JPS6131392A - Vapor phase crystal growth device - Google Patents

Vapor phase crystal growth device

Info

Publication number
JPS6131392A
JPS6131392A JP15482884A JP15482884A JPS6131392A JP S6131392 A JPS6131392 A JP S6131392A JP 15482884 A JP15482884 A JP 15482884A JP 15482884 A JP15482884 A JP 15482884A JP S6131392 A JPS6131392 A JP S6131392A
Authority
JP
Japan
Prior art keywords
substrate
light
growth
distribution
luminous flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15482884A
Other languages
Japanese (ja)
Other versions
JPH0529635B2 (en
Inventor
Isao Hino
日野 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP15482884A priority Critical patent/JPS6131392A/en
Publication of JPS6131392A publication Critical patent/JPS6131392A/en
Publication of JPH0529635B2 publication Critical patent/JPH0529635B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To prepare a diffraction grating having distribution of growth layer thickness in a growth surface variable with a period of an order of wavelength of light with a small man-hour and maintaining the quality of the crystal at a high level by providing an optical system wherein coherent light emitted from a light source is demultiplexed and multiplexed on a substrate. CONSTITUTION:A susceptor supporting bed 52 is provided in a crystal growth chamber 51, and a substrate 54 is placed on a susceptor 53 placed on the bed. An ArF laser 58 is used as coherent light source and the laser output is made to a parallel pencil of rays 61 by the combination of lenses 59 and 60, which is separated by a semi-transparent mirror 64 to a luminous flux A62 and B63. The luminous flux A62 is allowed to reach the surface of the substrate 54 by a plane mirror 67, and the luminous flux B63 is allowed to reach the surface of the substrate 54 by plane mirrors 65, 66. Both luminous fluxes 62, 63 interfere on the surface of the substrate 54 generating a distribution in the intensity of light irradiating the substrate with a period determined by the wavelength of the light source and angle of incidence of each luminous flux 62, 63. A distribution of film thickness to be grown is resulted corresponding to the distribution of the light intensity. Therefore, a wavy diffraction grating having a fixed period is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光を用いて基板上に選択成長をおこさせる気
相結晶成長装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a vapor phase crystal growth apparatus that uses light to cause selective growth on a substrate.

(従来技術とその問題点) 単一軸モードで発振する半導体レーザ、或いは光回路の
波長分散素子等は、光導波路上に回折格子をもった構造
が多く用いられる。回折格子は、光導波路上光導波層或
いは、その近くの層の厚さを、導波路中の波長程度の大
きさの周期で、周期的に変えることにより形成する。回
折格子の形成法としては、フォトリングラフィ法、電子
ビーム露光法などが従来性なわれている。第5図に従来
法による単一軸モード発振レーザの例を示す。
(Prior art and its problems) Semiconductor lasers that oscillate in a single-axis mode or wavelength dispersion elements for optical circuits often have a structure that has a diffraction grating on an optical waveguide. A diffraction grating is formed by periodically changing the thickness of an optical waveguide layer on an optical waveguide or a layer near the optical waveguide layer with a period approximately equal to the wavelength in the waveguide. Conventional methods for forming diffraction gratings include photolithography, electron beam exposure, and the like. FIG. 5 shows an example of a conventional single-axis mode oscillation laser.

(アメ・イー・イー・イー・ジャーナル・オブ・ファン
タム・エレクトロニクス(IEEB  J。
(Am. E. E. E. Journal of Phantom Electronics (IEEE J.

Quantum Electronics)QE−12
巻、1976年、597ページ)これは分布帰還型レー
ザ(DFBレーザ)と呼ばれるものである。第5図(a
)はDFBレーザの構造図で、第5図←)〜(e)は、
従来法によるDFBレーザの製作法である。
Quantum Electronics) QE-12
(Vol. 1976, p. 597) This is called a distributed feedback laser (DFB laser). Figure 5 (a
) is a structural diagram of a DFB laser, and Figure 5←) to (e) are
This is a conventional method for manufacturing a DFB laser.

