JPS6137476A - Optical recording element - Google Patents

Optical recording element

Info

Publication number
JPS6137476A
JPS6137476A JP59159104A JP15910484A JPS6137476A JP S6137476 A JPS6137476 A JP S6137476A JP 59159104 A JP59159104 A JP 59159104A JP 15910484 A JP15910484 A JP 15910484A JP S6137476 A JPS6137476 A JP S6137476A
Authority
JP
Japan
Prior art keywords
layer
film
color
light
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59159104A
Other languages
Japanese (ja)
Inventor
Yukio Nishimura
征生 西村
Harunori Kawada
河田 春紀
Masahiro Haruta
春田 昌宏
Yutaka Hirai
裕 平井
Noritaka Mochizuki
望月 則孝
Takashi Nakagiri
孝志 中桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59159104A priority Critical patent/JPS6137476A/en
Publication of JPS6137476A publication Critical patent/JPS6137476A/en
Priority to US07/233,902 priority patent/US4933221A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B7/248Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes porphines; azaporphines, e.g. phthalocyanines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes

Landscapes

  • Heat Sensitive Colour Forming Recording (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To obtain highly reliable and more densely recordable optical recording elements by providing a layer A of color-forming compound, a layer B of assistant color-forming compound and a light-absorbing layer which exists between the layers A and B, the layer A being formed with either a monomolecular film or an accumulated film. CONSTITUTION:The titled optical recording element is made up of a layer-A 2 of color-forming compound, a layer-B 4 of assistant color-forming compound and a light-absorbing layer 3 of light-absorbing material which exists between the layers A and B. The layer-A 2 is a laminate of either a monomolecular film or its accumulated film, and the layer-B 4 and the light-absorbing layer 3 laminates of laminated films. The layer-B 4 is supported on a substrate and the substrate, layer B, light-absorbing layer and layer A are laminated in that order. For these reasons, compared to the conventional optical recording element, the titled element has higher packing density and also higher signal/noise ratio, thus improving recording reliability.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は有機材料を利用した光記録素子に関し、特に高
度に分子配向された有機薄膜を利用した高信頼・高密度
記録の可能な光記録素子に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optical recording element using an organic material, and in particular to an optical recording device capable of highly reliable and high-density recording using a highly molecularly oriented organic thin film. It is related to the element.

[従来の技術] 最近、オフィス・オートメーション(OA)(7)中心
的記録(憶)素子として光ディスクが脚光を集めている
。その理由は光ディスク一枚で、大量の文書、文献など
を記録(又は記憶)できるからであり、したがって該光
ディスクを用いる情報記憶装置を導入するとオフィスに
おける文書、文献の整理、管理に一大変革をもたらすも
のと期待されている。又、該光デイスク用記録材料とし
ては安価性、製作容易性、高密度記録性等の特徴を有す
る有機材料が注目されている。
[Prior Art] Recently, optical disks have been attracting attention as a central recording device for office automation (OA) (7). The reason for this is that a single optical disc can record (or store) a large amount of documents, literature, etc. Therefore, introducing an information storage device using this optical disc will revolutionize the organization and management of documents and literature in offices. It is expected that it will bring In addition, organic materials, which have characteristics such as low cost, ease of manufacture, and high-density recording properties, are attracting attention as recording materials for optical disks.

この様な有機記録材を用いる従来技術の中で、特に発色
剤と助色剤の接触による発色反応を利用する二成分系の
光記録素子が報告されている(日経産業新聞 昭和58
年10月180)。
Among the conventional techniques using such organic recording materials, a two-component optical recording element that utilizes a color reaction caused by contact between a color former and an auxiliary has been reported (Nikkei Sangyo Shimbun, 1972).
October 180).

該光記録素子の1例を図面に基づいて説明すると、ft
52図(a)−に示す様に発色剤層7と助色剤層5とが
光吸収層6によって隔てられて基板lト【ご積層された
構成からなるものである。
An example of the optical recording element will be explained based on the drawings.
As shown in FIG. 52(a), a color forming agent layer 7 and an auxiliary color agent layer 5 are separated by a light absorbing layer 6 and are laminated on a substrate.

発色剤(ロイコ体)及び助色剤は各々単独で存在すると
きは無色又は淡色である。
The coloring agent (leuco compound) and auxiliary colorant are colorless or light-colored when each exists alone.

該記録素子に記録を行うときは、第2図(b)に示す様
に光吸収層6の所望の位置にレーザ光8を照射すると、
光吸収層のレーザ光を照射された部分はレーザ光を吸収
して溶融し破れて小さな穴があ く 。
When recording on the recording element, a laser beam 8 is irradiated onto a desired position of the light absorption layer 6 as shown in FIG. 2(b).
The part of the light-absorbing layer that is irradiated with the laser light absorbs the laser light, melts, and rips, leaving a small hole.

その結果、第2図(C)に示す様に光吸収層6によって
隔てられていた発色剤と助色剤がこの小さな穴を通じて
混ざり合い発色する。情報はこの発色点9の形で記録な
いし記憶され、読み出しは別の光源で該記録素子上を走
査し発色点による反射率、透過率等の変化を検出するこ
とにより行われる。
As a result, as shown in FIG. 2(C), the color forming agent and the auxiliary color agent, which were separated by the light absorbing layer 6, mix through the small holes and develop a color. Information is recorded or stored in the form of coloring points 9, and reading is performed by scanning the recording element with another light source and detecting changes in reflectance, transmittance, etc. due to the coloring points.

