JPS6137474A - Optical recording element - Google Patents

Optical recording element

Info

Publication number
JPS6137474A
JPS6137474A JP59159102A JP15910284A JPS6137474A JP S6137474 A JPS6137474 A JP S6137474A JP 59159102 A JP59159102 A JP 59159102A JP 15910284 A JP15910284 A JP 15910284A JP S6137474 A JPS6137474 A JP S6137474A
Authority
JP
Japan
Prior art keywords
layer
light
film
color
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59159102A
Other languages
Japanese (ja)
Inventor
Yukio Nishimura
征生 西村
Harunori Kawada
河田 春紀
Masahiro Haruta
春田 昌宏
Yutaka Hirai
裕 平井
Noritaka Mochizuki
望月 則孝
Takashi Nakagiri
孝志 中桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59159102A priority Critical patent/JPS6137474A/en
Publication of JPS6137474A publication Critical patent/JPS6137474A/en
Priority to US07/233,902 priority patent/US4933221A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B7/248Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes porphines; azaporphines, e.g. phthalocyanines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes

Landscapes

  • Heat Sensitive Colour Forming Recording (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To obtain highly reliable and densely recordable optical recording elements by providing a layer A of color-forming compound, a layer B of assistant color-forming compound and a light-absorbing layer existing between the layer A and the layer B and making up the layer A and light-absorbing layer of either a monomolecular film or an accumulated film of the former respectively. CONSTITUTION:The titled optical recording element is composed of a layer-A 2, a layer-B 4 of assistant color-forming compound and a light-absorbing layer 3 of light-absorbing material which exists between the layer A and the layer B. The layer-A 2 and the light-absorbing layer 3 are laminates of either monomolecular film or accumulated films of the former, and the layer-B 4 is a laminate of laminated films. The layer-B 4 is supported on a substrate 1 and the substrate, layer B, light-absorbing layer and layer A are laminated in that order. Consequently, the titled optical recording element has higher packing density and also higher signal/noise ratio than the conventional element, thus improving recording reliability.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は有機材料を利用した光記録素子に関し、特に高
度に分子配向された有機薄11々を利用した高信頼・高
密度記録の可能な光記録素子に関するものである。
Detailed Description of the Invention [Industrial Application Field 1] The present invention relates to an optical recording element using an organic material, and in particular to an optical recording element that is capable of highly reliable and high-density recording using highly molecularly oriented organic thin films. This invention relates to optical recording elements.

[従来の技術] 最近、オフィス・オートメーション(OA)の中心的記
録(憶)素子として光ディスクが脚光を集めている。そ
の理由は光ディスク一枚で、大量の文書、文献などを記
録(又は記憶)できるからであり、したがって該光ディ
スクを用いる情報記憶装置を導入するとオフィスにおけ
る文書、文献の整理、管理に一大変革をもたらすものと
期待されている。又、該光デイスク用記録材料としては
安価性、製作容易性、高密度記録性等の特徴を有する有
機材料が注目されている。
[Prior Art] Recently, optical disks have been attracting attention as a central recording device for office automation (OA). The reason for this is that a single optical disc can record (or store) a large amount of documents, literature, etc. Therefore, introducing an information storage device using this optical disc will revolutionize the organization and management of documents and literature in offices. It is expected that it will bring In addition, organic materials, which have characteristics such as low cost, ease of manufacture, and high-density recording properties, are attracting attention as recording materials for optical disks.

この様な有機記録材を用いる従来技術の中で、特に発色
剤と助色剤の接触による発色反応を利用する二成分系の
光記録素子が報告されている(日経産業新聞 昭和58
年10月18日)。
Among the conventional techniques using such organic recording materials, a two-component optical recording element that utilizes a color reaction caused by contact between a color former and an auxiliary has been reported (Nikkei Sangyo Shimbun, 1972).
(October 18, 2017).

該光記録素子の1例を図面に基づいて説明すると、第2
図(a)に示す様に発色剤層7と助色剤層5とが光吸収
F!1Gによって隔てられて基板1上に積層された構成
からなるものである。
An example of the optical recording element will be described based on the drawings.
As shown in Figure (a), the color forming agent layer 7 and the auxiliary color agent layer 5 absorb light F! It consists of a structure in which they are stacked on a substrate 1 separated by 1G.

発色剤(aイコ体)及び助色剤は各々単独で存在すると
きは無色又は淡色である。
The coloring agent (a-isomer) and the auxiliary colorant are colorless or light-colored when each exists alone.

該記録素子に記録を行うときは、第2図(b)に示す様
に光吸収層6の所望の位置にレーザ光8を照射すると、
光吸収層のレーザ光を照射された部分はレーザ光を吸収
して溶融し破れて小さな穴があく。
When recording on the recording element, a laser beam 8 is irradiated onto a desired position of the light absorption layer 6 as shown in FIG. 2(b).
The portion of the light-absorbing layer that is irradiated with the laser beam absorbs the laser beam, melts, and rips, leaving a small hole.

その結果、第2図(c)に示す様に光吸収層6によって
隔てられていた発色剤と助色剤がこの小さな穴を通じて
混ざり合い発色する。情報はこの発色点9の形で記録な
いし記憶され、読み出しは別の光源で該記録素子上を走
査し発色点による反射率、透過率等の変化を検出するこ
とにより行われる。
As a result, as shown in FIG. 2(c), the color forming agent and the auxiliary color agent, which were separated by the light absorbing layer 6, mix through these small holes and develop a color. Information is recorded or stored in the form of coloring points 9, and reading is performed by scanning the recording element with another light source and detecting changes in reflectance, transmittance, etc. due to the coloring points.

[発明が解決しようとする問題点コ 上記の光記録素子に於いて、記録の高密度化を図るため
には光吸収層6が極力薄く、平坦で、かつ膜厚のむらの
ないものが望ましい。しかしながら、従来の光記録素子
において、光吸収層は例えば真空蒸着法又は回転塗布法
などによって基板上に被膜されているため、厚さを20
0〜500 A以下に薄くシようとすればピンホールが
多発しやすく、このピンホールの箇所で発色剤と助色剤
の2成分が接触して発色するため、信頼性に欠ける欠点
があった。その上、前記の従来の被膜方法で形成される
各層の膜内の分子分布配向がランダムであるため、光照
射に伴ってII内で光散乱が生じ、微視的にみた場合、
各光照射の度に生ずる化学反応の度合が異なってくる。
[Problems to be Solved by the Invention] In the above-mentioned optical recording element, in order to achieve high recording density, it is desirable that the light absorption layer 6 be as thin as possible, flat, and without unevenness in film thickness. However, in conventional optical recording elements, the light absorption layer is coated on the substrate by, for example, a vacuum evaporation method or a spin coating method, so the thickness is reduced to 20%.
If you try to print thinner than 0 to 500 A, pinholes tend to occur frequently, and the two components, color former and auxiliary color, come into contact at these pinholes and develop color, resulting in a lack of reliability. . Furthermore, since the molecular distribution and orientation within the film of each layer formed by the above-mentioned conventional coating method is random, light scattering occurs within II due to light irradiation, and when viewed microscopically,
The degree of chemical reaction that occurs with each light irradiation differs.

