 4時間熱処理をし,三酸化二アルミニウムの焼結棒を作成し た。  99.9% dialuminum trioxide (Al 2 O 3) powder (average particle size: 2 zm) was pressed under a hydrostatic pressure of 3000 atmospheres and shaped to 8 mm in diameter and 100 mm in length. The shaped material was heat-treated at 1300 degrees Celsius for 4 hours in air to prepare a sintered bar of dialuminum trioxide.
[0042] [工程 2] 焼結体の加熱工程  [0042] [Process 2] Heating process of sintered body
炉内を 1気圧のアルゴンガス中において, 10のマイナス 29乗気圧の酸素分圧のそ の雰囲気とした。前工程で得られた焼結体を赤外線加熱により加熱した。  The atmosphere inside the furnace was 10 atmospheres of oxygen minus the negative 29th power in 1 atmosphere of argon gas. The sintered body obtained in the previous step was heated by infrared heating.
予め加熱部分の上部に評価のための石英ガラスを白金線でつるしておいた。焼結 棒の昇温過程で吸着ガスの脱離のため、操作当初は炉内の酸素分圧が上昇する。 ガスの脱離が終わると酸素分圧は再び低下した。  Quartz glass for evaluation was previously suspended on the upper part of the heated portion with a platinum wire. At the beginning of operation, the partial pressure of oxygen in the furnace rises due to desorption of adsorbed gas during the heating process of the sintering rod. When the gas desorption was completed, the oxygen partial pressure decreased again.
その後、加熱部分の温度が 1500°C以上になると炉内の酸素分圧は再度,上昇し た。後者の酸素分圧の上昇は三酸化二アルミニウムが還元され、酸素が発生してい るためと考えられる。さらに加熱すると、空気中では赤外線加熱では溶融しない三酸 化二アルミニウムが溶融した。この時、三酸化二アルミニウムが還元されているため、 金属アルミニウムが析出し、これが蒸発し、加熱部分の上部に設置している石英ガラ スに付着した。 After that, when the temperature of the heated part exceeded 1500 ° C, the oxygen partial pressure in the furnace rose again. The latter increase in oxygen partial pressure is thought to be due to the reduction of dialuminum trioxide and the generation of oxygen. Upon further heating, dialuminum trioxide that did not melt by infrared heating in the air melted. At this time, since dialuminum trioxide is reduced, Metal aluminum was deposited and evaporated and adhered to the quartz glass installed at the top of the heated area.
[0043] 加熱終了後、三酸化二アルミニウムの表面に金属アルミニウムの析出が確認され( 図 2)、上部に取り付けた石英ガラスを X線回折で測定するとアルミニウムであることが 確認された(図 3)。この分析結果より得られた析出物質は金属アルミニウムのみから なることが確認できた。  [0043] After the heating was completed, precipitation of metallic aluminum was confirmed on the surface of dialuminum trioxide (Fig. 2), and the quartz glass attached to the top was measured by X-ray diffraction and confirmed to be aluminum (Fig. 3). ). From this analysis result, it was confirmed that the deposited substance was composed solely of metallic aluminum.
また、上部に取り付けるものを石英ガラスから白金泊に変更すると白金とアルミユウ ムが反応し化合物を作ることからもアルミニウムが精製されていることが確認できる。 産業上の利用可能性  It can also be confirmed that aluminum is purified because platinum and aluminum react to form a compound when the one attached to the top is changed from quartz glass to platinum. Industrial applicability
[0044] 金属酸化物を原料として、金属酸化物を直接還元して純度が高く、物質本来が有 している固有の特性を有する金属を得ることができる。これらは純度が高いので電気 材料や電子材料として用いることができる。そのための具体的な金属の製造方法及 び製造装置を示してレ、る。レ、ずれも産業上の利用可能性は大きレ、。 [0044] By using a metal oxide as a raw material, the metal oxide can be directly reduced to obtain a metal having a high purity and inherent characteristics inherent in the substance. Since these have high purity, they can be used as electric materials and electronic materials. A specific metal production method and production apparatus for this purpose will be shown. The industrial applicability is great, too.

