JPS6136180A - Treatment of ceramics - Google Patents

Treatment of ceramics

Info

Publication number
JPS6136180A
JPS6136180A JP15560184A JP15560184A JPS6136180A JP S6136180 A JPS6136180 A JP S6136180A JP 15560184 A JP15560184 A JP 15560184A JP 15560184 A JP15560184 A JP 15560184A JP S6136180 A JPS6136180 A JP S6136180A
Authority
JP
Japan
Prior art keywords
molded body
ceramic molded
heating
conductive
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15560184A
Other languages
Japanese (ja)
Other versions
JPH0454633B2 (en
Inventor
豊 大和田
康男 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Ichi High Frequency Co Ltd
Original Assignee
Dai Ichi High Frequency Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi High Frequency Co Ltd filed Critical Dai Ichi High Frequency Co Ltd
Priority to JP15560184A priority Critical patent/JPS6136180A/en
Publication of JPS6136180A publication Critical patent/JPS6136180A/en
Publication of JPH0454633B2 publication Critical patent/JPH0454633B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は近来各種産業機器材料として注目を集めている
ファインセラミックスの製造技術に関し、特にセラミッ
クス成形体を他のセラミックス成形体や金属に接合した
り、セラミックス成形体の表面処理を行う等の加工方法
に関する。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a manufacturing technology for fine ceramics, which has recently been attracting attention as a material for various industrial equipment, and in particular to bonding a ceramic molded body to another ceramic molded body or metal, The present invention relates to a processing method such as surface treatment of a ceramic molded body.

従来の技術 炭化珪素やジルコニア等のセラミックスは、耐熱性。Conventional technology Ceramics such as silicon carbide and zirconia are heat resistant.

耐食性、耐摩耗性に優れた材料であり、高温構造材料を
はじめ各種産業機器用材料としての利用が期待されてい
る。これらのセラミックスは通常粉体原料を成形し焼成
して強度の高いセラミックス成形体を作り、必要に応じ
外形を所望形状に加工して製品としている。
It is a material with excellent corrosion resistance and wear resistance, and is expected to be used as a material for various industrial equipment, including high-temperature structural materials. These ceramics are usually produced by molding and firing a powder raw material to produce a strong ceramic molded body, which is then processed into a desired external shape as necessary to produce a product.

ところが、セラミックスは成形、加工ともに困難であり
、成形、焼結、切削、研削加工等により大型部材。
However, ceramics are difficult to mold and process, and large parts are manufactured through molding, sintering, cutting, grinding, etc.

複雑形状品、精密部品等を製作することは極めて困難で
あった。そこでセラミックスの大型部材、複雑形状品、
精密部品等等への応用に際して、単純形状部品を組み合
わせたり、特性の異なる材料を併用するなどにより製品
を得ることが考えられる。この場合、同種。
It has been extremely difficult to manufacture products with complex shapes and precision parts. Therefore, large ceramic parts, complex-shaped products,
When applied to precision parts, etc., products may be obtained by combining parts with simple shapes or using materials with different characteristics. In this case, the same species.

異種も含めたセラミックス成形体相互或いはセラミック
ス成形体と金属等の接合技術やセラミックス成形体表面
のメタライズ技術が重要となる。また、セラミックスの
耐熱性、耐食性1強度等をより有効に活用するため、セ
ラミックス成形体表面や必要部分だけを窒化。
Techniques for bonding ceramic molded bodies, including those of different types, to each other or to metals, etc., and technology for metallizing the surface of ceramic molded bodies are important. In addition, in order to make more effective use of the heat resistance, corrosion resistance, and strength of ceramics, we nitride only the surface and necessary parts of the ceramic molded body.

炭化等の処理をしたり、より緻密化して製品特性をより
向上させるというような処理技術が重要となる。
Processing techniques such as carbonization and densification to further improve product properties are important.

セラミックス成形体の他の部品への接合、セラミックス
成形体表面のメタライズ、窒化、炭化等の表面処理に際
しては3通常セラミックス成形体の加熱が必要であり、
しかも加熱温度は極めて高温(例えば1000〜300
0℃)が要求される。このような高温の加熱に従来は特
殊な高温炉が用いられている。
3.Heating of the ceramic molded body is usually required when joining the ceramic molded body to other parts and surface treatment such as metallization, nitriding, and carbonization of the surface of the ceramic molded body.
Moreover, the heating temperature is extremely high (for example, 1000 to 300
0°C) is required. Conventionally, special high-temperature furnaces have been used for heating at such high temperatures.