[発明が解決しようとする問題点] 上記の光記録素子に於いて、記録の高密度化を図るため
には光吸収層6が極力薄く、平坦で、かつ膜厚のむらの
ないものが望ましい、しかしながら、従来の光記録素子
において、光吸収層は例えば真空蒸着法又は回転塗布法
などによって基板上に被膜されているため、厚さを20
0〜500A以下に薄くシようとすればピンホールが多
発しやすく、このピンホールの箇所で発色剤と助色剤の
2成分が接触して発色するため、信頼性に欠ける欠点が
あった。その上、前記の従来の被膜方法で形成される各
層の膜内の分子分布配向がランダム〒あるため、光照射
に伴って膜内で光散乱が生じ、微視的にみた場合、各光
照射の度に生ずる化学反応の度合が異なってくる。さら
に、上述の被膜方法では光ディスクの基板を大面積化す
ると、膜厚のむらが生じ、記録品質のむらが発生する等
の欠点があった。
[Problems to be Solved by the Invention] In the above-mentioned optical recording element, in order to achieve high recording density, it is desirable that the light absorption layer 6 be as thin as possible, flat, and without unevenness in film thickness. However, in conventional optical recording elements, the light absorption layer is coated on the substrate by, for example, a vacuum evaporation method or a spin coating method, so the thickness is reduced to 20%.
When trying to print thinly to 0 to 500 A or less, pinholes tend to occur frequently, and the two components, the color former and the auxiliary color, come into contact at these pinholes and develop color, resulting in a lack of reliability. Furthermore, since the molecular distribution orientation within the film of each layer formed by the above-mentioned conventional coating method is random, light scattering occurs within the film with light irradiation, and when viewed microscopically, each light irradiation The degree of chemical reaction that occurs differs each time. Furthermore, the above-mentioned coating method has drawbacks such as unevenness in film thickness and uneven recording quality when the substrate of an optical disk has a large area.

したがって、光記録素子としては、膜内の分子分布・配
向が一様で、ピンホールも膜厚のむらもないことが望ま
しく、またできる限り膜厚が薄いことが、記録の高密度
化、高信頼化のために要望される0本発明はかかる要望
に鑑みてなされたもので、本発明の目的は高信頼・高密
度記録が可能な光記録素子を提供することにある9本発
明の別の目的は製作容易で安価な光記録素子を提供する
ことにある0本発明のさらに別の目的は大面積の光記録
素子を提供することにある。
Therefore, as an optical recording element, it is desirable that the molecular distribution and orientation within the film be uniform, that there are no pinholes, and that the film thickness is uniform, and that the film thickness be as thin as possible to achieve high recording density and high reliability. The present invention has been made in view of these demands, and an object of the present invention is to provide an optical recording element capable of highly reliable and high-density recording. It is an object of the present invention to provide an optical recording element that is easy to manufacture and inexpensive.A further object of the present invention is to provide an optical recording element with a large area.

[問題点を解決するための手段]及び[作用]即ち、本
発明は通常無色ないし淡色の発色性化合物からなるA層
と、前記発色性化合物と接触して発色せしめる助色性化
合物からなるB層と、A層とB層との間に介在する光吸
収層とからなり、かつ (イ)前記A層は発色性化合物の単分子膜又はその累積
膜からなる層、 から構成されることを特徴とする光記録素子である。
[Means for Solving the Problems] and [Operation] That is, the present invention consists of a layer A consisting of a color-forming compound that is usually colorless or light-colored, and a layer B consisting of an auxochrome compound that develops a color when it comes into contact with the color-forming compound. and a light absorption layer interposed between the A layer and the B layer, and (a) the A layer is a layer consisting of a monomolecular film of a color-forming compound or a cumulative film thereof. This is a characteristic optical recording element.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に係わる光記録素子は通常無色ないし淡色の発色
性化合物からなるA層と、前記発色性化合物と接触して
発色せしめる助色性化合物からなるB層との間に、光吸
収層を介在せしめた構成からなるものであり、該A層及
びB層には互に接触、混合することにより発色する物質
を組合せて用いることが基本的に要請される。この様な
関係にあるA層の通常無色ないし淡色の発色性化合物及
びB層の前記発色性化合物と接触して発色せしめる助色
性化合物の具体例を示すと (イ) 酸性物質(B層)と該酸性物質に接触すること
によって発色する染料のロイコ体(色素前駆体)(A層
) (ロ)酸化剤(B層)と該酸化剤に接触することによっ
て発色する染料のロイコ体(A層)(ハ)還元剤(B層
)と該還元剤に接触することによって発色する染料のロ
イコ体(A層)(ニ)還元剤(B層)とステアリン酸第
2鉄のように還元されると発色する酸化剤(A層)(ホ
)酸化剤(B層)と没食子酸のように酸化されると発色
する還元剤(A層) 等が挙げられる。
The optical recording element according to the present invention usually has a light-absorbing layer interposed between the A layer made of a colorless or light-colored color-forming compound and the B layer made of an auxochrome compound that develops color when in contact with the color-forming compound. Basically, the A layer and the B layer are required to use a combination of substances that develop color when brought into contact with each other and mixed. Specific examples of the normally colorless to light-colored color-forming compound in layer A and the auxochrome compound that develops color when they come into contact with the color-forming compound in layer B, which have such a relationship, are as follows: (a) Acidic substance (layer B) and the leuco form of the dye (dye precursor) that develops color when it comes into contact with the acidic substance (layer A) (b) The leuco form of the dye that develops color when it comes into contact with the oxidizing agent (layer B) and the oxidizing agent (layer A) Layer) (c) A reducing agent (layer B) and a leuco form of a dye that develops color when it comes into contact with the reducing agent (layer A) (d) A reducing agent (layer B) and a leuco form of a dye that is reduced like ferric stearate. Examples include an oxidizing agent (layer A) that develops color when oxidized (e), an oxidizing agent (layer B) that develops color when oxidized, and a reducing agent (layer A) that develops color when oxidized, such as gallic acid.

前記(イ)の場合をさらに詳しく例示すれば。Let us give a more detailed example of the case (a) above.

染料のロイコ体と接触して反応し発色せしめるB層の酸
性物質と−しては、ベンゼンスルホン酸等の芳香族スル
ホン酸化合物、安息香酸等の芳香族カルボン酸類、パル
ミチンMt (CIqHaI C00H)、ステアリン
酪(Gx7)135G00H)、アラキシン酸(Ill
:+yHy?C00H)等の高級脂肪酸カルボン酸類、
p−t−ブチルフェノール、α−ナフトール、β−ナフ
トール、フェノールフタレイン、ビスフェノールA、4
−ヒドロキシジフェノキシド、4−ヒドロ:キシアセト
フェノン等のフェノール性化合物等が挙げられる。
The acidic substances in the B layer that react with the leuco form of the dye to develop color include aromatic sulfonic acid compounds such as benzenesulfonic acid, aromatic carboxylic acids such as benzoic acid, palmitin Mt (CIqHaI C00H), stearic acid (Gx7) 135G00H), araxic acid (Ill
:+yHy? C00H) and other higher fatty acid carboxylic acids,
pt-butylphenol, α-naphthol, β-naphthol, phenolphthalein, bisphenol A, 4
Examples include phenolic compounds such as -hydroxydiphenoxide and 4-hydro:xyacetophenone.