さらに、上述の被膜方法では光ディスクの基板を大面積
化すると、膜厚のむらが生じ、記録品質のむらが発生す
る等の欠点があった。
Furthermore, the above-mentioned coating method has drawbacks such as unevenness in film thickness and uneven recording quality when the substrate of an optical disk has a large area.

したがって、光記録素子としては、膜内の分子分布・配
向が一様で、ピンホールも膜厚のむらもないことが望ま
しく、またできる限りj膜厚が薄いことが、記録の高密
度化、高信頼化のために要望される0本発明はかかる要
望に鑑みてなされたもので、本発明の目的は高信頼・高
雀度記録が可能な光記録素子を提供することにある0本
発明の別の目的は製作容易で安価な光記録素子を提供す
ることにある0本発明のさらに別の目的は大面積の光記
録素子を提供することにある。
Therefore, as an optical recording element, it is desirable that the molecular distribution and orientation within the film be uniform, and that there are no pinholes or uneven film thickness, and that the film thickness be as thin as possible to achieve high recording density and high performance. The present invention was made in view of the demand for reliability, and an object of the present invention is to provide an optical recording element capable of highly reliable and high-speed recording. Another object of the present invention is to provide an optical recording element that is easy to manufacture and inexpensive.A further object of the present invention is to provide an optical recording element with a large area.

[問題点を解決するための手段]及び[作用]即ち、本
発明は通常無色ないし淡色の発色性化合物からなるA層
と、前記発色性化合物と接触して発色せしめる助色性化
合物からなるBHと、A層とBQとの間に介在する光吸
収層とからなり、力)つ (イ)前記Aqは発色性化合物の単分子膜又はその累積
膜からなる層、 (ロ)前記光吸収層は光吸収性物質の単分子膜又はその
累積膜からなる層、 から構成されることを特徴とする光記録素子である。
[Means for Solving the Problems] and [Operation] That is, the present invention consists of an A layer consisting of a color-forming compound that is usually colorless or light-colored, and a BH layer consisting of an auxochrome compound that develops a color when in contact with the color-forming compound. and a light absorption layer interposed between the A layer and BQ, (a) the Aq is a layer consisting of a monomolecular film of a color-forming compound or a cumulative film thereof, (b) the light absorption layer is an optical recording element characterized in that it is composed of a monomolecular film of a light-absorbing substance or a layer consisting of a cumulative film thereof.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に係わる光記録素子は通常無色ないし淡色の発色
性化合物からなるA層と、前記発色性化合物と接触して
発色せしめる助色性化合物からなるB層との間に、光吸
収層を介在せしめた構成からなるものであり、該A層及
びBQには互に接触、混合することにより発色する物質
を組合せて用いることが基本的に要請される。この様な
関係にあるA層の通常無色ないし淡色の発色性化合物及
びB層の前記発色性化合物と接触して発色せしめる助色
性化合物の具体例を示すと (イ) 酸性物質(B層)と該酸性物質に接触すること
によって発色する染料のロイコ体(色素前駆体)(A層
) (ロ)酸化剤(B層)と該酸化剤に接触することによっ
て発色する染料のロイコ体(15)(ハ)還元剤(B層
)と該還元剤に接触することによって発色する染料のロ
イコ体(A層)(ニ)還元剤(B層)とステアリン酸第
2鉄のように還元されると発色する酸化剤(A層)(ホ
)酸化剤(B層)と没食子酸のように酸化されると発色
する還元剤(A層) 等が挙げられる。
The optical recording element according to the present invention usually has a light-absorbing layer interposed between the A layer made of a colorless or light-colored color-forming compound and the B layer made of an auxochrome compound that develops color when in contact with the color-forming compound. Basically, the A layer and the BQ are required to use a combination of substances that develop color when they come into contact with each other and mix. Specific examples of the normally colorless to light-colored color-forming compound in layer A and the auxochrome compound that develops color when they come into contact with the color-forming compound in layer B, which have such a relationship, are as follows: (a) Acidic substance (layer B) and a leuco form of a dye (dye precursor) that develops color when it comes into contact with the acidic substance (layer A) (b) An oxidizing agent (layer B) and a leuco form of a dye that develops a color when it comes into contact with the oxidizing agent (15 ) (c) Reducing agent (layer B) and a leuco form of dye that develops color when it comes into contact with the reducing agent (layer A) (d) Reducing agent (layer B) and is reduced like ferric stearate Examples include an oxidizing agent (layer A) that develops color (e), an oxidizing agent (layer B) that develops a color, and a reducing agent (layer A) that develops a color when oxidized, such as gallic acid.

前記(イ)の場合をさらに詳しく例示すれば、染料のロ
イコ体と接触して反応し発色せしめるB層の酸性物質と
しては、ベンゼンスルポン酸等ノ芳香族スルホン酸化合
物、安息香酸等の芳香族カルボン酸類、バルミチン酸(
C,5H,、C00H)、ステアリン酸(Cr7Hi5
COOH)、アラキシン酸CC1q Hy9COO)り
等の高級脂肪酸カルボン酸類、p−t−ブチルフェノー
ル、α−ナフトール、β−ナフトール、フェノールフタ
レイン、ビスフェノールA、4−ヒドロキシジフェノキ
シド、4−ヒドロキシアセトフェノン等のフェノール性
化合物等が挙げられる。
To give a more detailed example of the case (a) above, the acidic substance in layer B that reacts with the leuco form of the dye to develop color is an aromatic sulfonic acid compound such as benzenesulfonic acid, or an aromatic compound such as benzoic acid. group carboxylic acids, balmitic acid (
C,5H,,C00H), stearic acid (Cr7Hi5
Higher fatty acid carboxylic acids such as araxic acid CC1q Hy9COO), phenols such as pt-butylphenol, α-naphthol, β-naphthol, phenolphthalein, bisphenol A, 4-hydroxydiphenoxide, 4-hydroxyacetophenone, etc. Examples include sexual compounds.