発明が解決しようとする問題点 しかしながら、従来の高温炉では、炉の寸法制限があり
、小型部品しか加熱できないこと、炉の処理温度制限か
らセラミックスの種類に制限があること、セラミックス
成形体全体を昇温させるためエネルギー消費が太き(熱
効率が悪いこと2間接加熱であるため昇温に時間がかか
ること、更にセラミックスは高温で長時間加熱すると異
常粒成長を起こすことがあり母材特性低下の恐れがある
こと、熱膨張による製品寸法精度が悪いこと、非酸化物
系セラミックスの場合、空気中では酸化され特性を消失
すること、生産性が悪いこと等の問題点があった。
Problems to be Solved by the Invention However, conventional high-temperature furnaces have size limitations and can only heat small parts.Furnace processing temperature limits limit the types of ceramics that can be heated. It consumes a lot of energy to raise the temperature (it takes time to raise the temperature because it is a two-direction heating method with poor thermal efficiency, and heating ceramics at high temperatures for a long time can cause abnormal grain growth, which can lead to a decline in the properties of the base material. There have been problems such as low product dimensional accuracy due to thermal expansion, non-oxide ceramics being oxidized in the air and losing their properties, and poor productivity.

本発明はかかる従来技術の問題点を解決せんとするもの
で、セラミックス成形体をその大きさにかかわらず局部
的に極めて高温度に、かつエネルギー効率良く急速に加
熱することを可能にし、それによってセラミックス成形
体の接合1表面処理等の加工を容易にするセラミックス
の加工方法を提供することを目的とする。
The present invention aims to solve the problems of the prior art, and makes it possible to locally heat a ceramic molded body to an extremely high temperature and rapidly with energy efficiency, regardless of its size. An object of the present invention is to provide a ceramic processing method that facilitates processing such as bonding 1 and surface treatment of ceramic molded bodies.

問題点を解決するための手段 本発明者は上記目的を達成すべく種々検討の結果。Means to solve problems The present inventor has made various studies to achieve the above object.

セラミックスには導電性を有するもの、及び高温度で導
電性を発揮するものがあり、これらのセラミックスでは
その導電性を利用して電流を流し、ジュール熱によりセ
ラミックスを高温度に加熱することが出来ることを見出
した。
Some ceramics are electrically conductive, and others exhibit electrical conductivity at high temperatures.These ceramics can use their electrical conductivity to conduct current and heat the ceramics to high temperatures using Joule heat. I discovered that.

本発明はかかる知見に基づいてなされたものである。The present invention has been made based on this knowledge.

即ち2本願第1の発明は、導電性のセラミックス成形体
を直接誘導加熱若しくは直接通電及びその併用により加
熱し、他の物体への接合若しくは表面処理を行うことを
特徴とするセラミックスの加工方法である。
That is, the first invention of the present application is a method for processing ceramics, which is characterized in that a conductive ceramic molded body is heated by direct induction heating, direct energization, or a combination thereof to perform bonding to another object or surface treatment. be.

また2本願第2の発明は、高温で導電性を持つセラミッ
クス成形体の表面に金属等導電性材料をコーティングし
、該導電性コーティングを直接誘導加熱若しくは直接通
電及びその併用により加熱して、その近傍のセラミック
スを加熱し2次いで加熱されたセラミックスを直接誘導
加熱若しくは直接通電及びその併用により加熱し、他の
物体への接合若しくは表面処理を行うことを特徴とする
セラミックスの加工方法である。
In addition, the second invention of the present application is to coat the surface of a ceramic molded body that is conductive at high temperatures with a conductive material such as a metal, and to heat the conductive coating by direct induction heating or direct energization or a combination thereof. This method of processing ceramics is characterized by heating nearby ceramics, and then heating the heated ceramics by direct induction heating, direct energization, or a combination thereof to perform bonding to other objects or surface treatment.