次に、前記酸性物質と接触して反応するA層の染料のロ
イコ体としては例えば、トリフェニルメタン系、フルオ
ラン系、フェノチアジン系、オーラミン系、スピロピラ
ン系等があり、それ等に含まれる具体的な化合物の詳細
を提示すると第1表の通りである。
Next, examples of the leuco dyes in the A layer that react with the acidic substance include triphenylmethane, fluoran, phenothiazine, auramine, and spiropyran. The details of the compounds are shown in Table 1.

本発明においてA層は単分子膜又はその累積膜からなる
層から形成されるために、前記の発色性化合物は分子内
の適当な部位に親木基、疎水基又はその両方の基を導入
した誘導体を用いる必要がある。
In the present invention, since layer A is formed from a monomolecular film or a layer consisting of a cumulative film thereof, the color-forming compound has a parent group, a hydrophobic group, or both groups introduced at appropriate sites within the molecule. It is necessary to use derivatives.

疎水基及び親木基には一般に使用されるものであれば如
何なるものでも用いることができるが、特に好ましくは
疎水基としては炭素原子数5〜30の長鎖アルキル基、
親水基としてはカルボキシル基及びその金属塩(例えば
カドミウム塩)が望ましい。
Any commonly used hydrophobic group and parent tree group can be used, but particularly preferred hydrophobic groups include long-chain alkyl groups having 5 to 30 carbon atoms;
As the hydrophilic group, carboxyl groups and metal salts thereof (eg, cadmium salts) are desirable.

他方B層は従来の被膜方法により形成される膜であれば
如何なる膜でもよく、それ等の中で例えば蒸着膜、塗布
n!2、浸漬膜、ラミネート等の堆植膜からなる層が好
ましい。
On the other hand, layer B may be any film as long as it is formed by a conventional coating method, such as a vapor deposited film or a coating film. 2. A layer consisting of a deposited film such as an immersed film or a laminate is preferred.

なお、A層及びB層の膜厚は200八から10gの範囲
が望ましく、好適には1,000人から1牌の範囲であ
る。
Note that the thickness of the A layer and the B layer is preferably in the range of 2,008 to 10 g, and preferably in the range of 1,000 people to 1 tile.

次に、本発明における光吸収層の形成に用いられる光吸
収性物質としては赤外線を吸収して溶融する溶融性光吸
収色素、又は赤外線を吸収して昇華する昇華性光吸収色
素が好適である。
Next, as the light-absorbing substance used for forming the light-absorbing layer in the present invention, a meltable light-absorbing dye that absorbs infrared rays and melts, or a sublimable light-absorbing dye that absorbs infrared rays and sublimates is suitable. .

該かる光吸収色素の一例をあげれば、例えば銅フタロシ
アニン、バナジウムフタロシアニン等の金属フタロシア
ニン、フルオレスセイン等のキサンチン系色素等がある
Examples of such light-absorbing dyes include metal phthalocyanines such as copper phthalocyanine and vanadium phthalocyanine, and xanthine dyes such as fluorescein.

該光吸収層は従来の被膜方法により形成される膜であれ
ば如何なる膜でもよく、それ等の中で例えば蒸着−膜、
塗布膜、浸漬11q、ラミネート°等の堆積1漠からな
る層が好ましい。
The light absorption layer may be any film formed by conventional coating methods, such as vapor deposition film,
Preferably, the layer consists of a coating film, a dipping layer, a laminate layer, or the like.

なお光吸収層の膜厚は90八からl0QOAの範囲が望
ましく、好適には140人から400人の範囲である。
The thickness of the light absorption layer is preferably in the range of 908 to 10 QOA, preferably in the range of 140 to 400 QOA.

また、本発明において基板に使用される材料としては、
シリコン等の半導体材料、アルミ等の金属材料、好適に
は強化ガラス、更に好適にはアクリル(PMMA) 、
ポリカーボネート(pc) 、ポリプロピレン、ポリ塩
化ビニール(PVG ) 、ポリスチレン等のプラスチ
ック材料、セラミック材料が好ましい。
In addition, the materials used for the substrate in the present invention include:
Semiconductor materials such as silicon, metal materials such as aluminum, preferably tempered glass, more preferably acrylic (PMMA),
Plastic materials such as polycarbonate (PC), polypropylene, polyvinyl chloride (PVG), polystyrene, and ceramic materials are preferred.

本発明に係わる光記録素子はA層が発色性化合物の単分
子膜又はその累積膜からなる層から構成されることを1
つの特徴とするものである。
In the optical recording element according to the present invention, layer A is composed of a monomolecular film of a color-forming compound or a cumulative film thereof.
It has three characteristics.