次に、前記酸性物質と接触して反応するA層の染料のロ
イコ体としては例えば、トリフェニルメタン系、フルオ
ラン系″、フェノチアジン系、オーラミン系、スピロピ
ラン系等があり、それ等に含まれる具体的な化合物の詳
細を提示すると第1表の通りである。
Next, examples of leuco dyes in the A layer that react with the acidic substance include triphenylmethane, fluoran, phenothiazine, auramine, spiropyran, etc. The details of the compounds are shown in Table 1.

本発明においてA層は単分子膜又はその累積膜からなる
層から形成されるために、前記の発色性化合物は分子内
の適当な部位に親木基、疎水基又はその両方の基を導入
した誘導体を用いる必要がある。
In the present invention, since layer A is formed from a monomolecular film or a layer consisting of a cumulative film thereof, the color-forming compound has a parent group, a hydrophobic group, or both groups introduced at appropriate sites within the molecule. It is necessary to use derivatives.

疎水基及び親水基には一般に使用されるものであれば如
何なるものでも用いることができるが、特に好ましくは
疎水基としては炭素原子数5〜30の長鎖アルキル基、
親水基としてはカルボキシル基及びその金属塩(例えば
カドミウム塩)が望ましい。
Any commonly used hydrophobic group and hydrophilic group can be used, but particularly preferred hydrophobic groups include long-chain alkyl groups having 5 to 30 carbon atoms;
As the hydrophilic group, carboxyl groups and metal salts thereof (eg, cadmium salts) are desirable.

他方B層は従来の被膜方法により形成される膜であれば
如何なる膜でもよく、それ等の中で例えば蒸着■り、塗
布膜、浸漬膜、ラミネート等の堆積++qからなる層が
好ましい。
On the other hand, layer B may be any film formed by conventional coating methods, and among these, a layer formed by deposition such as vapor deposition, coating, dipping, laminating, etc. is preferred.

なお、A層及びB層の膜厚は200人から101Lの範
囲が望ましく、好適には1,000人から1島の範囲で
ある。
Note that the thickness of the A layer and the B layer is preferably in the range of 200 people to 101 L, preferably in the range of 1,000 people to 1 island.

次に、本発明における光吸収層の形成に用いられる光吸
収性物質としては赤外線を吸収して溶融する溶融性光吸
収色素、又は赤外線を吸収して昇華する昇華性光吸収色
素が好適である。
Next, as the light-absorbing substance used for forming the light-absorbing layer in the present invention, a meltable light-absorbing dye that absorbs infrared rays and melts, or a sublimable light-absorbing dye that absorbs infrared rays and sublimates is suitable. .

該かる光吸収色素の一例をあげれば、例えば銅フタロシ
アニン、バナジウムフタロシアニン等の金属フタロシア
ニン、フルオレスセイン等のキサンチン系色素等がある
Examples of such light-absorbing dyes include metal phthalocyanines such as copper phthalocyanine and vanadium phthalocyanine, and xanthine dyes such as fluorescein.

該光吸収層は単分子膜又はその累積膜からなる層から形
成されるために、前記の光吸収性物質は分子内の適当な
部位に親水基、疎水基又はその両方の基を導入した誘導
体を用いる必要がある。
Since the light-absorbing layer is formed from a monomolecular film or a layer consisting of a cumulative film thereof, the above-mentioned light-absorbing substance is a derivative having a hydrophilic group, a hydrophobic group, or both groups introduced at appropriate sites within the molecule. It is necessary to use

疎水基及び親木基には一般に使用されるものであれば如
何なるものでも用いることができるが、特に好ましくは
疎水基としては炭素原子数5〜30の長鎖アルキル基、
親水基としてはカルボキシル基及びその金属塩(例えば
カドミウム塩)が望ましい。
Any commonly used hydrophobic group and parent tree group can be used, but particularly preferred hydrophobic groups include long-chain alkyl groups having 5 to 30 carbon atoms;
As the hydrophilic group, carboxyl groups and metal salts thereof (eg, cadmium salts) are desirable.

なお光吸収層の膜厚は30Aから1,000 Aの範囲
が望ましく、好適には50Aから20OAの範囲である
The thickness of the light absorption layer is desirably in the range of 30A to 1,000A, preferably in the range of 50A to 20OA.

また、本発明において基板に使用される材料としては、
シリコン等の半導体材料、アルミ等の全屈材料、好適に
は強化ガラス、更に好適にはアクリル(PMMA) 、
  ポリカーボネー) (PC) 、ポリプロピレン、
ポリ塩化ビニール(pvc ) 、ポリスチレンC9・
のプラスチック材料、セラミック材料が好ましい。
In addition, the materials used for the substrate in the present invention include:
Semiconductor materials such as silicon, fully flexural materials such as aluminum, preferably tempered glass, more preferably acrylic (PMMA),
polycarbonate) (PC), polypropylene,
Polyvinyl chloride (PVC), polystyrene C9,
Plastic materials and ceramic materials are preferred.

本発明に係わる光記録素子はA層は発色性化合物の単分
子膜又はその累積膜からなる層、及び光吸収層は光吸収
性物質の単分子膜又はその累積膜からなる層から構成さ
れることを1つの特徴とするものである。
In the optical recording element according to the present invention, the layer A is composed of a monomolecular film of a color-forming compound or a cumulative film thereof, and the light-absorbing layer is composed of a monomolecular film of a light-absorbing substance or a cumulative film thereof. This is one of its characteristics.

かかる分子の高秩序性及び高配向性を有する単分子膜又
はその累積膜を作成する方法としては、例えば1.La
ngmu i rらの開発したラングミュア・プロジェ
ット法(LB法)を用いる。ラングミュア:ブロジェッ
ト法は、例えば分子内に親木基と疎水基を有する構造の
分子において、両者のバランス(両親媒性のバランス)
が適度に保たれているとき、分子は水面上で親水基を下
に向けて単分子の層になることを利用して単分子膜また
は単分子の累積膜を作成する方法である。水面上の単分
子層は二次元系の特徴をもつ0分子がまばらに散開して
いるときは、一分子当り面積Aと表面圧■との間に二次
元理想気体の式、 HA工kT が成り立ち、“°気体膜°゛となる。ここに、にはボル
ツマン定数、Tは絶対温度である。Aを十分小さくすれ
ば分子間相互作用が強まり二次元固体の“°凝縮膜(ま
たは固体膜)“になる、凝!Ii!膜はプラスチック基
板、ガラス基板などの種々の材質や形状を有する担体の
表面へ一層ずつ移すことができる。
As a method for producing a monomolecular film or a cumulative film thereof having such high orderliness and orientation of molecules, for example, 1. La
The Langmuir-Prodgett method (LB method) developed by Ngmuir et al. is used. The Langmuir-Blodgett method is used, for example, to determine the balance between parent wood groups and hydrophobic groups (balance of amphipathic properties) in molecules with a structure that has a parent group and a hydrophobic group within the molecule.
This is a method to create a monomolecular film or a cumulative film of monomolecules by utilizing the fact that when the water is maintained at a suitable level, molecules form a monomolecular layer on the water surface with their hydrophilic groups facing downward. When the monomolecular layer on the water surface has the characteristics of a two-dimensional system and zero molecules are sparsely dispersed, the two-dimensional ideal gas equation, HA kT, is expressed between the area per molecule A and the surface pressure ■. Therefore, it becomes a "°gas film".Here, is the Boltzmann constant and T is the absolute temperature.If A is made small enough, the intermolecular interaction becomes strong, resulting in a "°condensed film" (or solid film) of a two-dimensional solid. )", the film can be transferred layer by layer onto the surface of carriers having various materials and shapes, such as plastic substrates and glass substrates.