本願筒1の発明に用いる導電性のセラミックスとしては
、炭化珪素(SiC)、ランタンクロマイド(LaCr
Oa) +カーボン(C)、ホウ化チタン(T+Bz)
、珪化モリブデン(MoSjz)等がある。これらを成
形し、焼結してなる成形体は常温において、105〜1
0−’/ΩcII+程度の導電性を有し1周波数、電圧
を調整することにより電流による加熱が可能である。
The conductive ceramics used in the invention of cylinder 1 include silicon carbide (SiC), lanthanum chromide (LaCr
Oa) + carbon (C), titanium boride (T+Bz)
, molybdenum silicide (MoSjz), etc. A molded product obtained by molding and sintering these materials has a temperature of 105 to 1
It has a conductivity of about 0-'/ΩcII+, and heating by current is possible by adjusting one frequency and voltage.

本願筒2の発明に用いるセラミックスとしては2ジルコ
ニア(ZrOt)がある。ジルコニアの成形体は常温で
はほとんど導電性がないが、1000℃程度に加熱する
と約10”〜10−5/Ωcm程度の導電性が生じ、電
流による加熱が可能となる。
The ceramic used in the invention of cylinder 2 of the present application is dizirconia (ZrOt). A zirconia molded body has almost no conductivity at room temperature, but when heated to about 1000° C., it develops a conductivity of about 10” to 10 −5 /Ωcm, making it possible to heat it with an electric current.

本発明により実施しうる加工は、セラミックス成形体と
同種若しくは異種のセラミック・ス成形体又は金属との
接合、セラミックス成形体表面のメタライズ、及びセラ
ミックス成形体の表面処理である。
Processes that can be carried out according to the present invention include bonding a ceramic molded body to the same or different type of ceramic molded body or metal, metallization of the surface of the ceramic molded body, and surface treatment of the ceramic molded body.

以下、各加工について、具体的に説明する。Each process will be specifically explained below.

+11導電性セラミックス成形体(第1部材)と導電性
セラミックス成形体又は金属(第2部材)との接合第1
図に示すように、第1部材1を、接合すべき第2部材2
に圧接させる。この際、必要に応じ接合すべき両部材の
接合面3間に適当な接合剤1例えば活性金属、高融点金
属、固溶体形成成分、ガラス形成成分等を介在させても
よい。次に9両部材の少なくとも接合面3を包囲するよ
うに高周波誘導加熱コイル4を配置し、接合すべき両部
材1,2を加圧プレス5.5により所定の圧力で圧接し
た状態で、誘導加熱コイル4により両部材内部に誘導電
流を生じさせ2両部材の接合面を接合に必要な温度に加
熱昇温させる。かくして。
+11 First joining of conductive ceramic molded body (first member) and conductive ceramic molded body or metal (second member)
As shown in the figure, the first member 1 is connected to the second member 2 to be joined.
Press it against the At this time, an appropriate bonding agent 1 such as an active metal, a high melting point metal, a solid solution forming component, a glass forming component, etc. may be interposed between the bonding surfaces 3 of the two members to be bonded, if necessary. Next, a high-frequency induction heating coil 4 is arranged so as to surround at least the joint surface 3 of both members 9, and the members 1 and 2 to be joined are pressed together at a predetermined pressure by a pressure press 5.5. An induced current is generated inside both members by the heating coil 4, and the joining surfaces of the two members are heated to a temperature necessary for joining. Thus.

両部材が接合される。誘導加熱コイルによる加熱は。Both members are joined. Heating is done by induction heating coils.

エネルギー消費を少なくしながら敏速な昇温を可能とし
2 しかも局部的な加熱であるので全体の熱変形がなく
製品の寸法精度が良いという利点がある。なお、この接
合作業は、必要に応じ、真空中、不活性ガス中或いは適
当なガス中で行われてもよいし、接合温度や形状や材質
によっては、接合時に特に加圧する必要はない。
It is possible to quickly raise the temperature while reducing energy consumption.2 Moreover, because the heating is localized, there is no thermal deformation of the entire product, and the dimensional accuracy of the product is good. Note that this bonding operation may be performed in vacuum, in an inert gas, or an appropriate gas as necessary, and depending on the bonding temperature, shape, and material, there is no need to apply pressure during bonding.

(2)導電性を有するセラミックス成形体又は金属(第
1部材)と高温で導電性を持つセラミックス成形体(第
2部材)との接合 前記illの場合と同様に1両部材を互いに圧接させ。
(2) Joining of a conductive ceramic molded body or metal (first member) and a high-temperature conductive ceramic molded body (second member) As in the case of ill described above, both members are pressed against each other.