かかる分子の高秩序性及び高配向性を有する単分子膜又
はその累積膜を作成する方法としては、例えば1.La
ngmuirらの開発したラングミュア・プロジェット
法(La法)を用いる。ラングミュア・プロジェット法
は、例えば分子内に親木基と疎水基を有する構造の分子
において、両者のバランス(両親媒性のバランス)が適
度に保たれているとき、分子は水面上で親水基を下に向
けて単分子の層になることを利用して単分子■りまたは
単分子の累積IQを作成する方法である。水面上の単分
子層は二次元系の特徴をもつ0分子がまばらに散開して
いるときは、一分子当り面gAと表面圧■との間に二次
元理想気体の式、 rIA= kT が成り立ち、゛気体膜゛°となる。ここに、にはポルツ
マン定数、Tは絶対温度である。Aを十分小さくすれば
分子間相互作用が強まり二次元固体の“凝縮膜(または
固体+1!J)’″になる。凝Ili!膜はプラスチッ
ク基板、ガラス基板などの種々の材質や形状を有する担
体の表面へ一層ずつ移すことができる。
As a method for producing a monomolecular film or a cumulative film thereof having such high orderliness and orientation of molecules, for example, 1. La
The Langmuir-Prodgett method (La method) developed by Ngmuir et al. is used. The Langmuir-Prodgett method uses, for example, a molecule with a structure that has a parent wood group and a hydrophobic group, and when the balance between the two (balance of amphiphilicity) is maintained appropriately, the molecule has a hydrophilic group on the water surface. This is a method of creating a single molecule layer or a single molecule cumulative IQ by using the fact that the molecule faces downward to form a single molecule layer. When the monomolecular layer on the water surface has the characteristics of a two-dimensional system and zero molecules are sparsely dispersed, the two-dimensional ideal gas equation, rIA= kT, is expressed between the surface gA per molecule and the surface pressure ■. It becomes a ``gas film''. Here, is the Portzmann constant and T is the absolute temperature. If A is made sufficiently small, the intermolecular interaction becomes strong, resulting in a two-dimensional solid "condensed film (or solid+1!J)". It's hard! The film can be transferred layer by layer onto the surface of carriers having various materials and shapes, such as plastic substrates and glass substrates.

次に木発す1に使用する発色性化合物である親水基、疎
水基を併有する有機分子の単分子膜又はその累積膜を形
成する方法についてさらに詳述する。
Next, a method for forming a monomolecular film of an organic molecule having both a hydrophilic group and a hydrophobic group or a cumulative film thereof, which is a color-forming compound used in the wood powder 1, will be described in more detail.

まず該有機分子をベンゼン、クロロホルム等の揮発性溶
剤に溶解し、シリンダ等でこれを第3図に概略した単分
子累積1模形成装置の水槽10内の水相11上に展開さ
せる。
First, the organic molecule is dissolved in a volatile solvent such as benzene, chloroform, etc., and spread on the aqueous phase 11 in the water tank 10 of the single molecule cumulative 1 model forming apparatus schematically shown in FIG. 3 using a cylinder or the like.

該有機分子は、溶剤の揮発に伴って、親水基12を水相
に向け、疎水基13を気相に向けた状態で水相11上に
展開する。
As the solvent evaporates, the organic molecules develop on the water phase 11 with the hydrophilic groups 12 facing the water phase and the hydrophobic groups 13 facing the gas phase.

次にこの析出物(有機分子)が水相11上を自由に拡散
して広がりすぎないように仕切板(または浮子)14を
設けて展開面積を制限して膜物質の集合状態を制御し、
その集合状!n)に比例した表面圧■を得る。この仕切
板!4を動かし、展開面積を縮少して膜物質の集合状態
を制御し、表面圧を徐々に上昇させ、累積膜の製造に適
する表面圧nを設定することができる。この表面圧を維
持しながら静かに清浄な基板14を垂直に上下させるこ
とにより単分子膜16が基板上に移しとられる。単分子
膜16は以上で製造されるが、単分子層累積膜17は前
記の操作を繰り返すことにより所望の累積数の単分子層
累積膜が形成される。
Next, in order to prevent the precipitates (organic molecules) from freely diffusing on the aqueous phase 11 and spreading too much, a partition plate (or float) 14 is provided to limit the spread area and control the aggregation state of the membrane substance.
That gathering! Obtain a surface pressure ■ proportional to n). This partition board! 4, the developed area can be reduced to control the aggregation state of the film material, and the surface pressure can be gradually increased to set a surface pressure n suitable for producing a cumulative film. By gently vertically moving the clean substrate 14 up and down while maintaining this surface pressure, the monomolecular film 16 is transferred onto the substrate. The monomolecular layer 16 is manufactured as described above, and the monomolecular layer cumulative film 17 is formed by repeating the above-mentioned operations to form a desired cumulative number of monomolecular layer cumulative films.

例えば表面が親水性である基板15を水面を横切る方向
に水中から引き上げると該有機分子の親木基が基板15
側に向いた単分子層16が基板15上に形成される。前
述のように基板15を上下させると、各工程ごとに1枚
ずつ単分子層16が積み重なっていく、成膜分子の向き
が引上げ工程と浸せき工程で逆になるので、この方法に
よると各層間は有機分子の親水基と親木基、有機分子の
疎水基と疎水基が向かい合ういわゆるY型膜が形成され
る(第4図(a) ) 。
For example, when a substrate 15 with a hydrophilic surface is pulled out of water in a direction transverse to the water surface, parent wood groups of the organic molecules are removed from the substrate 15.
A side-facing monolayer 16 is formed on the substrate 15 . When the substrate 15 is moved up and down as described above, the monomolecular layer 16 is stacked one by one in each process.The direction of the film-forming molecules is reversed in the pulling process and the dipping process, so this method In this case, a so-called Y-type film is formed in which the hydrophilic and parent groups of the organic molecules and the hydrophobic groups of the organic molecules face each other (Fig. 4(a)).

Y型112は有機分子の親水基同志、疎水基同志が向い
合っているので強固である。
The Y type 112 is strong because the hydrophilic groups and hydrophobic groups of the organic molecules face each other.

それに対し、基板15を水中に引き下げるときにのみ、
基板面に該有機分子を移し取る方法もある。
In contrast, only when lowering the substrate 15 into the water,
There is also a method of transferring the organic molecules onto the substrate surface.

この方法では、累積しても、成膜分子の向きの交代はな
く全ての層において、疎水基が基板15側に向いたX型
11!2が形成される(第4図(b) ) 、反対に全
ての層において親木基が基板15側に向いた累JAI1
511tZWIIQト呼1fし6 (ET54図(c)
 ) 。
In this method, there is no change in the direction of the film-forming molecules even if they are accumulated, and an X-type 11!2 with the hydrophobic group facing the substrate 15 is formed in all layers (FIG. 4(b)). On the contrary, in all layers, the parent tree base faces the substrate 15 side.
511tZWIIQ to 1f and 6 (ET54 diagram (c)
).