Claims

請求の範囲 The scope of the claims
[1] 金属酸化物を還元することにより得られる金属が、前記金属酸化物を、酸素分圧が 10のマイナス 30乗気圧以上、 10のマイナス 20乗気圧以下の雰囲気中で、エリンガ ム図の縦線 (C、 H、〇で示されている標準生成自由エネルギーを示す)の酸素の位 置と想定してレ、る酸素分圧を結ぶ直線と、金属酸化物から金属を製造する際の標準 生成自由エネルギー変化( Δ G° )を示す直線を結ぶ交点から得られる温度以上の 温度で処理することにより得られることを特徴とする金属材料。  [1] The metal obtained by reducing the metal oxide is the metal oxide in the Elingam diagram in an atmosphere with an oxygen partial pressure of 10 minus 30th atmospheric pressure or more and 10 minus 20th atmospheric pressure or less. Assuming the position of oxygen on the vertical line (showing the standard free energy of formation indicated by C, H, ○), the straight line connecting the oxygen partial pressure and the metal oxide when producing metal from metal oxide Standard A metallic material obtained by processing at a temperature equal to or higher than the temperature obtained from the intersection connecting the straight lines showing the change in free energy of formation (Δ G °).
[2] 前記酸素分圧が 10のマイナス 30乗気圧以上、マイナス 20乗気圧以下の雰囲気が 不活性ガス中であることを特徴とする請求項 1記載の金属材料。  [2] The metal material according to [1], wherein the atmosphere having an oxygen partial pressure of 10 minus 30th atmospheric pressure or more and minus 20th atmospheric pressure or less is in an inert gas.
[3] 前記金属酸化物が焼結体であることを特徴とする請求項 1又は 2記載の金属材料。  [3] The metal material according to [1] or [2], wherein the metal oxide is a sintered body.
[4] 前記金属酸化物の焼結体が、金属酸化物粒子を圧縮して成形体とし、焼結処理を 行ったことを特徴とする請求項 3記載の金属材料。  4. The metal material according to claim 3, wherein the sintered body of the metal oxide is formed by compressing metal oxide particles into a molded body and performing a sintering treatment.
[5] 前記金属酸化物が三酸化二アルミニウムであり、金属がアルミニウムであることを特 徴とする請求項 1から 4いずれか記載の金属材料。  5. The metal material according to claim 1, wherein the metal oxide is dialuminum trioxide and the metal is aluminum.
[6] 金属酸化物を還元して金属を製造する方法において、前記金属酸化物を、酸素分 圧が 10のマイナス 30乗気圧以上、 10のマイナス 20乗気圧以下の雰囲気中で、エリ ンガム図の縦線(C,H,0で示されている標準生成自由エネルギ—を示す)の酸素の 位置と想定している酸素分圧を結ぶ直線と、金属酸化物から金属を製造する際の標 準生成自由エネルギー変化( Δ G° )を示す直線を結ぶ交点から得られる温度以上 の温度で処理して基板表面に金属を析出させることを特徴とする金属材料の製造方 法。  [6] In the method for producing a metal by reducing a metal oxide, the metal oxide is subjected to an Ellingham diagram in an atmosphere having an oxygen partial pressure of 10 minus 30th atmospheric pressure or more and 10 minus 20th atmospheric pressure or less. The vertical line (showing the standard free energy of generation shown by C, H, 0) and the straight line connecting the assumed oxygen partial pressure and the standard for producing metal from metal oxide A method for producing a metal material, characterized in that a metal is deposited on the surface of a substrate by processing at a temperature equal to or higher than a temperature obtained from an intersection point connecting straight lines indicating quasi-generated free energy changes (ΔG °).
[7] 前記酸素分圧が 10のマイナス 30乗気圧以上、マイナス 20乗気圧以下の雰囲気が 不活性ガス中であることを特徴とする請求項 6記載の金属材料の製造方法。  7. The method for producing a metal material according to claim 6, wherein the atmosphere in which the oxygen partial pressure is 10 minus 30th atmospheric pressure or more and minus 20th atmospheric pressure or less is in an inert gas.
[8] 前記金属酸化物が焼結体であることを特徴とする請求項 6又は 7記載の金属材料 の製造方法。  8. The method for producing a metal material according to claim 6 or 7, wherein the metal oxide is a sintered body.