高周波@導加熱コイルにより接合面を加熱する。この際
、第1部材は導電性を有する為直ちに誘導加熱により昇
温するが、第2部材は低温では導電性が低いので誘導加
熱できない。しかしながら、第1部材からの熱伝導によ
り第2部材の接合面も昇温し、その昇温に伴い導電性が
増加し、誘導加熱が始まる。かくして、最終的には両部
材とも誘導加熱により接合に必要な温度に昇温し、良好
に接合される。
The joint surface is heated by high frequency @conduction heating coil. At this time, since the first member has conductivity, its temperature is immediately raised by induction heating, but the second member cannot be heated by induction because it has low conductivity at low temperatures. However, due to heat conduction from the first member, the temperature of the joint surface of the second member also rises, and as the temperature rises, the conductivity increases and induction heating begins. In this way, both members are finally heated to a temperature necessary for joining by induction heating, and are successfully joined.

(3)高温で導電性を発揮するセラミックス成形体相互
の接合 セラミックス成形体の接合面に9例えばメッキ、蒸着、
溶射等の公知の方法で金属等導電性材料によるコーティ
ングを施す。次に金属等の導電性コーティングを施した
接合面を互いに圧接させ、接合面の周囲に高周波誘導加
熱コイルを配置し、加熱コイルへの通電を開始する。こ
の通電により、導電性コーティングに誘導電流が流れ、
導電性コーティングが加熱される。導電性:]−ティン
グの熱はそれに接触するセラミックスを昇温させ、それ
に伴いセラミックスの導電性が増大し、セラミックス自
体を誘導電流が流れセラミックスが誘導加熱される。か
くして、セラミックスの接合面が接合に必要な温度番こ
昇温し、良好に接合される。ここで用いる導電性コーテ
ィングとしては、 Zn、 Cu、 Ni。
(3) Bonding of ceramic molded bodies that exhibit conductivity at high temperatures. For example, plating, vapor deposition,
Coating with a conductive material such as metal is applied by a known method such as thermal spraying. Next, the joint surfaces coated with conductive metal or other materials are brought into pressure contact with each other, a high-frequency induction heating coil is placed around the joint surfaces, and electricity is started to flow to the heating coil. This energization causes an induced current to flow through the conductive coating,
The conductive coating is heated. Conductivity: The heat of the ting raises the temperature of the ceramic in contact with it, and the conductivity of the ceramic increases accordingly, causing an induced current to flow through the ceramic itself and heating the ceramic by induction. In this way, the temperature of the bonding surfaces of the ceramics is raised to a certain degree necessary for bonding, and a good bond is achieved. The conductive coatings used here include Zn, Cu, and Ni.

Ti、カーボン等が使用可能である。このうち、 Zn
などの場合には導電性コーティングはセラミックスの昇
温に伴い蒸発して接合面から除去される。一方+ Ni
−Tiなどを用いると、セラミックスの接合後において
も。
Ti, carbon, etc. can be used. Among these, Zn
In such cases, the conductive coating evaporates and is removed from the joint surface as the temperature of the ceramic increases. On the other hand + Ni
- If Ti or the like is used, even after bonding of ceramics.

接合面間に残存し、セラミックスを相互に接合させる接
合剤として作用する。
It remains between the bonding surfaces and acts as a bonding agent to bond the ceramics together.

なお、上記説明では導電性コーティングを接合面に施し
たが、導電性コーティング形成位置は必ずしも接合面に
限らず、接合面近傍であってもよい。
In the above description, the conductive coating is applied to the joint surface, but the position where the conductive coating is formed is not necessarily limited to the joint surface, and may be near the joint surface.

(4)導電性セラミックス成形体のメタライズ導電性セ
ラミックス成形体の表面にチタン、銅等の金属粉末若し
くは金属薄板を張りつける。次に適当な雰囲気中で、前
記セラミックス成形体に、特に金属粉末若しくは金属薄
板を張りつけた表面に高周波誘導加熱コイルにより誘導
電流を生じさせ、該表面を金属の溶融温度以上に加熱す
る。かくして、金属粉末若しくは金属薄板が溶融し、セ
ラミックス成形体表面に強固に固着し、セラミックス成
形体のメタライズが行われる。メタライズされたセラミ
ックスはロー付等による金属との接合などへ応用できる
(4) Metallization of conductive ceramic molded body A metal powder or a thin metal plate of titanium, copper, etc. is pasted on the surface of the conductive ceramic molded body. Next, in a suitable atmosphere, an induced current is generated by a high-frequency induction heating coil on the surface of the ceramic molded body, in particular, on which metal powder or a thin metal plate is pasted, and the surface is heated to a temperature higher than the melting temperature of the metal. In this way, the metal powder or thin metal plate is melted and firmly adhered to the surface of the ceramic molded body, and the ceramic molded body is metallized. Metallized ceramics can be applied to joining metals by brazing, etc.