第5図争)〜(e)は断面図で示す。まず第5図Φ)の
如く、n型GaAs基板31の上にn型Az03Ga0
7As32、p型GaAs 33、p型A t (12
G a O,7A s 34、p型AtO,07Ga 
(1,g3As 35を順次成長させる。続いて、第5
図(C)の如く、p型AtO,07G a (1,g 
3 A S35上にフォト・レジスト43を塗布し、1
つのレーザ光源(例えばHe−Cdレーザ)よシ発射さ
れた光を分波した2光束洸束A44、光束B45ヲレシ
スト42上で干渉してレジスト43を露光させる。する
と、レジスト43は周期的に感光し、第5図(C)のよ
うに感光部46、非感光部47とが牛するため、現像後
は感光部46のみを除去し、非感光部47による周期的
格子パターンを残すことができる。然るのち、このレジ
ストパターンを選択エツチング用のマスクとして適当な
エツチング液(例えばH3PO4,H20□、02H4
(OH)2混合液一体積比はこの順で1:1:8)によ
り、p型At6.g7G a g、g3AS層35の表
面をエツチングすると、波状の回折格子パターン42が
形成される。この様子を示す図が第5図(d)である。
Figures 5) to (e) are shown in cross-sectional views. First, as shown in FIG. 5 Φ), an n-type Az03Ga0
7As32, p-type GaAs 33, p-type At (12
Ga O, 7A s 34, p-type AtO, 07Ga
(1,g3As 35 is grown sequentially.Subsequently, the fifth
As shown in Figure (C), p-type AtO,07G a (1,g
3A Apply photoresist 43 on S35 and 1
Two light beams A44 and B45, which are separated from the light emitted from two laser light sources (for example, a He-Cd laser), interfere with each other on the resist 42 to expose the resist 43. Then, the resist 43 is periodically exposed to light, and as shown in FIG. A periodic lattice pattern can be left behind. After that, this resist pattern is used as a mask for selective etching using an appropriate etching solution (for example, H3PO4, H20□, 02H4).
(OH)2 mixed solution volume ratio is 1:1:8), p-type At6. When the surface of the g7G a g,g3AS layer 35 is etched, a wavy diffraction grating pattern 42 is formed. A diagram showing this situation is shown in FIG. 5(d).

次に第5図(e)の如く、レジスト43をとり除き、波
状回折格子パターン42の上にp型A t。、30 a
 0.7 A 8層36およびp −Ga As 37
を順次成長する。以上述べたが如く成長せしめた積層構
造を第5図(a)に示すが如くストライプ状メサ構造と
し、所定部にストライプ状窓を開けたS i O2膜3
8の上にp型用電極39を形成し、ストライプ状に電流
が流れるようにする。またn型オーミック性電極40が
基板31に形成されている。光出力41は矢印のように
とシ出され、発振波長は回折格子42により決まる。
Next, as shown in FIG. 5(e), the resist 43 is removed and p-type At is deposited on the wavy diffraction grating pattern 42. , 30 a.
0.7 A 8 layer 36 and p-GaAs 37
grow sequentially. The laminated structure grown as described above is formed into a striped mesa structure as shown in FIG.
A p-type electrode 39 is formed on top of the p-type electrode 39 so that a current flows in a striped pattern. Further, an n-type ohmic electrode 40 is formed on the substrate 31. The optical output 41 is emitted as shown by the arrow, and the oscillation wavelength is determined by the diffraction grating 42.

以上述べた従来例では、フォトレジストを用いて回折格
子形成用の選択エツチングマスクを形成した。別のマス
ク形成法としては、電子ビーム露光用のレジストを用い
て、電子ビーム露光によシ回折格子形成用マスクを得る
ことも知られている。
In the conventional example described above, a selective etching mask for forming a diffraction grating is formed using a photoresist. As another mask forming method, it is also known to use a resist for electron beam exposure to obtain a mask for forming a diffraction grating by electron beam exposure.

一方、S i 、GaAs 、 InP 、AjGaA
s 、Ga InPAs 。
On the other hand, S i , GaAs, InP, AjGaA
s, GaInPAs.