Z型膜は基板15を水中から引上げると゛きにのみ、基
板面に有機分子を移し取ることによって得られる。
The Z-type film is obtained by transferring organic molecules to the substrate surface only when the substrate 15 is lifted out of the water.

斜上の方法によって基板上に形成される単分子膜及び単
分子層累積膜は高密度でしかも高度の秩序性・配向性を
有しており、これらの膜で記録層を構成することによっ
て、光熱的記録の可能な高密度で高解像度の記録機能を
有する記録素子を得ることができる。また、これら成膜
方法はその原理からも分る通り、非常に筒車な方法であ
り、上記のような優れた記録機能を有する記録素子を低
コストで提供することができる。
Monomolecular films and monomolecular layer stacks formed on substrates by the diagonal dipping method have high density and a high degree of order and orientation, and by forming a recording layer with these films, A recording element capable of photothermal recording and having a high-density, high-resolution recording function can be obtained. Further, as can be seen from the principles thereof, these film forming methods are very simple methods, and a recording element having the above-mentioned excellent recording function can be provided at low cost.

以上述べた、本発明における単分子膜または単分子累積
膜を形成する基板は特に限定されないが、基板表面に界
面活性物質が付着していると、?li分子層を水面から
移しとる時に、単分子膜が乱れ良好な単分子11gまた
は単分子層累積膜ができないので基板表面が清浄なるも
のを使用する必要がある。
The substrate on which the monomolecular film or monomolecular cumulative film in the present invention is formed as described above is not particularly limited, but if a surfactant is attached to the surface of the substrate? When the li molecular layer is transferred from the water surface, the monomolecular film is disturbed and a good monomolecular 11g or monomolecular layer cumulative film cannot be formed, so it is necessary to use a substrate with a clean surface.

基板上の単分子膜または単分子層形成条件は、十分に強
く固定されており基板からの剥離、剥落を生じることは
ほとんどないが、付着力を強化する目的で基板と単分子
膜または単分子層累積膜の間に接着層を設けることもで
きる。さらに単分子層形成条件例えば水相の水素イオン
濃度、イオン種、水温、担体上げ下げ速度あるいは表面
圧の選択等によって付着力を強化することもできる。
The conditions for forming a monomolecular film or monomolecular layer on the substrate are such that it is firmly fixed to the substrate and hardly peels off or peels off from the substrate. An adhesive layer can also be provided between the layer stacks. Furthermore, the adhesion force can be strengthened by selecting the monomolecular layer formation conditions, such as the hydrogen ion concentration of the aqueous phase, the ion species, the water temperature, the rate of raising and lowering the carrier, or the surface pressure.

次に、B層又は光吸収層の堆積膜の形成方法は前記助色
性化合物又は光吸収性物質にバインダーと水を添加した
水混和物を、ボールミル等を用いて粉砕混合した後、基
板等の上に従来の通常の方法で塗着して行う。
Next, the method for forming the deposited film of layer B or light absorption layer is to grind and mix a water mixture obtained by adding a binder and water to the auxochrome compound or light absorption substance using a ball mill, etc. This is done by applying it on the surface using the conventional method.

本発明に用いられる前記バインダーとしてはゼラチン、
でんぷんのごとき天然高分子物、硝酸繊維素、カルボキ
シメチルセルローズの6とき繊維素誘導体、塩化ゴム、
環化ゴムのごとき天然ゴム可塑物などの半合成高分子物
、ポリイソブチレン、ポリスチロール、テルペン樹脂、
ポリアクリル酸、ポリアクリル酸エステル、ポリメタア
クリル酸エステル、ポリアクリルニトリル、ポリアクリ
ルアミド、ポリ酢酸ビニル、ポリビニルアルコール、ポ
リビニルピロリドン、ポリアセタール樹脂、ポリ塩化ビ
ニル、ポリビニルピリジン、ポリビニルカルバゾール、
ポリブタジェン、ポリスチレン−ブタジェン、ブチルゴ
ム、ポリオキシメチレン、ポリエチレンイミン、ポリエ
チレンイミンハイドロクロ゛ライド、ボ1j(2−アク
リルオキシエチルジメチルスルホニウムクロライド)な
どのごとき重合型合成高分子、フェノール樹脂、アミノ
樹脂、トルエン樹脂、アルキッド樹脂、不飽和ポリエス
テル樹脂、アリル樹脂、ポリカーボネート、ポリアマイ
ド樹脂、ポリエーテル樹脂、珪素樹脂、フラン樹脂、チ
オコールゴムなどのごとき縮合重合型合成高分子、ポリ
ウレタン、ポリ尿素、エポキシ樹脂などのごとき付加重
合型樹脂が挙げられる。
The binder used in the present invention includes gelatin,
Natural polymers such as starch, cellulose nitrate, cellulose derivatives such as carboxymethyl cellulose, chlorinated rubber,
Semi-synthetic polymers such as natural rubber plastics such as cyclized rubber, polyisobutylene, polystyrene, terpene resins,
Polyacrylic acid, polyacrylic ester, polymethacrylic ester, polyacrylonitrile, polyacrylamide, polyvinyl acetate, polyvinyl alcohol, polyvinylpyrrolidone, polyacetal resin, polyvinyl chloride, polyvinylpyridine, polyvinylcarbazole,
Polymerizable synthetic polymers such as polybutadiene, polystyrene-butadiene, butyl rubber, polyoxymethylene, polyethyleneimine, polyethyleneimine hydrochloride, BO1J (2-acryloxyethyldimethylsulfonium chloride), phenolic resin, amino resin, toluene Additions such as condensation polymerization type synthetic polymers such as resins, alkyd resins, unsaturated polyester resins, allyl resins, polycarbonates, polyamide resins, polyether resins, silicone resins, furan resins, thiol rubber, etc., polyurethane, polyurea, epoxy resins, etc. Examples include polymeric resins.