(5)導電性セラミックス成形体表面の炭化、窒化等の
化学変化による表面処理 導電性セラミックス成形体を所望の表面処理を行うため
の雰囲気中に入れ、成形体内に、特にその表層部に高周
波誘導加熱コイルによる誘導電流を生じさせ。
(5) Surface treatment of the surface of the conductive ceramic molded body through chemical changes such as carbonization and nitridation The conductive ceramic molded body is placed in an atmosphere for the desired surface treatment, and high-frequency induction is applied to the inside of the molded body, especially its surface layer. The heating coil produces an induced current.

少なくとも表面を表面処理に必要な温度に昇温させる。At least the surface is heated to a temperature necessary for surface treatment.

かくして、所望の表面処理が行われる。ここで可能な表
面処理としては。
In this way, the desired surface treatment is achieved. Possible surface treatments here include:

SiC表面のSi3N4化。Si3N4 conversion of SiC surface.

TiB、表面のTiN化 Ti82表面のTiC化等である。TiB, TiN surface This includes converting the Ti82 surface to TiC.

(6)高温で導電性を発揮するセラミックス成形体表面
の化学変化による表面処理 セラミックス成形体の表面に1例えばメッキ、蒸着。
(6) Surface treatment by chemical change on the surface of a ceramic molded body that exhibits conductivity at high temperatures; for example, plating or vapor deposition on the surface of the ceramic molded body.

溶射等の公知の方法で金属等導電性材料によるコーティ
ングを施す。次に(5)と同様に表面処理を行うための
雰囲気中で導電性コーティングを施した表面の周囲に高
周波誘導加熱コイルを配置し、加熱コイルへのim電を
開始する。この通電により、R電性コーティングに誘導
電流が流れ、導電性コーティングが加熱される。
Coating with a conductive material such as metal is applied by a known method such as thermal spraying. Next, in the same manner as in (5), a high frequency induction heating coil is placed around the surface coated with a conductive coating in an atmosphere for surface treatment, and IM electricity is started to be applied to the heating coil. This energization causes an induced current to flow through the R conductive coating, heating the conductive coating.

導電性コーティングの熱はそれに接触するセラミックス
を昇温させ、それに伴いセラミックスの導電性が増大し
、セラミックス自体を誘導電流が流れセラミックスが誘
導加熱される。かくして、セラミックスの表面が表面処
理に必要な温度に昇温し3表面処理される。
The heat of the conductive coating raises the temperature of the ceramic in contact with it, and the conductivity of the ceramic increases accordingly, causing an induced current to flow through the ceramic itself and heating the ceramic by induction. In this way, the temperature of the surface of the ceramic is raised to the temperature required for surface treatment, and the surface is treated.

なお、導電性コーティングはセラミックス表面温度の上
昇により蒸発するものを選択すれば1表面処理に支障は
ない。また2例えばTiN 、 TiC等セラミックス
と反応するコーテイング材を選択すれば、それで表面処
理ができることになる。
Note that if the conductive coating is selected to evaporate as the ceramic surface temperature rises, there will be no problem with surface treatment. Furthermore, if a coating material that reacts with ceramics, such as TiN or TiC, is selected, the surface can be treated with it.

(7)導電性セラミックス成形体の表面の緻密化導電性
セラミックス成形体のより緻密化したい部分に誘導加熱
コイルを配置し、誘導加熱によりセラミックス成形体を
その焼成温度より高温に昇温させる。かくして、セラミ
ックス成形体は部分的により緻密化し2強度、耐摩耗性
、耐食性の向上したものが得られる。
(7) Densification of the surface of the conductive ceramic molded body An induction heating coil is placed in a portion of the conductive ceramic molded body where densification is desired, and the temperature of the ceramic molded body is raised to a higher temperature than its firing temperature by induction heating. In this way, the ceramic molded body is partially densified and has improved strength, wear resistance, and corrosion resistance.