次に本発明に使用する発色性化合物又は光吸収性物質で
ある親木基、疎水基を併有する有機分子の単分子膜又は
その累vLvを形成する方法についてさらに詳述する。
Next, a method for forming a monomolecular film of an organic molecule having a parent group and a hydrophobic group, which is a color-forming compound or a light-absorbing substance used in the present invention, or a cumulative VLv thereof will be described in further detail.

まず該有機分子をベンゼン、クロロホルム等の揮発性溶
剤に溶解し、シリンダ等でこれを第3図に概略した単分
子累積膜形成装置の水槽lO内の水相11上に展開させ
る。
First, the organic molecule is dissolved in a volatile solvent such as benzene or chloroform, and this is spread on the aqueous phase 11 in the water tank 10 of the monomolecular cumulative film forming apparatus schematically shown in FIG. 3 using a cylinder or the like.

該有機分子は、溶剤の揮発に伴って、親木基12を水相
に向け、疎水基13を気相に向けた状態で水相11上に
展開する。
As the solvent evaporates, the organic molecules develop on the water phase 11 with the parent tree groups 12 facing the water phase and the hydrophobic groups 13 facing the gas phase.

次にこの析出物(有機分子)が水相11上を自由に拡散
して広がりすぎないように仕切板(または浮子) 14
を設けて展開面積を制限して膜物質の集合状態を制御し
、その集合状態に比例した表面圧■を得る。この仕切板
14を動かし、展開面積を縮少して膜物質の集合状態を
制御し、表面圧を徐々に上昇させ、累vL膜の製造に適
する表面圧■を設定することができる。この表面圧を維
持しながら静かに清浄な基板14を垂直に上下させるこ
とにより単分子膜16が基板上に移しとられる。単分子
膜16は以上で製造されるが、単分子層累積膜17は前
記の操作を繰り返すことにより所望の累積数の単分子層
累積II臭が形成される。
Next, a partition plate (or float) 14 is installed to prevent this precipitate (organic molecules) from freely diffusing and spreading too much on the aqueous phase 11.
is provided to limit the developed area and control the state of aggregation of the membrane material, thereby obtaining a surface pressure (2) proportional to the state of aggregation. By moving the partition plate 14, the developed area can be reduced to control the state of aggregation of the film material, and the surface pressure can be gradually increased to set the surface pressure (2) suitable for producing a cumulative VL film. By gently vertically moving the clean substrate 14 up and down while maintaining this surface pressure, the monomolecular film 16 is transferred onto the substrate. The monomolecular layer 16 is manufactured in the above manner, and the monomolecular layer cumulative film 17 is formed by repeating the above operations to form a desired cumulative number of monomolecular layer cumulative II odors.

例えば表面が親水性である基板15を水面を横切る方向
に水中から引き上げると該有機分子の親木基が基板15
側に向いた単分子層16が基板15上に形成される。前
述のように基板15を上下させると、各工程ごとに1枚
ずつ単分子すに・16が積み重なっていく、成膜分子の
向きが引上げ工程と浸せき工程で逆になるので、この方
法によると各層間は有機分子の親木基と親水基、有機分
子の疎水基と疎水基が向かい合ういわゆるY型IIりが
形成される(第4図(a))。
For example, when a substrate 15 with a hydrophilic surface is pulled out of water in a direction transverse to the water surface, parent wood groups of the organic molecules are removed from the substrate 15.
A side-facing monolayer 16 is formed on the substrate 15 . When the substrate 15 is moved up and down as described above, one monolayer film 16 is piled up in each step.The direction of the film-forming molecules is reversed between the pulling step and the dipping step, so according to this method, Between each layer, a so-called Y-type II layer is formed in which the parent wood group and the hydrophilic group of the organic molecule and the hydrophobic group and the hydrophobic group of the organic molecule face each other (FIG. 4(a)).

Y型膜は有機分子の親水基同志、疎水基同志が向い合っ
ているので強固である。
The Y-type film is strong because the hydrophilic groups and hydrophobic groups of the organic molecules face each other.

それに対し、基板15を水中に引き下げるときにのみ、
基板面に該有機分子を移し取る方法もある。
In contrast, only when lowering the substrate 15 into the water,
There is also a method of transferring the organic molecules onto the substrate surface.

この方法では、累積しても、成膜分子の向きの交代はな
く全ての層において、疎水基が基板15側に向いたX型
膜が形成される( f 4図(b))。反対に全ての層
において親水基が基板15側に向いた累積膜はX型膜と
呼ばれる(第4図(c) ) 。
In this method, there is no change in the direction of the film-forming molecules even if they are accumulated, and an X-type film is formed in which the hydrophobic groups face the substrate 15 in all layers (Fig. 4(b)). On the other hand, a cumulative film in which all the layers have hydrophilic groups facing the substrate 15 side is called an X-type film (FIG. 4(c)).

X型膜は基板15を水中から引上げるときにのみ、基板
面に有機分子を移し取ることによって得られる。
The X-type film is obtained by transferring organic molecules to the substrate surface only when the substrate 15 is lifted out of the water.

斜上の方法によって基板上に形成される単分子膜及び単
分子層累積膜は高密度でしかも高度の秩序性・配向性を
有、しており、これらの膜で記録層を4R成することに
よって、光熱的記録の可能な高密度で高解像度の記録機
能を有する記録素子を得ることができる。また、これら
成膜方法はその原理からも分る通り、非常に簡単な方法
であり、上記のような優れた記録機能を有する記録素子
を低コストで提供することができる。
The monomolecular film and the monomolecular layer stack formed on the substrate by the diagonal method have high density and a high degree of order and orientation, and it is possible to form the recording layer with 4Rs using these films. Accordingly, a recording element capable of photothermal recording and having a high-density and high-resolution recording function can be obtained. Further, as can be seen from the principles thereof, these film forming methods are very simple methods, and a recording element having the above-mentioned excellent recording function can be provided at low cost.