[9] 前記金属酸化物の焼結体が、金属酸化物粒子を圧縮して成形体とし、焼結処理を 行ったことを特徴とする請求項 6から 8いずれか記載の金属材料の製造方法。  [9] The method for producing a metal material according to any one of [6] to [8], wherein the sintered body of the metal oxide is formed by compressing metal oxide particles into a molded body and performing a sintering treatment. .
[10] 前記金属酸化物が三酸化二アルミニウムであり、金属がアルミニウムであることを特 徴とする請求項 6から 9いずれか記載の金属材料の製造方法。 [10] The metal oxide is dialuminum trioxide, and the metal is aluminum. The method for producing a metal material according to any one of claims 6 to 9.
[11] 金属酸化物を還元して金属を製造する装置において、前記金属酸化物を、酸素分 圧が 10のマイナス 30乗気圧以上、マイナス 20乗気圧以下の雰囲気中で、エリンガ ム図の縦線(C、 H、〇で示されている標準生成自由エネルギーを示す)の酸素の位 置と想定している酸素分圧を結ぶ直線と、金属酸化物から金属を製造する際の標準 生成自由エネルギー変化( Δ G° )を示す直線を結ぶ交点から得られる温度以上の 温度で処理して基板表面に金属として析出させることを特徴とする金属材料の製造 装置。 [11] In an apparatus for producing a metal by reducing a metal oxide, the metal oxide is placed in the vertical direction of the Elingham diagram in an atmosphere in which the oxygen partial pressure is 10 minus 30th atmospheric pressure or more and minus 20th atmospheric pressure or less. A straight line connecting the oxygen position of the line (indicating the standard free energy of formation indicated by C, H, ○) and the assumed oxygen partial pressure, and the free standard generation when producing metal from metal oxide An apparatus for producing a metal material, characterized in that a metal material is deposited on a substrate surface by being treated at a temperature equal to or higher than a temperature obtained from an intersection point connecting energy lines (ΔG °).
[12] 前記酸素分圧が 10のマイナス 30乗気圧以上、マイナス 20乗気圧以下の雰囲気が 不活性ガス中であることを特徴とする請求項 11記載の金属材料の製造装置。  12. The metal material manufacturing apparatus according to claim 11, wherein the atmosphere in which the oxygen partial pressure is 10 minus 30th atmospheric pressure or more and minus 20th atmospheric pressure or less is in an inert gas.
[13] 前記金属酸化物が回転可能な固定手段により固定されており、集光用の楕円ミラー が背後に設置されている赤外線加熱用ランプが楕円ミラーの一つの焦点に、他の焦 点に金属酸化物の被加熱部が設けられており、金属酸化物は加熱溶融により気化し て、上部に設けられている基板表面に金属として析出させることを特徴とする請求項 11又は 12記載の金属材料製造装置。  [13] The infrared heating lamp, in which the metal oxide is fixed by a rotatable fixing means, and the ellipsoidal mirror for condensing is installed behind, is at one focal point of the elliptical mirror and at the other focal point. 13. The metal oxide according to claim 11 or 12, wherein a heated portion of the metal oxide is provided, and the metal oxide is vaporized by heat melting and deposited as a metal on a substrate surface provided on the upper portion. Material manufacturing equipment.
[14] 前記金属酸化物が焼結体であることを特徴とする請求項 11から 13いずれか記載 の金属材料の製造装置。  14. The apparatus for producing a metal material according to claim 11, wherein the metal oxide is a sintered body.
[15] 前記金属酸化物の焼結体が、金属酸化物粒子を圧縮して成形体とし、焼結処理を 行ったことを特徴とする請求項 14記載の金属材料の製造装置。  15. The apparatus for producing a metal material according to claim 14, wherein the sintered body of the metal oxide is formed by compressing metal oxide particles to form a molded body.
[16] 前記金属酸化物が三酸化二アルミニウムであり、金属がアルミニウムであることを特 徴とする請求項 11から 15いずれか記載の金属材料の製造装置。  16. The apparatus for producing a metal material according to any one of claims 11 to 15, wherein the metal oxide is dialuminum trioxide and the metal is aluminum.
PCT/JP2006/323359 2005-11-24 2006-11-22 Metal, process for producing metal, metal producing apparatus and use thereof WO2007061012A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007546478A JP5392695B2 (en) 2005-11-24 2006-11-22 Aluminum metal manufacturing method and manufacturing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-338426 2005-11-24
JP2005338426 2005-11-24