なお2以上の説明はいずれもセラミックス内に高周波誘
導電流を生じさせ、ジュール熱によりセラミックスを加
熱させるものであるが、この代わりにセラミックス成形
体に直接電源を接続し、電流を流すようにしてもよく、
また、誘導加熱と直接通電加熱とを併用してもよい。以
下に直接通電加熱の場合、及び直接通電と誘導加熱の併
用の場合を説明する。
In addition, in both of the above explanations, a high-frequency induced current is generated in the ceramic and the ceramic is heated by Joule heat, but instead of this, it is also possible to directly connect a power source to the ceramic molded body and let the current flow. often,
Further, induction heating and direct current heating may be used together. The case of direct current heating and the combination of direct current and induction heating will be described below.

(8)導電性セラミックス成形体と導電性セラミックス
成形体との直接通電による接合 第2図に示すように、セラミックス成形体1,2を接合
させ、各セラミックス成形体に通電加熱用電極6゜6を
接続する。加圧プレス5.5でセラミックス成形体を所
定の圧力で圧接させた状態で2セラミックス成形体に’
xWJ電加熱用電極6,6により急激に大電流を印加し
加熱する。かくして2セラミ・パクス成形体1,2が加
熱接合される。
(8) Joining of conductive ceramic molded bodies by direct energization As shown in FIG. Connect. Pressure press 5.5 presses the ceramic molded bodies into two ceramic molded bodies with a predetermined pressure.
A large current is rapidly applied by the xWJ electric heating electrodes 6, 6 for heating. In this way, the two ceramic pax molded bodies 1 and 2 are heat-bonded.

(9)導電性セラミックス成形体と導電性セラミックス
成形体との直接通電及び誘導加熱併用による接合導電性
セラミックス成形体と接合すべき導電性セラミックス成
形体を圧接し、接合面に誘導加熱コイルを配置し、誘導
加熱コイルにより導電性がより増大する温度まで加熱す
る。次に2通電加熱用電極を接合面をはさんで取付け、
急激に大電流を印加し加熱することにより接合する。こ
のように、セラミックス成形体の導電性を増加させた状
態で大電流を印加し通電加熱を行うと、接合面を急速に
効率良く加熱することが可能であり、能率が良(、母材
への影響も少なくできる利点がある。
(9) Bonding of conductive ceramic molded body and conductive ceramic molded body by direct energization and induction heating The conductive ceramic molded body and the conductive ceramic molded body to be joined are pressure-welded, and an induction heating coil is placed on the joint surface. Then, it is heated by an induction heating coil to a temperature at which the conductivity is further increased. Next, attach two current heating electrodes across the joint surface,
Bonding is achieved by rapidly applying a large current and heating. In this way, by applying a large current to the ceramic molded body to increase its conductivity and performing electrical heating, it is possible to rapidly and efficiently heat the bonding surface, and it is possible to heat the bonded surface rapidly and efficiently. This has the advantage of reducing the influence of

発明の効果 以上の如く1本願第1の発明は、セラミックス成形体の
接合1表面処理等の加工の際に、セラミックス成形体を
直接誘導加熱或いは直接通電及びその併用により加熱す
るものであるので1次の諸効果を有している。
Effects of the Invention As described above, the first invention of the present application is to heat a ceramic molded body by direct induction heating, direct energization, and a combination thereof during processing such as bonding 1 and surface treatment of the ceramic molded body. It has the following effects.

(1)特殊な高温炉を必要とせず、加工が必要な部分の
みの加熱が可能であるので、エネルギー効率、生産性が
良くコスト低減ができる。また、処理温度、製品寸法な
どの制限を受けず、大型品の加工も可能である。
(1) No special high-temperature furnace is required, and only the parts that require processing can be heated, resulting in good energy efficiency and productivity, and cost reduction. Furthermore, it is possible to process large products without being subject to limitations such as processing temperature or product dimensions.