以上述べた、本発明における単分子膜または単分子累積
膜を形成する基板は特に限定されないが、基板表面に界
面活性物質が付着していると、単分子層を水面から移し
とる時に、単分子膜が乱れ良好な単分子膜または単分子
層累積膜ができないので基板表面力旬青浄なものを使用
する必要がある。
The substrate on which the monomolecular film or monomolecular cumulative film in the present invention is formed as described above is not particularly limited, but if a surfactant is attached to the surface of the substrate, when the monomolecular layer is transferred from the water surface, the monomolecular Since the film is disturbed and a good monomolecular film or monomolecular layer cumulative film cannot be formed, it is necessary to use a substrate with a clean surface.

基板上の単分子膜または単分子層累積膜は、十分に強く
固定されており基板からの剥離、剥落を生じることはほ
とんどないが、付着力を強化する目的で基板と単分子膜
または単分子層累積膜の間に接若層を設けることもでき
る。さらに単分子層形成条件例えば水相の水;にイオン
C度、イオン種、水温、担体上げ下げ速度あるいは表面
圧の沢択等によって付着力を強化することもできる。
The monomolecular film or monomolecular layer accumulation film on the substrate is sufficiently strongly fixed and rarely peels or peels off from the substrate. An attractive layer may also be provided between the layer stacks. Furthermore, the adhesion can be strengthened by changing the monomolecular layer formation conditions, such as the water phase, ion C degree, ion species, water temperature, carrier raising and lowering speed, or surface pressure.

次に、B層の堆積膜の形成方法は前記助色性化合物にバ
インダーと水を添加した水混和物を、ボールミル等を用
いて粉砕混合した後、基板等の上に従来の通常の方法で
塗着して行う。
Next, the method for forming the deposited film of layer B is to grind and mix a water mixture obtained by adding a binder and water to the auxochrome compound using a ball mill, etc., and then apply it on a substrate etc. by a conventional ordinary method. It is done by painting.

本発明に用いられる前記バインダーとしてはゼラチン、
でんぷんのごとき天然高分子物、硝酸繊維素、カルボキ
シメチルセルローズのごときFIN ’dt素誘素体導
体化ゴム、環化ゴムのごとき天然ゴム可塑物などの半合
成高分子物、ポリイソブチレン、ポリスチロール、テル
ペン樹脂、ポリアクリル酸、ポリアクリル酸エステル、
ポリメタアクリル酸エステル、ポリアクリルニトリル、
ポリアクリルアミド、ポリ酢酸ビニル、ポリビニルアル
コール、ポリビニルピロリドン、ポリアセタール樹脂、
ポリ塩化ビニル、ポリビニルピリジン、ポリビニルカル
バゾール チレン−ブタジェン、ブチルゴム、ポリオギシメチレン
、ポリエチレンイミン、ポリエチレンイミンハイドロク
ロライド、ポリ(2−アクリルオキシエチルジメチルス
ルホニウムクロライド)などのごとき重合型合成高分子
、フェノール樹脂、アミン樹脂、トルエン樹脂、アルキ
ッド樹脂、不飽和ポリエステル樹脂、アリル樹脂、ポリ
カーボネート、ポリアマイド樹脂、ポリエーテル樹脂、
珪素樹脂、フラン樹脂、チオコールゴムなどのごとき縮
合重合型合成高分子、ポリウレタン、ポリ尿素、エポキ
シ樹脂などのごとき付加重合型樹脂が挙げられる。
The binder used in the present invention includes gelatin,
Natural polymers such as starch, cellulose nitrate, FIN'dt elementary dielectric conductive rubber such as carboxymethyl cellulose, semi-synthetic polymers such as natural rubber plastics such as cyclized rubber, polyisobutylene, polystyrene. , terpene resin, polyacrylic acid, polyacrylic ester,
Polymethacrylic acid ester, polyacrylonitrile,
Polyacrylamide, polyvinyl acetate, polyvinyl alcohol, polyvinylpyrrolidone, polyacetal resin,
Polymerizable synthetic polymers such as polyvinyl chloride, polyvinylpyridine, polyvinylcarbazoletyrene-butadiene, butyl rubber, polyoxymethylene, polyethyleneimine, polyethyleneimine hydrochloride, poly(2-acryloxyethyldimethylsulfonium chloride), phenolic resins, Amine resin, toluene resin, alkyd resin, unsaturated polyester resin, allyl resin, polycarbonate, polyamide resin, polyether resin,
Examples include condensation polymerization type synthetic polymers such as silicone resins, furan resins, and thiocol rubbers, and addition polymerization type resins such as polyurethane, polyurea, and epoxy resins.

以上に説明した方法で製造される本発明に係わる光記録
素子の構成の1例を示すと、第1図に示す通り、発色性
化合物からなるA52、助色性化合物からなる8層4及
びA層とB層の間に介在する光吸収性物質からなる光吸
収層3からなり、A層2及び光吸収層3は単分子膜又は
その累積膜、8層4は塩11膜からなる積層体で、8層
4を基板1上に支持し、基板/B層/光吸収層/ADの
順に積層してなるものである。
An example of the structure of the optical recording element according to the present invention manufactured by the method described above is shown in FIG. 1, as shown in FIG. It consists of a light absorption layer 3 made of a light absorption substance interposed between the layer and the B layer, the A layer 2 and the light absorption layer 3 are monomolecular films or their cumulative films, and the 8 layers 4 are a laminate consisting of 11 salt films. Eight layers 4 are supported on the substrate 1, and are laminated in the order of substrate/B layer/light absorption layer/AD.

さらに、他の例として前記積層体のA5を基板上に支持
し、基板/A層/光吸収層/B層の順に積層してもよく
、又前記積層体を2段以上積重ねて最下層のA層又はB
層を基板上に支持してもよい。
Furthermore, as another example, A5 of the laminate may be supported on a substrate, and the laminate may be laminated in the order of substrate/A layer/light absorption layer/B layer, or the laminate may be stacked in two or more stages to form the bottom layer. A layer or B
The layer may be supported on a substrate.

本発明に係わる光記録素子はA層とB層とを光吸収層に
よって隔離して構成されているので、赤外線照射によっ
て光吸収層を溶融ないし昇華せしめて所望の位置に孔を
あけることにより、A層の発色性化合物とB層の助色性
化合物が接触して発色反応が進行し、該位置に発色点を
形成し情報を記録することができる。
Since the optical recording element according to the present invention is constructed by separating the A layer and the B layer by a light absorption layer, by melting or sublimating the light absorption layer by infrared irradiation and making holes at desired positions, The color-forming compound of layer A and the auxochrome compound of layer B come into contact and a color-forming reaction proceeds, forming a color-forming point at the position and recording information.