Publications (1)

Publication Number Publication Date
WO2007061012A1 true WO2007061012A1 (en) 2007-05-31

Family

ID=38067237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323359 WO2007061012A1 (en) 2005-11-24 2006-11-22 Metal, process for producing metal, metal producing apparatus and use thereof

Country Status (2)

Country Link
JP (1) JP5392695B2 (en)
WO (1) WO2007061012A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299169A (en) * 2008-06-17 2009-12-24 Ihi Corp Aluminum coating method
WO2010050450A1 (en) * 2008-10-28 2010-05-06 株式会社エレクトラホールディングス Laser refining apparatus and laser refining method
WO2013146520A1 (en) 2012-03-27 2013-10-03 関東冶金工業株式会社 Method for heat treatment and heat treatment apparatus, and heat treatment system
WO2014007046A1 (en) 2012-07-04 2014-01-09 関東冶金工業株式会社 Heat treatment method, heat treatment device, and heat treatment system
WO2017164148A1 (en) * 2016-03-24 2017-09-28 株式会社シーアイピーソフト Magnesium refining and high purity magnesium production device and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7453781B2 (en) 2019-12-13 2024-03-21 三菱重工業株式会社 Gas supply equipment for manufacturing equipment, atomization equipment, 3D additive manufacturing equipment, and additive manufacturing systems

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5215409A (en) * 1975-07-26 1977-02-05 Katsutoshi Ono Process for production of aluminum
JPS5247502A (en) * 1975-10-14 1977-04-15 Asahi Chem Ind Co Ltd Metal refining process with thermal plasma
JPS5825440A (en) * 1981-08-05 1983-02-15 Michizo Yamano Method for separating metal from ore in low pressure
JPS59126730A (en) * 1983-01-08 1984-07-21 Kawasaki Steel Corp Manufacture of aluminum or aluminum alloy by refining
JPH0812499A (en) * 1994-06-23 1996-01-16 Sony Corp Production of single crystal
JP2000192113A (en) * 1998-12-28 2000-07-11 Japan Science & Technology Corp Manufacture of metallic superfine particle, and metallic superfine particle aggregate to which the manufacture is applied

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03240944A (en) * 1990-02-17 1991-10-28 Masahiko Naoe Method and device for focusing target sputtering for forming thin aluminum film
JP3560393B2 (en) * 1995-07-06 2004-09-02 株式会社日鉱マテリアルズ Manufacturing method of aluminum alloy sputtering target

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5215409A (en) * 1975-07-26 1977-02-05 Katsutoshi Ono Process for production of aluminum
JPS5247502A (en) * 1975-10-14 1977-04-15 Asahi Chem Ind Co Ltd Metal refining process with thermal plasma
JPS5825440A (en) * 1981-08-05 1983-02-15 Michizo Yamano Method for separating metal from ore in low pressure
JPS59126730A (en) * 1983-01-08 1984-07-21 Kawasaki Steel Corp Manufacture of aluminum or aluminum alloy by refining
JPH0812499A (en) * 1994-06-23 1996-01-16 Sony Corp Production of single crystal
JP2000192113A (en) * 1998-12-28 2000-07-11 Japan Science & Technology Corp Manufacture of metallic superfine particle, and metallic superfine particle aggregate to which the manufacture is applied

