JPS62261188A - Semiconductor laser and manufacture thereof - Google Patents

Semiconductor laser and manufacture thereof

Info

Publication number
JPS62261188A
JPS62261188A JP10548886A JP10548886A JPS62261188A JP S62261188 A JPS62261188 A JP S62261188A JP 10548886 A JP10548886 A JP 10548886A JP 10548886 A JP10548886 A JP 10548886A JP S62261188 A JPS62261188 A JP S62261188A
Authority
JP
Japan
Prior art keywords
light
semiconductor laser
active layer
mask
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10548886A
Other languages
Japanese (ja)
Inventor
Hiroyuki Oshima
弘之 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP10548886A priority Critical patent/JPS62261188A/en
Publication of JPS62261188A publication Critical patent/JPS62261188A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a semiconductor laser characterized by high light emitting efficiency and a low threshold current value, by simultaneously forming an active layer and the third and fourth clad layers in a planar state, by a chemical vapor growth method of organic metal, by which light is selectively emitted by using a mask. CONSTITUTION:The raw material gases of Hs, AsH3, H2Se, TMGa, TMAl and DEZn are introduced into a chamber 404 through mass-flow controllers (MFC). Then the gases are reacted, and thin films of GaAs, AlGaAs and the like are epitaxially grown. A susceptor 407 is heated to 600-800 deg.C by induction heating using an RF coil 405. Meanwhile, light is emitted from a light source 401 such as an excimer laser unit and projected on a substrate 406 through a mirror 2. A mask 403 is provided in-between. The light is projected on the arbitrary positions of the substrate in correspondence with the mask pattern, and epitaxial growing can be performed. Thus the semiconductor laser characterized by a small threshold current level and high light emitting efficiency can be formed stably at a high yield rate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体レーザ及びその製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a semiconductor laser and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

従来の半導体レーザは、周知の如く、膜厚方向にダブル
へテロ構造を設けて、キャリアと光の閉じ込めを行なっ
ていた。例えば、特開昭60−91692のように、活
性層の上下を、エネルギーギャップの大きいN型クラッ
ドノーとP型クラッドノーではさみ込み、ダブルへテa
!!4造を構成していた。
As is well known, conventional semiconductor lasers have a double heterostructure in the film thickness direction to confine carriers and light. For example, as in JP-A-60-91692, the upper and lower parts of the active layer are sandwiched between N-type cladding and P-type cladding, which have a large energy gap, and double heathing is performed.
! ! It made up 4 buildings.

〔発明が屑決しようとする問題点〕[Problems where inventions are about to end]

しかし、上記の従来技術は次のような間地点を有してい
る。すなわち、膜厚方向(上下方向)への1次元的なダ
ブルへテロ構造であるために、接合面方向(横方向)へ
のキャリアの閉じ込め及び光の閉じ込めが行なわれず、
したがって、発光効率が低く、シきい値電流が大きかっ
た。
However, the above-mentioned conventional technology has the following intermediate points. In other words, since it is a one-dimensional double heterostructure in the film thickness direction (vertical direction), carrier confinement and light confinement are not performed in the junction surface direction (lateral direction).
Therefore, the luminous efficiency was low and the threshold current was large.

本発明はこのような問題点を解決するものであり、その
目的とするところは、上下方向のみならず横方向にも閉
じ込め効果を有する2次元的なダブルへテロ構造な夾現
し、発光効率が篩<、シきいIl[1Jt流の低い半導
体レーザを提供することにある。
The present invention is intended to solve these problems, and its purpose is to create a two-dimensional double heterostructure that has a confinement effect not only in the vertical direction but also in the lateral direction, thereby increasing the luminous efficiency. The object of the present invention is to provide a semiconductor laser with a low current of 1 Jt.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体レーザは、ストライブ状の活性層の上下
に、前記活性rmよりもエネルギーギヤツプの大きい第
1.及び第2のクラッド層を配置し、かつ、前記活性層
の左右に、前記活性層よりもエネルギーギヤツプの大き
い第3及び第4のクラッドMを配置したことを特徴とし
1、また、本発明の半導体レーザの製造方法は、マスク
を用いて選択的に光の照射を行なう有機金属化学気相成
長法によシ、前dピ活性ノー及び前記第3及び第4のク
ラッド層を同時にブレーナ状に形成することを特徴とす
る。
The semiconductor laser of the present invention has first and second layers above and below the stripe-like active layer, each having an energy gap larger than the active rm. and a second cladding layer, and third and fourth cladding M having a larger energy gap than the active layer are arranged on the left and right sides of the active layer. The method for manufacturing a semiconductor laser according to the invention uses a metal organic chemical vapor deposition method in which light is selectively irradiated using a mask. It is characterized by being formed into a shape.

〔作用〕[Effect]

上記の構成によれば、光の照射を行なう有機金属化学気
相成長法によシ成長薄膜の混晶比の制御を行なうために
、選択的に光の照射を行なえば任意の領域のエネルギー
ギャップを変化させ、ブレーナ状に活性層とクランド層
を同時に作り込むことができる。
According to the above configuration, in order to control the mixed crystal ratio of a thin film grown by metalorganic chemical vapor deposition using light irradiation, selective light irradiation can change the energy gap in any region. It is possible to create an active layer and a crund layer at the same time in a Blenner shape by changing the .