AtGaInP、Zn5e、ZnS等、半導体の広い分
野で、気相の原料から基板上への成長、つ壕り、気相結
晶成長が行なわれている。通常は基板を加熱し、基板上
または基板付近で原料気体の分解・合成反応を生ぜしむ
ることにより、基板上に所望の半導体層を得る。さらに
基板上に光を照射することにより、光で原料気体の分解
・合成反応を生せしめ、成長温度の低下をはかることが
行なわれている。この光を利用した気相結晶成長装置の
一例を第6図に示す。図中番号11で示した石英製成長
室の中に石英製のサセプター支持台121に配置し、そ
の上におかれたカーボン製サセプター13の上に基板1
4をおく。原料ガスは矢印15のごとく成長室11に導
入され、廃ガスは矢印16の如く排出される。基板14
は電熱線21により加熱される。一方ArFレーザ17
より得られる光は凹レンズ18と凸レンズ190組み合
わせにより平行光束20として、基板14の表面に照射
される。例えばジメチル亜鉛(DMZn)およびセレン
化水素(H2S e )を用いたZn5eの成長におい
て、エキシマレーザ(例えばArPレーザ、K1′Fレ
ーザ)の照射によシ成長速度が増加するということが刈
られている(1983年秋応用物理学会講演会講演番号
28a−N−12)。基板加熱のみで光を用いない気相
成長法の場合においても、第6図に示した光を用い7を
気相成長の場合でも、従来技術では基板上に微細な厚さ
および組成の変化をつけることが出来ないという欠点を
有している。
BACKGROUND ART In a wide range of semiconductor fields, such as AtGaInP, Zn5e, and ZnS, growth, trenching, and vapor phase crystal growth from vapor phase raw materials on substrates are performed. Usually, a desired semiconductor layer is obtained on the substrate by heating the substrate and causing a decomposition/synthesis reaction of raw material gases on or near the substrate. Furthermore, by irradiating light onto the substrate, the light causes a decomposition/synthesis reaction of the raw material gas, thereby lowering the growth temperature. An example of a vapor phase crystal growth apparatus using this light is shown in FIG. A substrate 1 is placed on a quartz susceptor support 121 in a quartz growth chamber indicated by number 11 in the figure, and a carbon susceptor 13 is placed on top of the quartz susceptor support 121.
Put 4. Raw material gas is introduced into the growth chamber 11 as shown by arrow 15, and waste gas is discharged as shown by arrow 16. Substrate 14
is heated by a heating wire 21. On the other hand, ArF laser 17
The light thus obtained is irradiated onto the surface of the substrate 14 as a parallel light beam 20 by a combination of a concave lens 18 and a convex lens 190. For example, in the growth of Zn5e using dimethylzinc (DMZn) and hydrogen selenide (H2S e ), it has been shown that irradiation with an excimer laser (e.g., ArP laser, K1'F laser) increases the growth rate. (Lecture number 28a-N-12 of the 1983 Fall 1983 Japan Society of Applied Physics Conference). In the case of vapor phase epitaxy that only heats the substrate but does not use light, or in the case of vapor phase epitaxy using light as shown in Fig. 6, it is difficult to make minute changes in thickness and composition on the substrate with conventional techniques. It has the disadvantage that it cannot be attached.

前述の格子構造を半導体層に形成する場合、第6図に示
した装置は、結晶成長時に行なうことができず、格子構
造を形成したい層を成長後、成長を一時中断し、この装
置より取り出してフォトリソグラフィ法や電子ビーム露
光法等の適用により格子構造を形成したのちに再び装置
内でこの格子構造の埋めこみ成長を続けるという方法を
とっていた。しかしながら、このような方法では成長を
2回にわけて行わねばならないので工数が大であること
、また成長中に大気にさらして大気環境中で格子構造形
成プロセスを行うため続いて成長する結晶の質を悪くす
るなどによる欠点があった。
When forming the above-mentioned lattice structure in a semiconductor layer, the apparatus shown in FIG. 6 cannot be used during crystal growth. The method used was to form a lattice structure by applying photolithography, electron beam exposure, etc., and then embed the lattice structure again in the apparatus and continue growing. However, this method requires a large amount of man-hours because the growth must be performed in two steps, and the process of forming a lattice structure in the atmosphere by exposing it to the atmosphere during growth makes it difficult for the subsequently grown crystal to grow. There were drawbacks such as poor quality.

(発明の目的) 本発明は、このような従来の欠点を除去せしめて、光の
波長の大きさ程度の周期で成長面内の成長層厚さの分布
を結晶の品質を高く保ったままかつ少ない工数で得るこ
とを可能とした装置を提供することにある。
(Objective of the Invention) The present invention eliminates such conventional drawbacks, and changes the distribution of the growth layer thickness within the growth plane with a period of about the wavelength of light while maintaining high crystal quality. The object of the present invention is to provide a device that can be obtained with fewer man-hours.