したがって本発明に係る光記録素子は主として光ディス
クとして使用することができる。該光ディスクから、情
報を書き込んだり或いは読取ったりするための光ピツク
アップの光学系を有する情報記憶装置の1例を第5図に
示す。
Therefore, the optical recording element according to the present invention can be mainly used as an optical disc. FIG. 5 shows an example of an information storage device having an optical pickup optical system for writing or reading information from the optical disc.

該情報記憶装置は、制御回路27と光ピツクアップ光学
系からなる書き込み手段と、本発明に係わる光記録素子
と、出力回路28と光ピツクアップ光学系からなる読取
り手段とによって構成される。
The information storage device is composed of a writing means consisting of a control circuit 27 and an optical pickup optical system, an optical recording element according to the present invention, and a reading means consisting of an output circuit 28 and an optical pickup optical system.

書き込みは次のようにして行う、制御回路27は半導体
レーザ26の発振を制御する。従って、入力情報は制御
回路27及び半導体レーザ26によって光信号に変換さ
れる。光信号29は第5図に示す光ピツクアップ光学系
を通って同期回転している光ディスク18の記録層上に
結像され、上述の発色メカニズムにより発色記録される
Writing is performed as follows. The control circuit 27 controls the oscillation of the semiconductor laser 26. Therefore, the input information is converted into an optical signal by the control circuit 27 and the semiconductor laser 26. The optical signal 29 passes through the optical pickup optical system shown in FIG. 5, forms an image on the recording layer of the optical disk 18 which is rotating synchronously, and is recorded in color by the coloring mechanism described above.

読取りは次のようにして行う、半導体レーザ2Bから発
する低出力の連続発振光を読取り光として使う、低出力
であるから、読取り中に発色記録が行われることはない
からである。または他の可視光用光源を読取り用光源と
して用いてもよい。
Reading is carried out as follows. A low-output continuous wave light emitted from the semiconductor laser 2B is used as the reading light. Since the output is low, color recording is not performed during reading. Alternatively, another visible light source may be used as the reading light source.

該読取り用光線は光ディスク18の基板表面に結像し反
射されるが、反射率は発色点とそうでない箇所とで異な
るから、この反射光を光ピツクアップ光学系を通してフ
ォトダイオード25の受光面にあてることにより電気信
号に変換し、再生読み出しを行う。
The reading light beam forms an image on the substrate surface of the optical disk 18 and is reflected, but since the reflectance differs between the coloring point and the non-coloring point, this reflected light is applied to the light receiving surface of the photodiode 25 through the optical pickup optical system. This converts the signal into an electrical signal and reproduces and reads it.

該かる再生信号のコントラストを上げ、画質等の向上を
図るためには、光記録素子の基板上にアルミ等の金属反
射層を付設することが好ましい。
In order to increase the contrast of the reproduced signal and improve the image quality, it is preferable to provide a reflective layer of metal such as aluminum on the substrate of the optical recording element.

金属反射層の膜厚は1,000 A〜2,000 Aが
好適である。その他必要に応じて誘電体ミラーでもよい
The thickness of the metal reflective layer is preferably 1,000 A to 2,000 A. In addition, a dielectric mirror may be used as necessary.

更に、A層、B層、光吸収層等を保護するために最外層
の表面に保護層を設けてもよい。そのような保護層用材
料としては5i02等の誘電体、プラスチック樹脂、他
の重合性LB膜等が好適である。
Furthermore, a protective layer may be provided on the surface of the outermost layer to protect the A layer, B layer, light absorption layer, etc. Suitable materials for such a protective layer include dielectrics such as 5i02, plastic resins, and other polymerizable LB films.

[実施例] 以下、実施例を示し、本発明をさらに具体的に説明する
。尚、下記において特に記述のない限り「部」は「重量
部」を、「%」は「重量%」を表わすものとする。
[Example] Hereinafter, the present invention will be explained in more detail by showing examples. In the following, unless otherwise specified, "part" means "part by weight" and "%" means "% by weight."

合成例1(光吸収性物質の合成例) バナジ ムフ ロシアニンU   へ゛″1尿素10部
と10〜15%りん酸水溶液1部を混合溶解した後、さ
らに無水フタル酸2部、  vocfL2(バナジル塩
) 10部及び 式(1) %式% で表わされる無水フタルシアニンの誘導体8部を加え1
00℃にて5時間加熱した。冷却した後、2%希NaO
H水溶液100部を加え、加水分解した後、クロマトグ
ラフィにより分離し、 式(I[) [式■中、Rは I C−O−C□H1 ■ CH(CH2)、q CI(s を表わす]で示される目的物質(バナジウムフタロシア
ニン誘導体)0.1部を得た。
Synthesis Example 1 (Synthesis example of light-absorbing substance) After mixing and dissolving 10 parts of 1 urea and 1 part of 10-15% phosphoric acid aqueous solution into vanadium fluorocyanine U, 2 parts of phthalic anhydride and vocfL2 (vanadyl salt) were added. 10 parts and 8 parts of anhydrous phthalcyanine derivative represented by formula (1) % formula % were added.
The mixture was heated at 00°C for 5 hours. After cooling, 2% dilute NaO
After adding 100 parts of H aqueous solution and hydrolyzing, the product was separated by chromatography to obtain the following formula (I[) [In the formula (■), R represents I C-O-C□H1 ■ CH (CH2), q CI (s]) 0.1 part of the target substance (vanadium phthalocyanine derivative) represented by was obtained.

合成例2(発色性化合物の合成例) !ス ルバ オレー ラ  ンデニ;   lx  7
式(III) で示されるm−アミノ安方、香酸誘導体1部と、式1) で示されるミヒラーズヒドロール1部をO□N−C>に
トロベンゼン)溶媒中に4昆合し、触媒としてCH3・
SO,)I(パラトルエンスルホン酸)1部を加えて8
時間還流し、 式(V) N CH。
Synthesis example 2 (synthesis example of color-forming compound)! Surva Ole Landeni; lx 7
1 part of the m-aminoampho, aromatic acid derivative represented by formula (III) and 1 part of Michler's hydrol represented by formula 1) were combined with O□N-C> in a trobenzene) solvent. , CH3 as a catalyst
Add 1 part of SO,)I (para-toluenesulfonic acid) to 8
Reflux for an hour and form formula (V) N CH.