(2)部分加熱を行うことにより、製品に熱変形があま
り生じることがなく、製品の寸法精度が良い。また、製
品の一部分の加熱を行ってその部分のみの加工を行うこ
とが可能であり、一つの製品の中で例えば窒化、炭化、
緻密化等による部分的に異なった特性を持たすことがで
きる。
(2) By performing partial heating, there is little thermal deformation of the product, and the dimensional accuracy of the product is good. In addition, it is possible to heat a part of the product and process only that part, for example, nitriding, carbonizing,
It is possible to have partially different characteristics due to densification or the like.

更に、急速加熱を行い得るのでセラミックス成形体中に
含まれる焼結助剤等で気化などにより放出し易い物質を
保留することも可能であり、その特性を生かすことがで
きる。
Furthermore, since rapid heating can be performed, it is possible to retain substances that are easily released by vaporization or the like with a sintering aid contained in the ceramic molded body, and its characteristics can be utilized.

また9本願第2の発明は、常温では誘導加熱若しくは通
電加熱できないセラミックス成形体に対し、金属等導電
性材料によるコーティングを施し2次いで誘導加熱若し
くは通電加熱するものであるので、常温から誘導加熱も
しくは通電加熱することができ、上記の第■の発明と同
様な効果を有している。
In addition, the second invention of the present application applies a coating with a conductive material such as a metal to a ceramic molded body that cannot be heated by induction or electricity at room temperature, and then heats it by induction or electricity. It can be heated with electricity, and has the same effect as the above-mentioned invention No. 2.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は導電性セラミックス成形体と導電性セラミック
ス成形体との高周波Lt N−加熱による接合方法を示
す概略正面図、第2図は導電性セラミックス成形体と導
電性セラミックス成形体との通電加熱による接合方法を
示す概略正面図である。 1.2−セラミックス成形体  3−接合面4−誘導加
熱コイル  5−加圧プレス6−通電加熱用電極 特許出願人 第一高周波工業株式会社 代理人 弁理士 乗 松 恭 ニ 牙1図 第2図
Fig. 1 is a schematic front view showing a method of bonding conductive ceramic molded bodies and conductive ceramic molded bodies by high-frequency Lt N-heating, and Fig. 2 is an electrical heating of conductive ceramic molded bodies and conductive ceramic molded bodies. FIG. 1.2 - Ceramic molded body 3 - Joint surface 4 - Induction heating coil 5 - Pressure press 6 - Current heating electrode Patent applicant Daiichi Koshuha Kogyo Co., Ltd. Representative Patent attorney Kyo Matsu Niga 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)導電性のセラミックス成形体を直接誘導加熱若し
くは直接通電及びその併用により加熱し、他の物体への
接合若しくは表面処理を行うことを特徴とするセラミッ
クスの加工方法。
(1) A method for processing ceramics, which is characterized by heating a conductive ceramic molded body by direct induction heating, direct energization, or a combination thereof, and performing bonding to another object or surface treatment.
(2)高温で導電性を発揮するセラミックス成形体の表
面に金属等導電性材料をコーティングし、該導電性コー
ティングを直接誘導加熱若しくは直接通電及びその併用
により加熱して、その近傍のセラミックスを加熱し、次
いで加熱されたセラミックスを直接誘導加熱若しくは直
接通電及びその併用により加熱し、他の物体への接合若
しくは表面処理を行うことを特徴とするセラミックスの
加工方法。
(2) The surface of a ceramic molded body that exhibits conductivity at high temperatures is coated with a conductive material such as a metal, and the conductive coating is heated by direct induction heating or direct energization or a combination thereof to heat the ceramic in the vicinity. and then heating the heated ceramics by direct induction heating, direct energization, or a combination thereof to perform bonding to another object or surface treatment.
JP15560184A 1984-07-27 1984-07-27 Treatment of ceramics Granted JPS6136180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15560184A JPS6136180A (en) 1984-07-27 1984-07-27 Treatment of ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15560184A JPS6136180A (en) 1984-07-27 1984-07-27 Treatment of ceramics

Publications (2)

Publication Number Publication Date
JPS6136180A true JPS6136180A (en) 1986-02-20
JPH0454633B2 JPH0454633B2 (en) 1992-08-31

Family

ID=15609586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15560184A Granted JPS6136180A (en) 1984-07-27 1984-07-27 Treatment of ceramics

Country Status (1)