(発明の構成) 本発明は、結晶成長室と試料支持台と、コヒーレント光
発生光源と光源から発生するコヒーレント光を分波し、
結晶成長を生ぜしむる基板上で該分岐されたコヒーレン
ト光を合波する光学系とを少なくとも備えた構成となっ
ている。
(Structure of the Invention) The present invention includes a crystal growth chamber, a sample support, a coherent light generating light source, and a coherent light generated from the light source.
The structure includes at least an optical system that combines the branched coherent lights on a substrate that causes crystal growth.

(構成の詳細な説明) 本発明は、上述の構成をとることにより従来技術の問題
点を解決した。
(Detailed Description of Configuration) The present invention solves the problems of the prior art by adopting the above-described configuration.

第6図に示したような光を用いた気相結晶成長装置では
結晶成長速度が照射光の強度に依存する。
In a vapor phase crystal growth apparatus using light as shown in FIG. 6, the crystal growth rate depends on the intensity of the irradiated light.

従来技術として公知のZn5eの成長の例で示したよう
に、DMZnとH2S eを原料とした成長の場合、A
rFレーザを照射すると、そのレーザ光強度を増すに従
ってZn5eの成長速度が増加する。これは原料として
用いられるDMZnやH28eがArFレーザ光(波長
193nm)を吸収することにより分解が促進されZn
5eの合成速度が増すためである。
As shown in the example of the growth of Zn5e, which is known as the prior art, in the case of growth using DMZn and H2Se as raw materials, A
When rF laser is irradiated, the growth rate of Zn5e increases as the intensity of the laser beam increases. This is because DMZn and H28e used as raw materials absorb ArF laser light (wavelength 193 nm), which accelerates the decomposition of Zn.
This is because the synthesis rate of 5e increases.

この現象はその他の有機金属、トリメチルガリウム(T
MGa ) )リメチルアルミニウム(TMAt)、ト
リエチルガリウム(TEGa)、)リエチルアルミニウ
ム(TEAt)、トリメチルインジウム(TMIn)、
トリエチルインジウム(TEIn)、ジエチル亜鉛(D
EZn)などを含むアルキル金属で一般にみられる。又
、H2Seのほかにも硫化水素(H2S)、アルシン(
A sH3)、フォスフイン(PH3)、シラン(Si
H4)などを含む水素化物一般でもみられる。また、照
射する光源としては、上記原料ガスに吸収される割合の
高い紫外光を発生するレーザが好ましくArFレーザや
KrFレーザ(波長248nm)なのエキシマレーザが
好適であるが、ArレーザやHe −Cd  レーザも
この目的に適うものである。光照射した気相結晶成長を
、半導体レーザ材料としてよく用いられるGaAsの成
長に適用した例を次に示す。第2図は、照射光強度に対
する成長速度の依存性を示したものである。
This phenomenon is similar to other organometallic materials, trimethylgallium (T
MGa ) ) Limethylaluminum (TMAt), Triethylgallium (TEGa), ) Liethylaluminum (TEAt), Trimethylindium (TMIn),
Triethylindium (TEIn), diethylzinc (D
Commonly found in alkyl metals, including EZn). In addition to H2Se, hydrogen sulfide (H2S) and arsine (
A sH3), phosphine (PH3), silane (Si
It is also seen in general hydrides, including H4). As the light source for irradiation, a laser that generates ultraviolet light that is highly absorbed by the raw material gas is preferable, and excimer lasers such as ArF laser and KrF laser (wavelength 248 nm) are preferable, but Ar laser and He-Cd laser are preferable. Lasers are also suitable for this purpose. An example in which light-irradiated vapor phase crystal growth is applied to the growth of GaAs, which is often used as a semiconductor laser material, will be shown below. FIG. 2 shows the dependence of the growth rate on the irradiation light intensity.

原料ガスとしてはT M G aおよびA s H3を
用いた。
TMG a and As H3 were used as raw material gases.