以上に説明した方法で製造される本発明に係わる光記録
素子の構成の1例を示すと、第1図に示す通り、発色性
化合物からなるA層2、助色性化合物からなる8層4及
びA層とBeの間に介在する光吸収性物質からなる光吸
収層3からなり、A層2が単分子膜又はその累積膜、8
層4及び光吸収層3は堆ta膜からなる積層体で、8層
4を基板l上に支持し、基板/B層/光吸収層/A層の
順に積層してなるものである。
An example of the structure of the optical recording element according to the present invention manufactured by the method described above is shown in FIG. 1, as shown in FIG. and a light-absorbing layer 3 made of a light-absorbing substance interposed between the A layer and Be, where the A layer 2 is a monomolecular film or a cumulative film thereof, 8
The layer 4 and the light absorption layer 3 are a laminate made of a deposited film, in which eight layers 4 are supported on a substrate 1 and laminated in the order of substrate/B layer/light absorption layer/A layer.

さらに、他の例として前記積層体のA7i!1を基板上
に支持し、基板/A層/光吸収層/B層の順に積層して
もよく、又前記積層体を2設置上積重ねて最下層のA層
又はB層を基板上に支持してもよい。
Further, as another example, the laminate A7i! 1 may be supported on a substrate and laminated in the order of substrate/layer A/light absorption layer/layer B. Alternatively, two of the laminates may be stacked and the lowest layer A or B layer supported on the substrate. You may.

本発明に係わる光記録素子はA層とB層とを光吸収層に
よって隔離して構成されているので、赤外線照射によっ
て光吸収層を溶融ないし昇華せしめて所望の位置に孔を
あけることにより、A層の発色性化合物とB層の助色性
化合物が接触して発色反応が進行し、該位置に発色点を
形成し情報を記録することができる。
Since the optical recording element according to the present invention is constructed by separating the A layer and the B layer by a light absorption layer, by melting or sublimating the light absorption layer by infrared irradiation and making holes at desired positions, The color-forming compound of layer A and the auxochrome compound of layer B come into contact and a color-forming reaction proceeds, forming a color-forming point at the position and recording information.

したがって本発明に係る光記録素子は主として光ディス
クとして使用することができる。該光ディスクから、情
報を書き込んだり或いは読取ったりす寮だめの光ピック
ア?プの光学系を′有する情報記憶装置の1例を第5図
に示す。
Therefore, the optical recording element according to the present invention can be mainly used as an optical disc. Is there an optical pickup in the dormitory that writes or reads information from the optical disc? An example of an information storage device having a double optical system is shown in FIG.

該情報記憶装置は、制御回路27と光ピツクアップ光学
系からなる書き込み手段と、本発明に係わる光記録素子
と、出力回路28と光ピツクアップ光。
The information storage device includes a control circuit 27, a writing means consisting of an optical pickup optical system, an optical recording element according to the present invention, an output circuit 28, and an optical pickup light.

学系からなる読取り手段とによって構成される。It consists of a reading means consisting of an academic system.

書き込みは次のようにして行う、制御回路27は半導体
レーザ2Bの発振を制御する。従って、入力情報は制御
回路27及び半導体レーザ26によって光信号に変換さ
れる。光信号−29は第5図に示す光ピツクアップ光学
系を通って同期回転している光ディスク18の記録層上
に結像され、上述の発色メカニズムにより発色記録され
る。
Writing is performed as follows. The control circuit 27 controls the oscillation of the semiconductor laser 2B. Therefore, the input information is converted into an optical signal by the control circuit 27 and the semiconductor laser 26. The optical signal -29 passes through the optical pickup optical system shown in FIG. 5, forms an image on the recording layer of the optical disk 18 which is rotating synchronously, and is recorded in color by the coloring mechanism described above.

読取りは次のようにして行う、半導体レーザ26から発
する低出力の連続発振光を読取り光として使う、低出力
であるから、読取り中に発色記録が行われることはない
からである。または他の可視光用光源を読取り用光源と
して用いてもよい。
Reading is performed as follows. Low-output continuous wave light emitted from the semiconductor laser 26 is used as the reading light. Since the output is low, color recording is not performed during reading. Alternatively, another visible light source may be used as the reading light source.

該読取り用光線は光ディスク1Bの基板表面に結像し反
射されるが、反射率は発色点とそうでない箇所とで異な
るから、この反射光を光ピツクアップ光学系を通してフ
ォトダイオード25の受光面にあてることにより電気信
号に変換し、再生読み出しを行う。
The reading light beam forms an image on the substrate surface of the optical disc 1B and is reflected, but since the reflectance differs between the coloring point and the non-coloring point, this reflected light is applied to the light receiving surface of the photodiode 25 through the optical pickup optical system. This converts the signal into an electrical signal and reproduces and reads it.

該かる再生信号のコントラストを上げ、画質等の向上を
図るためには、光記録素子の基板上にアルミ等の金属反
射層を付設することが好ましい。
In order to increase the contrast of the reproduced signal and improve the image quality, it is preferable to provide a reflective layer of metal such as aluminum on the substrate of the optical recording element.

金属反射層の膜厚は1,000 A〜2,000 Aが
好適である。その他必要に応じて誘電体ミラーでもよい
The thickness of the metal reflective layer is preferably 1,000 A to 2,000 A. In addition, a dielectric mirror may be used as necessary.

更に、A層、B層゛、光吸収層等を保護するために最外
層の表面に保護層を設けてもよい、そのような保護層用
材料としては5i02等の誘電体、プラスチック樹脂、
他の重合性LB膜等が好適である。
Furthermore, a protective layer may be provided on the surface of the outermost layer to protect the A layer, B layer, light absorption layer, etc. Materials for such a protective layer include dielectrics such as 5i02, plastic resins,
Other polymerizable LB films and the like are suitable.

[実施例] 以下、実施例を示し、未発IJJをさらに具体的に説明
する。尚、下記において特に記述のない限り1部」は「
重量部」を、「%」は「重量%」を表わすものとする。
[Example] Hereinafter, undeveloped IJJ will be explained in more detail using Examples. In addition, unless otherwise stated below, "1 copy" means "
"Parts by weight" and "%" indicate "% by weight."