(CHユ)、、CH3 で示されるトリフェニルメタン誘導体を生成した。(CH Yu),,CH3 A triphenylmethane derivative represented by was produced.

次に該生成物のトリフェニルメタン誘導体を2酸化鉛(
1部)存在下硫酸中で3時間加熱した後、 式(Vl) N et+3 (CH2)/7 CH3 で示されるクリスタルバイオレットラクトン誘導体を得
た。
Next, the triphenylmethane derivative of the product was converted into lead dioxide (
After heating for 3 hours in the presence of 1 part) sulfuric acid, a crystal violet lactone derivative of the formula (Vl) N et+3 (CH2)/7 CH3 was obtained.

次いで、これに1′+1−性ソーダ水溶液を加え、環化
することにより、 式(■) (C:H,)、7CH。
Next, an aqueous 1'+1-based soda solution was added to this and cyclized to give the formula (■) (C:H,), 7CH.

で示されるクリスタルバイオレットラクトン誘導体0.
2部を得た。
A crystal violet lactone derivative represented by 0.
Got 2 copies.

実施例1 (1)B層の形成方法 厚さ10mm、直径180n+mの円板上のガラス(デ
ィスク)基板を充分に清浄にした0次に助色性化合物で
あるアラキシン酸7部、バインダーとしてポリビニール
アルコール1部、水40部を混合し、さらにボールミル
を用いて数時間、粉砕混合し、基板上に回転塗布して、
バインダー中に分散したアラキシン酸の堆積膜(膜厚1
弘)を形成した各試ネ4を得た。
Example 1 (1) Method for Forming Layer B A glass (disc) substrate with a thickness of 10 mm and a diameter of 180 nm+m was thoroughly cleaned, and 7 parts of araxic acid, which is a zero-order auxochrome compound, and polyester were added as a binder. Mix 1 part of vinyl alcohol and 40 parts of water, grind and mix for several hours using a ball mill, and spin coat the mixture onto a substrate.
Deposited film of araxic acid dispersed in binder (thickness: 1
4 specimens were obtained for each trial in which a 300 mm diameter (Hiroshi) was formed.

(2)光吸収層の形成方法 次に、前記(1)で得た各試料のガラス基板上に形成し
たB層の上に、前述の単分子累積装置を用いて光吸収性
物質であるバナジウムフタロシアニン誘導体の単分子累
積膜を形成した。
(2) Method for forming a light-absorbing layer Next, the light-absorbing material vanadium was added to the B layer formed on the glass substrate of each sample obtained in (1) above using the monomolecule accumulator described above. A monomolecular cumulative film of phthalocyanine derivatives was formed.

バナジウムフタロシアニン誘導体の単分子累積膜の形成
方法は、下記のように行った。
A monomolecular cumulative film of a vanadium phthalocyanine derivative was formed as follows.

B層を形成した基板が水面と垂直になるようにして、基
板を水中に沈めた後、バナジウムフタロシアニン誘導体
を濃度2 X 10’ mol/Jljのクロロホルム
溶液にして水面上に滴下し単分子膜を水面上に展開する
0表面圧を30dyne/c+aに設定し、速度2 a
m/winで基板を上下して第2表に示す各層に累積し
た単分子累積膜(Y型膜)を各試料に作成した。
After submerging the substrate in water so that the substrate on which layer B was formed is perpendicular to the water surface, a solution of vanadium phthalocyanine derivative in chloroform with a concentration of 2 × 10' mol/Jlj was dropped onto the water surface to form a monomolecular film. The zero surface pressure developed on the water surface is set to 30 dyne/c+a, and the speed is 2 a.
A monomolecular cumulative film (Y-type film) was prepared for each sample by moving the substrate up and down at a rate of m/win to accumulate the layers shown in Table 2.

(3)A層の形成方法 次に、前記(2)で各試料のガラス基板上に形成した光
吸収層の上に前述の単分子累積装置を用いて発色性化合
物であるクリスタルバイオレットラクトン誘導体の単分
子累積+1Qを形成した。
(3) Method for Forming Layer A Next, on the light absorption layer formed on the glass substrate of each sample in (2) above, a crystal violet lactone derivative, which is a color-forming compound, was deposited on the light absorption layer formed on the glass substrate of each sample using the single molecule accumulator described above. Single molecule accumulation +1Q was formed.

該クリスタルバイオレットラクトン誘導体の単分子累積
膜の形成方法は、下記のように行った。
The method for forming a monomolecular cumulative film of the crystal violet lactone derivative was performed as follows.

B層及び光吸収層を形成した基板が水面と垂直になるよ
うにして、基板をpH4の酸性液中に沈めた後、クリス
タルバイオレフトラクトン誘導体を濃度2 X 10’
 mol/iのクロロホルム溶液にして水面上に滴下し
単分子膜を水面上に展開する0表面圧を30dyne/
c+wに設定し、速度2 cm/winで基板を上下し
て第2表に示す各層に累積した単分子累積■り(Y型1
1!2 )を各試料に作成した。
After submerging the substrate in an acidic solution of pH 4 so that the substrate on which the B layer and the light absorption layer were formed is perpendicular to the water surface, a crystal bioleft lactone derivative was added at a concentration of 2 x 10'.
A chloroform solution of mol/i is dropped on the water surface and a monomolecular film is spread on the water surface at a surface pressure of 30 dyne/i.
c+w, move the substrate up and down at a speed of 2 cm/win to measure the cumulative amount of single molecules accumulated in each layer shown in Table 2 (Y-type 1
1!2) was prepared for each sample.

(4)性能試験 上述の方法により製作された本発明に係る光記録素子と
比較例として従来の同様の構成(全てが単分子a又はそ
の累積膜を使用しないで構成)に係る光ディスクを第5
図に示す情報記憶装置を用いて以下の記録条件下で記録
した後、読取り再生を行うことにより両者の性能比較を
行った。
(4) Performance test The optical recording element according to the present invention manufactured by the above-mentioned method and the optical disc according to the conventional similar structure (all of which are constructed without using monomolecular a or its cumulative film) were used as a comparative example.
After recording under the following recording conditions using the information storage device shown in the figure, the performance of both was compared by reading and reproducing.

〈記録条件〉 半導体レーザ波長 830nm レーザ出力  6〜9mW 記録周波数  5 MHz 光ディスクの回転数 1.80Orpm以上の条件下で
読み出しをレーザ出力1mWで行い、信号/雑音比を求
めた結果を第2表に示す。
<Recording conditions> Semiconductor laser wavelength: 830 nm Laser output: 6 to 9 mW Recording frequency: 5 MHz Optical disk rotation speed: 1.80 Orpm or higher, reading was performed with a laser output of 1 mW, and the signal/noise ratio was determined. Table 2 shows the results. show.