横軸に照射光強度をW/−で、縦軸に成長速度をμm/
hで示す。光照射のないときの成長速度が1.15μm
/hで、3W/−の光を照射したときの成長速度が2.
35μm/hでおり、光のないときの約2倍となった。
The horizontal axis shows the irradiation light intensity in W/-, and the vertical axis shows the growth rate in μm/
Indicated by h. Growth rate without light irradiation is 1.15μm
/h, the growth rate when irradiated with 3W/- light was 2.
The speed was 35 μm/h, which was about twice as fast as when there was no light.

ところで本発明の構成をとれば基板上に照射光の回折縞
が得られ、光の波長の大きさ程度の周期的強度分布が形
成される。このような条件下でGaAsの結晶成長を行
なうと、第2図に示した関係に従って、光の波長の大き
さ程度の周期でGaAsの成長層に厚さの周期的格子構
造が生ずる。このように本発明の構成をとることにより
、多層膜連続成長中に途中で成長を中断し、大気環境中
で格子構造を成長する必要がなくなり、続いて成長する
結晶の品質劣化を防ぎ、かつ工数も甚だしく低減される
By the way, if the configuration of the present invention is adopted, diffraction fringes of the irradiated light are obtained on the substrate, and a periodic intensity distribution of approximately the size of the wavelength of the light is formed. When GaAs crystals are grown under such conditions, a periodic lattice structure is formed in the grown GaAs layer with a period approximately equal to the wavelength of light, according to the relationship shown in FIG. By adopting the configuration of the present invention as described above, it is no longer necessary to interrupt the growth during continuous multilayer film growth and grow the lattice structure in an atmospheric environment, thereby preventing quality deterioration of the subsequently grown crystal. The number of man-hours is also significantly reduced.

(実施例) 以下本発明の実施例について図面を参照して詳細に説明
する。第1図は本発明の実施例を示す模式図である。石
英製の結晶成長室51中に石英製のサセプタ支持台52
が配置され、その上におかれたカーボン製サセプタ53
の上に基板54がおかれている。基板は電熱線55で加
熱される。気相の原料ガスは矢印56の如く成長室51
に導入され、酸ガスは矢印57の如くとり出される。コ
ヒーレント光源としてArFレーザ58を用い、レーザ
出力は凹レンズ59と凸レンズ60の組み合わせにより
平行光線束61とし、これを半透鏡64により光束A(
図中62)と光束B(図中63)とにわける。光束Aは
平面鏡67により基板54の表面に到着し、光束Bは2
つの平面鏡65.66により、基板54の表面に到達す
る。
(Example) Examples of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a schematic diagram showing an embodiment of the present invention. A susceptor support stand 52 made of quartz is placed in a crystal growth chamber 51 made of quartz.
is arranged, and a carbon susceptor 53 placed on it
A substrate 54 is placed on top of the board. The substrate is heated with a heating wire 55. The raw material gas in the gas phase is transferred to the growth chamber 51 as indicated by an arrow 56.
and the acid gas is taken out as shown by arrow 57. An ArF laser 58 is used as a coherent light source, and the laser output is converted into a parallel beam 61 by a combination of a concave lens 59 and a convex lens 60, which is converted into a beam A (
It is divided into a beam B (62) in the figure and a luminous flux B (63 in the figure). The light flux A reaches the surface of the substrate 54 by the plane mirror 67, and the light flux B reaches the surface of the substrate 54 by the plane mirror 67.
The surface of the substrate 54 is reached by two plane mirrors 65,66.

光束Aと光束Bは基板表面で干渉し、光源波長と光束A
、Bそれぞれの入射角により決定される周期で、基板照
射光強度に分布をもつ。
Luminous flux A and luminous flux B interfere on the substrate surface, and the light source wavelength and luminous flux A
, B has a distribution in the intensity of the irradiated light on the substrate with a period determined by the incident angle of each of them.

このとき、入射光束の光軸を共通に含む面は、基板の表
面と垂直になるようにする。
At this time, a plane that commonly includes the optical axis of the incident light beam is perpendicular to the surface of the substrate.

193nmで発振するAr+レーザを光源として用いる
と、光束A、Bの入射角を67°としたとき、2470
にの周期(4)で光強度分布を生ずる。
When an Ar+ laser that oscillates at 193 nm is used as a light source, when the incident angle of light beams A and B is 67°, 2470
A light intensity distribution is generated with a period (4) of .