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299169A (en) * 2008-06-17 2009-12-24 Ihi Corp Aluminum coating method
CN103498049A (en) * 2008-10-28 2014-01-08 伊莱特控股有限公司 Laser refining apparatus and laser refining method
JP5600254B2 (en) * 2008-10-28 2014-10-01 ワイティーエス・サイエンス・プロパティーズ・プライベート・リミテッド Laser refining apparatus and laser refining method
US20120097653A1 (en) * 2008-10-28 2012-04-26 Electra Holdings Co., Ltd. Laser Refining Apparatus and Laser Refining Method
AU2009310941B2 (en) * 2008-10-28 2013-08-01 Electra Holdings Co., Ltd. Laser refining apparatus and laser refining method
CN102264927A (en) * 2008-10-28 2011-11-30 伊莱特控股有限公司 Laser refining apparatus and laser refining method
WO2010050450A1 (en) * 2008-10-28 2010-05-06 株式会社エレクトラホールディングス Laser refining apparatus and laser refining method
CN103498049B (en) * 2008-10-28 2016-05-04 伊莱特控股有限公司 Laser device for refining and laser refinement method
CN102264927B (en) * 2008-10-28 2014-06-18 伊莱特控股有限公司 Laser refining apparatus and laser refining method
WO2013146520A1 (en) 2012-03-27 2013-10-03 関東冶金工業株式会社 Method for heat treatment and heat treatment apparatus, and heat treatment system
EP2835431A4 (en) * 2012-03-27 2015-10-21 Kanto Yakin Kogyo Co Ltd Method for heat treatment and heat treatment apparatus, and heat treatment system
US9581389B2 (en) 2012-03-27 2017-02-28 Kanto Yakin Kogyo Co., Ltd. Method for heat treatment, heat treatment apparatus, and heat treatment system
KR20150027099A (en) 2012-07-04 2015-03-11 간토 야낀 고교 가부시키가이샤 Heat treatment method, heat treatment device, and heat treatment system
WO2014007046A1 (en) 2012-07-04 2014-01-09 関東冶金工業株式会社 Heat treatment method, heat treatment device, and heat treatment system
WO2017164148A1 (en) * 2016-03-24 2017-09-28 株式会社シーアイピーソフト Magnesium refining and high purity magnesium production device and method

Also Published As

Publication number Publication date
JP5392695B2 (en) 2014-01-22
JPWO2007061012A1 (en) 2009-05-07

Similar Documents

Publication Publication Date Title
KR100438670B1 (en) Tantalum sputtering target and method of manufacture
JP4914438B2 (en) Material cleaning by treatment with hydrogen-based plasma
US20040065170A1 (en) Method for producing nano-structured materials
US20030108459A1 (en) Nano powder production system
JP5392695B2 (en) Aluminum metal manufacturing method and manufacturing apparatus
JPH026830B2 (en)
JP2012508154A (en) Method and apparatus for producing solar grade silicon by refining metallurgical grade silicon
US20030102207A1 (en) Method for producing nano powder
US20050150759A1 (en) Powder and coating formation method and apparatus
JP4200703B2 (en) Silicon manufacturing apparatus and method
JP5067596B2 (en) Sapphire single crystal manufacturing method and manufacturing apparatus thereof
US5972065A (en) Purification of tantalum by plasma arc melting
Louzguine et al. Nanoquasicrystalline phase produced by devitrification of Hf–Pd–Ni–Al metallic glass
JP3824047B2 (en) Method for producing amorphous silicon oxide powder
RU2616920C2 (en) Method for obtaining the nanopowder of titanide hydride
JPH05262512A (en) Purification of silicon
RU2699620C2 (en) New method and product
JP2004052003A (en) Method and apparatus for producing niobium powder or tantalum powder
JP2000247623A (en) Method for refining silicon and apparatus therefor
Li et al. Purification of metallurgical-grade silicon combining Sn–Si solvent refining with gas pressure filtration
RU2370558C1 (en) Method of production of high purity cobalt for sputtering targets
JP2784324B2 (en) Manufacturing method of titanium
US7118726B2 (en) Method for making oxide compounds
TW503218B (en) Tantalum sputtering target and method of manufacture
JP4545357B2 (en) Method for producing aluminum nitride powder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007546478

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06823516

Country of ref document: EP

Kind code of ref document: A1