第2表 註・・・よは比較例を示し、各層の形成は回転塗布法に
より行った。
Notes to Table 2 show comparative examples, and each layer was formed by a spin coating method.

第2表の結果よりNo、1 (A層及び光吸収層が単分
子膜からなる場合)とN006とを比較すると、No、
lの方が信号/雑音比においてWJ著にIlfれること
が認められる。 No、lとN086は各膜厚がほぼ同
じであるにもかかわらず、性能に差異が生じたのはNo
、 Lの方がピンホール等の欠陥が少ないためと思われ
る。
From the results in Table 2, comparing No. 1 (when the A layer and light absorption layer are made of monomolecular film) and No. 006, No.
It is recognized that Ilf is superior to WJ in terms of signal/noise ratio. Although the film thicknesses of No. 1 and No. 1 and No. 086 were almost the same, the difference in performance occurred in No.
, This is probably because L has fewer defects such as pinholes.

同様に、NO12〜No、5(A層及び光吸収層が単分
子の累積膜からなる場合)とN007との比較では、N
O12〜N015の方が信号/雑音比において優れるこ
とが認められる。
Similarly, in comparing NO12 to No.5 (when the A layer and the light absorption layer are composed of monomolecular cumulative films) and N007,
It is recognized that O12 to N015 are superior in signal/noise ratio.

[発明の効果] 以上説明した様に本発明に係わる光記録素子はA層及び
光吸収層が単分子膜又はその累積膜からなるすご・、B
層は堆積膜からなる層で構成されているので、以下に示
すような優れた効果がある。
[Effects of the Invention] As explained above, the optical recording element according to the present invention has the advantage that the A layer and the light absorption layer are composed of a monomolecular film or a cumulative film thereof.
Since the layer is composed of a deposited film, it has the following excellent effects.

(1)従来の単分子膜又はその累f?L膜を使用してい
ない光記録素子と比較して信号/雑音比が高く、記録の
信頼性を向上させることができる。
(1) Conventional monomolecular film or its cumulative f? The signal/noise ratio is higher than that of an optical recording element that does not use an L film, and recording reliability can be improved.

(2)光記録素子のピンホール等の物理的欠陥を大1陥
に減少させることができる。
(2) Physical defects such as pinholes in the optical recording element can be reduced to one major defect.

(3)従来の光記録素子と比べて、より高密度記録か可
能である。
(3) Higher density recording is possible than with conventional optical recording elements.

(4)光記録素子の大面積化が可能である。(4) It is possible to increase the area of the optical recording element.

(5)感度が向上し、製作の際に材料の選択の巾が広く
製造が容易であり、又読み取りの際コントラストと非コ
ントラストの差がつきやすい等の光学物性上の効果があ
る。
(5) Sensitivity is improved, there is a wide range of materials to choose from during manufacturing, manufacturing is easy, and there are effects in terms of optical properties such as the difference between contrast and non-contrast being easily discernible during reading.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わる光記録素子の1例を示す概略構
成断面図、第2図(a)〜第2図(C)は従来の光記録
素子の記録プロセスを示す説明図、第3図は単分子膜1
ノ+L膜形成装置の概略構成断面図、第4図(a)〜第
4図(c)は単分子累積IIりの作製工程図及び第5図
は情報記憶装置のブロック図である。
FIG. 1 is a schematic cross-sectional view showing an example of the optical recording element according to the present invention, FIGS. 2(a) to 2(C) are explanatory diagrams showing the recording process of a conventional optical recording element, and FIG. The figure shows monolayer 1
FIGS. 4(a) to 4(c) are a schematic cross-sectional view of the structure of the +L film forming apparatus, FIG. 4(a) to FIG. 4(c) are manufacturing process diagrams for monomolecular accumulation II, and FIG. 5 is a block diagram of the information storage device.

Claims (1)

【特許請求の範囲】[Claims] (1)通常無色ないし淡色の発色性化合物からなるA層
と、前記発色性化合物と接触して発色せしめる助色性化
合物からなるB層と、A層とB層との間に介在する光吸
収層とからなり、かつ (イ)前記A層は発色性化合物の単分子膜又はその累積
膜からなる層、 (ロ)前記光吸収層は光吸収性物質の単分子膜又はその
累積膜からなる層 から構成されることを特徴とする光記録素子。
(1) A layer consisting of a normally colorless or light-colored color-forming compound, a B layer consisting of an auxochrome compound that develops color when in contact with the color-forming compound, and light absorption interposed between the A layer and the B layer. and (a) the layer A is a monomolecular film of a color-forming compound or a cumulative film thereof, and (b) the light-absorbing layer is a monomolecular film of a light-absorbing substance or a cumulative film thereof. An optical recording element comprising layers.
JP59159102A 1984-07-31 1984-07-31 Optical recording element Pending JPS6137474A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59159102A JPS6137474A (en) 1984-07-31 1984-07-31 Optical recording element
US07/233,902 US4933221A (en) 1984-07-31 1988-08-17 Optical recording device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59159102A JPS6137474A (en) 1984-07-31 1984-07-31 Optical recording element

Publications (1)

Publication Number Publication Date
JPS6137474A true JPS6137474A (en) 1986-02-22

Family

ID=15686278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59159102A Pending JPS6137474A (en) 1984-07-31 1984-07-31 Optical recording element

Country Status (1)

Country Link
JP (1) JPS6137474A (en)

Similar Documents

Publication Publication Date Title
US4581317A (en) Optical recording element
US4933221A (en) Optical recording device
JPS58224793A (en) Optical recording medium
EP0161809A1 (en) Overcoated recording elements having amorphous dye and binder optical recording layers
US5316899A (en) Optical recording medium
JPS6137474A (en) Optical recording element
JPS6163489A (en) Photo-recording element
JPS6163491A (en) Photo-recording element
JPS6137477A (en) Optical recording element
JPS6137476A (en) Optical recording element
JPS6137482A (en) Optical recording element
JPS6137479A (en) Optical recording element
JPS6137475A (en) Optical recording element
JPS6137486A (en) Optical recording element
JPS6137488A (en) Optical recording element
JPS6163487A (en) Optical recording element
JPS6163484A (en) Optical recording element
JPS6137480A (en) Optical recording element
JPS6163938A (en) Information storage device
JPS6137485A (en) Optical recording element
US4681834A (en) Optical recording element
JPS6137489A (en) Optical recording element
JPS6163479A (en) Optical recording element
JPS6163478A (en) Optical recording element
JPS6137478A (en) Optical recording element