気相原料ガスとしてトリメチルガリウム(TMG)、お
よびアルシン(AsH3)e使い、本実施例を用いてG
aAs基板上にGaAsf成長させると、前述の基板照
射光強度の分布に対応して、GaAS成長膜厚に分布が
生ずる。第3図(a)に入射光線束A、Bの光軸を含む
面で切った断面における基板照射光強度の分布を示す。
G
When GaAsf is grown on an aAs substrate, a distribution occurs in the thickness of the GaAs grown film corresponding to the above-mentioned distribution of the intensity of light irradiated on the substrate. FIG. 3(a) shows the distribution of the substrate irradiation light intensity in a cross section taken along a plane including the optical axes of the incident light beams A and B.

第3図か)には同じ面内での成長膜厚分布を示す。Figure 3) shows the thickness distribution of the grown film within the same plane.

横軸は基板上の位置をμmで示し、それぞれに対応して
第3図(a)の縦軸は、2光束の干渉の結果生じた基板
上の照射光強度を相対目盛で、第3図(b)の縦軸は成
長層の膜厚をμmで示す。かくて本発明を適用した実施
例によシ一定の周期をもつ波状の回折格子が得られ、そ
の波の高低差も約0.5μmであり、適当に成長条件を
選べば、高低差0〜0.5μm或いはそれ以上とするこ
とのできることがわかった。さらに、この実施例を適用
して、従来技術により実現されていた構造のDPBレー
ザの製作法について述べる。製作する構造は第5図(a
)に示したものとする。製作法は第4因に断面図で示す
。これは従来技術による製作法第5図い)〜(e)に対
応する。第5図と対応する番号は第4図でも同じ番号を
用いる。第4図に示した多層構造の成長には原料ガスと
して’I’MGa、 ’1’MAtおよびA s H3
を用いた。第1図に示した装置内で第4図(a)に示す
が如く、まずn型GaAs基板31上にn型Atg40
 a O,7A s 32、p型GaAs33、p型A
 tg、2 (J a (1,6A sを順次成長する
。このときレーザ光は照射しないか、又は第1図中光束
A62、又は光束B63の一方のみを基板上に照射する
。続いて第4図の)に示すが如く、同一コヒーレント光
源から発生分波された光束A48、光束B49(第1図
中ではそれぞれ光束A62、光束B63に対応する)1
に同時に基板上に照射しつつp−At6.07 Ga 
O,93As層35を成長する。この時基板上には一定
周期の光干渉パターンによる明暗が形成されるため、既
に述べたように結晶成長速度の違いによりp−At0.
07Ga O,93AS層350表面には波状の回折格
子42が形成される。
The horizontal axis indicates the position on the substrate in μm, and the vertical axis in FIG. The vertical axis in (b) indicates the thickness of the grown layer in μm. In this way, according to the embodiment to which the present invention is applied, a wavy diffraction grating with a constant period is obtained, and the height difference of the waves is also about 0.5 μm, and if growth conditions are appropriately selected, the height difference is 0 to 0. It has been found that the thickness can be set to 0.5 μm or more. Furthermore, by applying this embodiment, a method of manufacturing a DPB laser having a structure realized by conventional technology will be described. The structure to be manufactured is shown in Figure 5 (a
). The manufacturing method is shown in a cross-sectional view in the fourth factor. This corresponds to the manufacturing method in FIGS. 5(a) to (e) according to the prior art. The same numbers as in FIG. 5 are used in FIG. 4 as well. For the growth of the multilayer structure shown in FIG. 4, 'I'MGa, '1'MAt and As H3 are used as source gas
was used. As shown in FIG. 4(a) in the apparatus shown in FIG.
a O,7A s 32, p-type GaAs33, p-type A
tg. As shown in ) in the figure, a beam A48 and a beam B49 (corresponding to the beam A62 and beam B63, respectively in FIG. 1) generated and split from the same coherent light source1
p-At6.07 Ga while simultaneously irradiating onto the substrate.
An O,93As layer 35 is grown. At this time, brightness and darkness are formed on the substrate due to a light interference pattern with a constant period, so that p-At0.
A wavy diffraction grating 42 is formed on the surface of the 07Ga O,93AS layer 350.