Country Link
JP (1) JPS6136180A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307172A (en) * 1987-06-05 1988-12-14 Daihen Corp Electrical bonding of ceramics
JPH01226775A (en) * 1988-03-04 1989-09-11 Daihen Corp Method for electrically bonding ceramic and heating member for bonding
WO1992006054A1 (en) * 1990-10-03 1992-04-16 Daihen Corporation Method of electrically joining objects to be joined including ceramics
WO1995012557A1 (en) * 1993-11-02 1995-05-11 Roland Emmrich Process for producing a composite permitting the generation of very precisely geometrically bounded electric fields and composite thus produced
US5534091A (en) * 1991-02-26 1996-07-09 Daihen Corporation Joining method of ceramics and insertion member for heating and joining for use in the method
JP2006086013A (en) * 2004-09-16 2006-03-30 Riken Corp Molybdenum disilicide based ceramic heating element and its manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232008A (en) * 1975-09-04 1977-03-10 Kagaku Gijutsucho Mukizai Manufacture of welded article of lanthanum boronide with graphite
JPS534734A (en) * 1976-07-05 1978-01-17 Denki Kagaku Kogyo Kk Joint method of conductive ceramic and metal having high melting point
JPS54141351A (en) * 1978-04-27 1979-11-02 Maruchi Giken Kk Butt welding

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232008A (en) * 1975-09-04 1977-03-10 Kagaku Gijutsucho Mukizai Manufacture of welded article of lanthanum boronide with graphite
JPS534734A (en) * 1976-07-05 1978-01-17 Denki Kagaku Kogyo Kk Joint method of conductive ceramic and metal having high melting point
JPS54141351A (en) * 1978-04-27 1979-11-02 Maruchi Giken Kk Butt welding

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307172A (en) * 1987-06-05 1988-12-14 Daihen Corp Electrical bonding of ceramics
JPH01226775A (en) * 1988-03-04 1989-09-11 Daihen Corp Method for electrically bonding ceramic and heating member for bonding
WO1992006054A1 (en) * 1990-10-03 1992-04-16 Daihen Corporation Method of electrically joining objects to be joined including ceramics
US5294769A (en) * 1990-10-03 1994-03-15 Daihen Corporation Electric joining method of material including ceramics
US5534091A (en) * 1991-02-26 1996-07-09 Daihen Corporation Joining method of ceramics and insertion member for heating and joining for use in the method
WO1995012557A1 (en) * 1993-11-02 1995-05-11 Roland Emmrich Process for producing a composite permitting the generation of very precisely geometrically bounded electric fields and composite thus produced
JP2006086013A (en) * 2004-09-16 2006-03-30 Riken Corp Molybdenum disilicide based ceramic heating element and its manufacturing method

Also Published As

Publication number Publication date
JPH0454633B2 (en) 1992-08-31

Similar Documents

Publication Publication Date Title
JPS6136180A (en) Treatment of ceramics
JPS599887A (en) Ceramic heating unit
US6486542B1 (en) Semiconductor-supporting devices, processes for the production of the same, joined bodies and processes for the production of the same
EP0806488A1 (en) Aluminum-chromium alloy, method for its production and its applications
JP2000277592A (en) Substrate holder
JPH01273691A (en) Ni-zr solder foil
JP4023944B2 (en) Manufacturing method of aluminum nitride sintered body and plate heater or electrostatic chuck
JPH0424312B2 (en)
JPH09172057A (en) Electrostatic chuck
CN113981383A (en) Method for plating titanium film on surface of AlN ceramic matrix by multi-arc ions
JPS6215512B2 (en)
RU2219145C1 (en) Method for metallic coating of ceramics under soldering
JPH059396B2 (en)
JPS6351994B2 (en)
JPH059395B2 (en)
JPS61291481A (en) Treatment of ceramics
CN115709318A (en) Unilateral heat source resistance brazing method for conductive ceramics and metal
JPH07112956B2 (en) How to join dissimilar materials
JPH1160343A (en) Production of joined body
JP2002016005A (en) Electrode terminal junction ceramic member for semiconductor manufacturing device, and its manufacturing method
JP2004176117A (en) Method of metallizing copper to ceramics surface
JPS5946728B2 (en) Processing method of silicon carbide sintered body by electrical discharge machining
JP2002093896A (en) Electrostatic chuck and manufacturing method thereof
JP3292767B2 (en) Joining method of silicon carbide ceramics and silicon
JPH06244544A (en) Heating chip and its manufacture as well as soldering method