合成例1(発色性化合物の合成例) リス ルバイオレートラクトン1:、 の合成(I) で示されるm−7ミノ安息香酸誘導体1部と、式(n) DH で示されるミヒラーズヒドロール1部を酸)1部を加え
て8時間還流し、 式(1) %式% で示されるトリフェニルメタン誘導体を生成した。
Synthesis Example 1 (Synthesis Example of Color-Forming Compound) Synthesis of Lysulbiolate Lactone 1: (I) 1 part of the m-7 minobenzoic acid derivative represented by the formula (n) DH and Michler's Hydrol represented by the formula (n) DH 1 part of acid) was added and the mixture was refluxed for 8 hours to produce a triphenylmethane derivative represented by formula (1).

次に該生成物のトリフェニルメタン誘導体を2酸化鉛(
1部)存在下硫酸中で3時間加熱した後。
Next, the triphenylmethane derivative of the product was converted into lead dioxide (
1 part) after heating in the presence of sulfuric acid for 3 hours.

式(IV) (OH2)、70H。Formula (IV) (OH2), 70H.

で示されるり11スタルバイオレットラクトン誘導体を
得た−0 次いで、これに苛性ソーダ水溶液を加え、環化すること
により、 式(V) (CH2)z7 CHj で示されるクリスタルバイオレットラクトン誘導体0.
2部を得た。
A crystal violet lactone derivative represented by formula (V) (CH2)z7CHj was obtained by adding an aqueous solution of caustic soda and cyclizing.
Got 2 copies.

実施例1 (1)B層の形成方法 厚さ10■■、直径180vmの円板上のガラス(ディ
スク)基板を充分に清浄にした0次に助色性化合物であ
るアラキシン酸7部、バインダーとしてポリビニールア
ルコール1部、水40部を混合し、ざらにポーノしミル
を用いて数時間、粉砕混合し、基板上に回転塗布して、
バインダー中に分散したアラキシン酸の堆積膜(IIg
厚1g)を形成した各試料を得た。
Example 1 (1) Method for Forming Layer B A glass (disc) substrate on a disk with a thickness of 10 mm and a diameter of 180 mm was thoroughly cleaned, and 7 parts of araxic acid, which is a zero-order auxochrome compound, and a binder were prepared. Mix 1 part of polyvinyl alcohol and 40 parts of water, grind and mix for several hours using a coarse grinder mill, and spin coat the mixture onto a substrate.
Deposited film of araxic acid dispersed in binder (IIg
Each sample having a thickness of 1 g) was obtained.

(2)光吸収層の形成方法 次に、前記(1)で得た各試料のガラス基板上に形成し
たB層の上に、光吸収性物質であるバナジウムフタロシ
アニンの堆積膜を形成した。形成方法はバナジウムフタ
ロシアニン7部、バインダーとしてポリビニルアルコー
ル1部、水40部を混合し、さらにボールミルを用いて
数時間、粉砕混合し、基板のB層上に回転塗布してバイ
ンダー中に分散したバナジウムフタロシアニンの堆al
l!1i(III厚0.0’15ル)を得た。
(2) Method for Forming Light-Absorbing Layer Next, a deposited film of vanadium phthalocyanine, which is a light-absorbing substance, was formed on the B layer formed on the glass substrate of each sample obtained in (1) above. The formation method is to mix 7 parts of vanadium phthalocyanine, 1 part of polyvinyl alcohol as a binder, and 40 parts of water, then grind and mix for several hours using a ball mill, and then spin-coat it on the B layer of the substrate to form vanadium dispersed in the binder. Phthalocyanine sediment
l! 1i (III thickness 0.0'15 ml) was obtained.

(3)A層の形成方法 次に、前記(2)で各試料のガラス基板上に形成した光
吸収層の上に前述の単分子累積装置を用いて発色性化合
物であるクリスタルバイオレットラクトン誘導体の単分
子累積膜を形成した。
(3) Method for Forming Layer A Next, on the light absorption layer formed on the glass substrate of each sample in (2) above, a crystal violet lactone derivative, which is a color-forming compound, was deposited on the light absorption layer formed on the glass substrate of each sample using the single molecule accumulator described above. A monomolecular cumulative film was formed.

該クリスタルバイオレットラクトン誘導体の単分子累積
膜の形成方法は、下記のように行った。
The method for forming a monomolecular cumulative film of the crystal violet lactone derivative was performed as follows.

BJi3及び光吸収層を形成した基板が水面と垂直にな
るようにして、基板をpH4の酸性液中に沈めた後、ク
リスタルバイオレットラクトン誘導体を濃度2 X 1
0’ mol/JLのクロロホルム溶液にして水面上に
滴下し単分子膜を水面上に展開する0表面圧を30dy
ne/cm−に設定し、蓮度2 cm/winで基板を
上下して第2表に示す各層に累積した単分子累積膜(Y
型11!2)を各試料に作成した。
After submerging the substrate on which BJi3 and the light absorption layer were formed in an acidic solution of pH 4 so that it is perpendicular to the water surface, a crystal violet lactone derivative was added at a concentration of 2 x 1.
A chloroform solution of 0' mol/JL was dropped onto the water surface and a monomolecular film was developed on the water surface at 0 surface pressure for 30 dy.
The monomolecular cumulative film (Y
Mold 11!2) was made for each sample.

(4)性能試験 上述の方法により製作された本発明に係る光記録素子と
比較例として従来の同様の構成(全てが単分子膜又はそ
の累積膜を使用しないで構成)に係る光ディスクを第5
図に示す情報記憶装置を用いて以下の記録条件下で記録
した後、読取り再生を行うことにより両者の性能比較を
行った。
(4) Performance test The optical recording element according to the present invention manufactured by the above-mentioned method and a conventional optical disk having a similar structure (all of which are constructed without using a monomolecular film or a cumulative film thereof) were used as a comparative example.
After recording under the following recording conditions using the information storage device shown in the figure, the performance of both was compared by reading and reproducing.

(記録条件) 半導体レーザ波長 830n脂 レーザ出力  6〜9層− 記録周波数  5 MHz 光ディスクの回転数 1.800rp量以上の条件下で
読み出しをレーザ出力1■讐で行い、信号/雑音比を求
めた結果を第2表に示す。
(Recording conditions) Semiconductor laser wavelength: 830 nm Laser output: 6 to 9 layers - Recording frequency: 5 MHz Optical disk rotation speed: 1. Reading was performed at a laser output of 1 mm under conditions of 800 rp or more, and the signal/noise ratio was determined. The results are shown in Table 2.