第5図(a)に示したGaAsを活性層とするレーザの
発振しうる波長が半導体内で2500X付近の値となる
ので、回折格子の周期Aの値としてこれに近い値を選ぶ
。光束A48、光束B49の入射角をともに67°とす
ると、周期Aは2470Xとなる。
Since the wavelength at which the laser having an active layer of GaAs shown in FIG. 5(a) can oscillate is around 2500X in a semiconductor, a value close to this is selected as the value of the period A of the diffraction grating. When the incident angles of the light beam A48 and the light beam B49 are both 67 degrees, the period A is 2470X.

さらに照射光を除くか或いは光束A1光束Bの一方のみ
を残して、第4図(C)に示すが如くp−Atg、3G
a 6.7As 36、p−GaAs37  f順次成
長する。その後は従来法と同様のプロセスを経て第5図
(a)に示す構造が得られる。従って、素子構造として
は従来法によるものと、はぼ同様のものが得られ、その
動作特性は従来法によるものの特長を保存し、かつ、い
くつかの利点を有する。まず、製作に要する時間の大幅
な短縮である。本発明による装置を用いれば1回の連続
成長ですべての層構造が得られるため、従来要した2回
成長および特別なパターン形成工程が要らず、結晶成長
工程に要する時間は3分の1となった。また、回折格子
形成の際、成長を中断し大気にψすことがなくなったた
め、界面の品質がよくなフ、得られたD I” Bレー
ザ素子の発振閾値の低減や、長寿命化が結果として得ら
れた。特に本素子例のようにアルミニウムを含む化合物
の場合、この事は著しい。
Further, by removing the irradiation light or leaving only one of the luminous flux A1 and luminous flux B, p-Atg, 3G, as shown in FIG. 4(C).
a 6.7As 36, p-GaAs 37 f sequentially grown. Thereafter, the structure shown in FIG. 5(a) is obtained through the same process as in the conventional method. Therefore, the element structure is almost the same as that obtained by the conventional method, and its operating characteristics retain the features of the conventional method and have several advantages. First, the time required for production is significantly reduced. Using the apparatus of the present invention, the entire layer structure can be obtained in one continuous growth process, eliminating the need for two-step growth and a special pattern forming process, which were previously required, and reducing the time required for the crystal growth process to one-third. became. In addition, when forming the diffraction grating, the growth is no longer interrupted and exposed to the atmosphere, which improves the quality of the interface, resulting in a lower oscillation threshold and longer life of the resulting DI"B laser element. This is particularly noticeable in the case of compounds containing aluminum, such as in this device example.

以上詳細にわたり、GaAs或いはAtGaAs系化合
物の成長装置に本発明を適用した例について述べたが、
本発明の効果は、他の半導体Si、Ge。
In the above, an example in which the present invention is applied to a growth apparatus for GaAs or AtGaAs-based compounds has been described in detail.
The effects of the present invention apply to other semiconductors such as Si and Ge.

InP、GaAs、GaInPAs、AtGaInP、
Zn5e。
InP, GaAs, GaInPAs, AtGaInP,
Zn5e.

ZnS、その他■族、m−v族、n−■族、F/−M族
化合物の成長装置にも及ぶことはいうまでもない。
Needless to say, the present invention also applies to growth apparatuses for ZnS, other group 1, m-v group, n-2 group, and F/-M group compounds.

またコヒーレント光源としてもKrFレーザ、Arレー
ザ、He−Cdレーザなどの他の光源でも本発明の効果
が得られることはいうまでもない。
It goes without saying that the effects of the present invention can also be obtained using other coherent light sources such as KrF laser, Ar laser, and He-Cd laser.

(発明の効果) 本発明を適用することにより、光の波長の大きさ程度の
周期で成長面内の成長層厚さの分布を結晶の品質を高く
保ったまま、かつ従来よりも少ない工数で得ることを可
能とした装置が実現できる。
(Effects of the Invention) By applying the present invention, the distribution of the growth layer thickness within the growth plane can be adjusted at a period comparable to the wavelength of light while maintaining high crystal quality and with less man-hours than before. It is possible to realize a device that makes it possible to obtain the desired results.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す図、第2図は照射光強
度と成長速度の関係を示す図、第3図(a)0))は照
射光強度と成長膜厚の関係を示す図、第4図(a) 、
 (b) 、 (C)は本発明の装置を用いて多層構造
を作製した際の工程図、第5図(a)〜(e)は半導体
レーザの製作工程図、第6図は従来装置の概略図を示す
。51は結晶成長塞、53はサセプタ、58は倶、弁環
よ内原 看・ハ・− 72 図 照射光強度 (W/cm2) 73 図 基板上位置〔Pm〕 基板上位置(pm) (h) 第4図
Figure 1 is a diagram showing an embodiment of the present invention, Figure 2 is a diagram showing the relationship between irradiation light intensity and growth rate, and Figure 3 (a) 0)) is a diagram showing the relationship between irradiation light intensity and growth film thickness. The figure shown in Fig. 4(a),
(b) and (C) are process diagrams for fabricating a multilayer structure using the apparatus of the present invention, Figures 5 (a) to (e) are process diagrams for manufacturing a semiconductor laser, and Figure 6 is a process diagram of the conventional apparatus. A schematic diagram is shown. 51 is the crystal growth block, 53 is the susceptor, 58 is the valve ring, etc. 72 Fig. Irradiation light intensity (W/cm2) 73 Fig. Position on the substrate [Pm] Position on the substrate (pm) (h) Figure 4

Claims (1)

【特許請求の範囲】[Claims] 結晶成長室と、この結晶成長室内に設置された試料支持
台と、コヒーレント光を発生する光源と、光源からのコ
ヒーレント光を分波し、前記試料支持台上に設置された
試料上で前記分波されたコヒーレント光を合波する光学
系とを少なくとも備えていることを特徴とする気相結晶
成長装置。
A crystal growth chamber, a sample support set in the crystal growth chamber, a light source that generates coherent light, and a light source that demultiplexes the coherent light from the light source and performs the demultiplexing on the sample installed on the sample support. 1. A vapor phase crystal growth apparatus comprising at least an optical system that combines waved coherent light.
JP15482884A 1984-07-25 1984-07-25 Vapor phase crystal growth device Granted JPS6131392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15482884A JPS6131392A (en) 1984-07-25 1984-07-25 Vapor phase crystal growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15482884A JPS6131392A (en) 1984-07-25 1984-07-25 Vapor phase crystal growth device

Publications (2)

Publication Number Publication Date
JPS6131392A true JPS6131392A (en) 1986-02-13
JPH0529635B2 JPH0529635B2 (en) 1993-05-06

Family

ID=15592767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15482884A Granted JPS6131392A (en) 1984-07-25 1984-07-25 Vapor phase crystal growth device

Country Status (1)

Country Link
JP (1) JPS6131392A (en)

Also Published As

Publication number Publication date
JPH0529635B2 (en) 1993-05-06

Similar Documents

Publication Publication Date Title
JPS6134927A (en) Growing process of compound semiconductor single crystal thin film
US5186750A (en) Method and apparatus for forming semiconductor thin films
JPS6131392A (en) Vapor phase crystal growth device
JPH05259079A (en) Semiconductor growth method and manufacture of semiconductor laser
JPH0267721A (en) Manufacture of compound semiconductor thin film
JP3182584B2 (en) Compound thin film forming method
JPS5992523A (en) Method for crystal growth
JPH0322410A (en) Formation of semiconductor thin film
JPH06306616A (en) Production of semiconductor device
JPH0388324A (en) Method for forming compound semiconductor thin film
JPH0431391A (en) Epitaxial growth
JPS62261188A (en) Semiconductor laser and manufacture thereof
JPH07105348B2 (en) (III) -Method for manufacturing Group V compound semiconductor thin film
JPH02188912A (en) Selective growth method of iii-v compound semiconductor
JPH0266502A (en) Manufacture of semiconductor optical waveguide
JPH05259582A (en) Semiconductor growth method and manufacture of semiconductor laser
JPS62138390A (en) Molecular beam epitaxy
JPH01184981A (en) Manufacture of semiconductor laser
JPS631025A (en) Manufacture of semiconductor superlattice
JPH0442891A (en) Production of semiconductor thin film
JPS63200585A (en) Manufacture of quantum well laser
JPH01120085A (en) Manufacture of semiconductor laser
JP2000133599A (en) Crystal growth method and manufacture of semiconductor laser using the same
JPH03204922A (en) Manufacture of quantum well structure
JPH0474792A (en) Method for forming thin film of semiconductor