第2表 註・・・本は比較例を示し、各層の形成は回転塗布法に
より行った。
Notes to Table 2: This book shows comparative examples, and each layer was formed by a spin coating method.

第2表の結果よりNo、1(A層奏仏椿妻泰譜が単分子
膜からなる場合)とNo、6とを比較すると。
From the results in Table 2, No. 1 (when the A layer Sobutsu Tsubaki Tsuma Taifu is made of a monomolecular film) is compared with No. 6.

であるにもかかわらず、性能に差異が生じたのはNo、
1の方がピンホール等の欠陥が少ないためと思われる。
Despite this, there was a difference in performance in No.
This is probably because No. 1 has fewer defects such as pinholes.

同様に、No、2〜No、5(A層脂仏奔弊取導が単分
子の累積膜からなる場合)とMolとの比較では、No
、2〜No、5の方が信号/雑音比において優れること
が認められる。
Similarly, in comparing No. 2 to No. 5 (when the A-layer fat film is composed of a single-molecule cumulative film) and Mol, No.
, 2 to No. 5 are recognized to be superior in signal/noise ratio.

[発明の効果] 以上説明した様に本発明に係わる光記録素子はA層が単
分子膜又はその累積膜からなる層、B層及び光吸収層は
堆積膜からなる層で構成されているので、以下に示すよ
うな優れた効果がある。
[Effects of the Invention] As explained above, in the optical recording element according to the present invention, the A layer is composed of a monomolecular film or a cumulative film thereof, and the B layer and the light absorption layer are composed of deposited films. , it has the following excellent effects.

(1)従来の単分子膜又はその累積膜を使用していない
光記録素子と比較して信号/雑音比が高く、記録の信頼
性を向上させることができる。
(1) Compared to optical recording elements that do not use conventional monomolecular films or their cumulative films, the signal/noise ratio is higher, and the reliability of recording can be improved.

(2)光記録素子のピンホール等の物理的欠陥を大幅に
減少させることができる。
(2) Physical defects such as pinholes in optical recording elements can be significantly reduced.

(3)従来の光記録素子と比べて、より高密度記録が可
能である。
(3) Higher density recording is possible than with conventional optical recording elements.

(4)光記録素子の大面積化が可能である。(4) It is possible to increase the area of the optical recording element.

(5)感度が向上し、製作の際に材料の選択の巾が広く
製造が容易であり、又読み取りの際コントラストと非コ
ントラストの差がつきやすい等の光学物性上の効果があ
る。
(5) Sensitivity is improved, there is a wide range of materials to choose from during manufacturing, manufacturing is easy, and there are effects in terms of optical properties such as the difference between contrast and non-contrast being easily discernible during reading.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わる光記録素子の1例を示す概略構
成断面図、第2図(a)〜第2図(a)は従来の光記録
素子の記録プロセスを示す説明図、第3図は単分子累積
膜形成装置の概略構成断面図、第4図(a)〜第4図(
c)は単分子累積膜9の作製工程図及び第5図は情報記
t(!装置のブロック図である。
FIG. 1 is a schematic cross-sectional view showing an example of an optical recording element according to the present invention, FIGS. The figure is a schematic cross-sectional view of the monomolecular cumulative film forming apparatus, and Fig. 4(a) to Fig. 4(
c) is a manufacturing process diagram of the monomolecular cumulative film 9, and FIG. 5 is a block diagram of the information recorder t(!).

Claims (1)

【特許請求の範囲】[Claims] (1)通常無色ないし淡色の発色性化合物からなるA層
と、前記発色性化合物と接触して発色せしめる助色性化
合物からなるB層と、A層とB層との間に介在する光吸
収層とからなり、かつ (イ)前記A層は発色性化合物の単分子膜又はその累積
膜からなる層、 から構成されることを特徴とする光記録素子。
(1) A layer consisting of a normally colorless or light-colored color-forming compound, a B layer consisting of an auxochrome compound that develops color when in contact with the color-forming compound, and light absorption interposed between the A layer and the B layer. and (a) the layer A is a monomolecular film of a color-forming compound or a layer formed of a cumulative film thereof.
JP59159104A 1984-07-31 1984-07-31 Optical recording element Pending JPS6137476A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59159104A JPS6137476A (en) 1984-07-31 1984-07-31 Optical recording element
US07/233,902 US4933221A (en) 1984-07-31 1988-08-17 Optical recording device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59159104A JPS6137476A (en) 1984-07-31 1984-07-31 Optical recording element

Publications (1)

Publication Number Publication Date
JPS6137476A true JPS6137476A (en) 1986-02-22

Family

ID=15686326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59159104A Pending JPS6137476A (en) 1984-07-31 1984-07-31 Optical recording element

Country Status (1)

Country Link
JP (1) JPS6137476A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2689814A1 (en) * 1991-12-27 1993-10-15 Ricoh Kk Thermally sensitive reproduction material.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2689814A1 (en) * 1991-12-27 1993-10-15 Ricoh Kk Thermally sensitive reproduction material.

Similar Documents

Publication Publication Date Title
JPS58224793A (en) Optical recording medium
US4933221A (en) Optical recording device
JPS6137476A (en) Optical recording element
US5316899A (en) Optical recording medium
JPS6163489A (en) Photo-recording element
JPS6137479A (en) Optical recording element
JPS6163491A (en) Photo-recording element
JPS6137477A (en) Optical recording element
JPS6137487A (en) Optical recording element
JPS6137486A (en) Optical recording element
JPS6137475A (en) Optical recording element
JPS6137474A (en) Optical recording element
JPS6137482A (en) Optical recording element
JPS6163487A (en) Optical recording element
JPS6163483A (en) Optical recording element
JPS6137485A (en) Optical recording element
JPS6163479A (en) Optical recording element
JPS6137489A (en) Optical recording element
JPS6163481A (en) Optical recording element
JPS6137488A (en) Optical recording element
JPS6137484A (en) Optical recording element
JPS6137480A (en) Optical recording element
JPS6163486A (en) Optical recording element
JPS6163939A (en) Information storage device
JPS6163485A (en) Optical recording element