〔実施例〕 以下、実施例に基づいて本発明の詳細な説明する。〔Example〕 Hereinafter, the present invention will be described in detail based on Examples.

@1図は本発明の半導体レーザの構造に示す斜視図であ
る。以下、便宜上、Ga^a/AtGaAaの材料系な
用いて説明するが、他の材料系(例えば、IndaP/
GaAs、 TnGaAtP/GaA1. InGaA
mP/rnp) 4を用いても側ら差し支えない。n型
GaAm1&101上に、n−GaAaのバッファ層1
02が設けられている。この上にはΔ−AtGa入Sの
鷹1のクラッドJ@ 103と、1−GaAaのストラ
イブ状活性層104と、P−AtGaAs の第2のク
ランド層106が設けられ、膜厚方向(図中2方向)に
ダブルへテロ構造を構成している。さらに又トライブ状
の活性層104の両側には、1−AtGaAsの第3の
クランド層105が設けられ、横方向(図中X方向)に
もダブルへテロ構造を構成している。し九がって、活性
層は2次元的なダブルへテロ構造で囲まれておυ、この
点が本発明の特徴である・ これによシ、キャリアと放射光が活性層中に有効に閉じ
込められ、半導体レーザの特性改善に大きく寄与する。
Figure @1 is a perspective view showing the structure of the semiconductor laser of the present invention. For convenience, the following explanation will be based on the Ga^a/AtGaAa material system, but other material systems (for example, IndaP/
GaAs, TnGaAtP/GaA1. InGaA
mP/rnp) 4 may be used from the side. N-GaAa buffer layer 1 on n-type GaAm1&101
02 is provided. On top of this, a Δ-AtGa-containing S cladding J@ 103, a 1-GaAa striped active layer 104, and a P-AtGaAs second cladding layer 106 are provided. It forms a double heterostructure in the middle 2 directions). Furthermore, a third landing layer 105 of 1-AtGaAs is provided on both sides of the tribe-shaped active layer 104, forming a double heterostructure in the lateral direction (X direction in the figure). Therefore, the active layer is surrounded by a two-dimensional double heterostructure υ, which is a feature of the present invention. Due to this, carriers and synchrotron radiation are effectively transmitted into the active layer. It is confined and greatly contributes to improving the characteristics of semiconductor lasers.

これらの効果については後に詳述する。また、107は
P−GaAmの中ヤップ層であシ、pa!!電極108
に接続している。109はn型GaAm基板101に接
触するn型電極である。ま九、本実施例の場合、注入電
流の狭窄は、エネルギーギヤツプが大きく、シかも1型
で高抵抗の第3のクラッド層105により行っているが
、この方式については櫨々の変形が可能である。次に図
中Aに及びII B’断面における構造上の分布につい
て述べ、本発明の特徴をよシ明確にする。
These effects will be detailed later. In addition, 107 is the intermediate layer of P-GaAm, pa! ! electrode 108
is connected to. 109 is an n-type electrode that contacts the n-type GaAm substrate 101; In the case of this embodiment, the injection current is constricted by the third cladding layer 105, which has a large energy gap and is probably type 1 and has a high resistance. is possible. Next, the structural distribution in the cross sections A and II B' in the figure will be described to clarify the features of the present invention.

第2図はAt組成比、エネルギーギャップEf及び屈折
率nの分布を示すグラフで、(a)がAA′断面(X方
向)に関するもの、(b)がB B’断面(2方向)に
関するものである。図よシ明らかなように、X方向と2
方向について、At組成比、エネルギーギヤツプ及び屈
折率が同様の分布を有している点が本発明の大きな特徴
である。すなわち、活性層ではkLxc;hI−1x 
AM の^1m戎比Xが小さく、し九がってEfは小さ
くnは大きくなる。活性I−に隣接するπ1.第2.第
3のクラッド層では逆にXが大きく、したがってEtは
大きくnは小さくなる。
Figure 2 is a graph showing the distribution of At composition ratio, energy gap Ef, and refractive index n, where (a) is for the AA' cross section (X direction), and (b) is for the B B' cross section (two directions). It is. As is clear from the figure, the X direction and 2
A major feature of the present invention is that the At composition ratio, energy gap, and refractive index have similar distributions in terms of direction. That is, in the active layer kLxc; hI-1x
The ^1m ratio X of AM is small, so Ef is small and n is large. π1. adjacent to active I-. Second. Conversely, in the third cladding layer, X is large, so Et is large and n is small.

このように、X方向にも2方向にもダブルへテロ構造が
構成されている。これによりキャリア及び放射光は2次
元的に閉じ込められる。
In this way, a double heterostructure is constructed in both the X direction and the two directions. As a result, carriers and emitted light are confined two-dimensionally.

第3図は上記のように構成された半導体レーザの特性を
示すグラフである。横軸は注入1!流、縦軸は出射光の
光出力である。図中、実線は本発明による半導体レーザ
の特性を示し、破線は2方向のみにダブルへテロ構造ケ
有する従来の半導体レーザの特性を示すものである。図
のように本発明による半導体レーザでは、従来の半導体
レーザに比べて、しきい値電流が約275に減少し、倣
分量子効率が高くなってνす、デバイス全体として、発
光の効率比が達成されている。こfiは、前述のように
、キャリアと放射光が活性層中に有効に閉じ込められて
いるためである。これらの効果によシ、低[流動作の高
出力半導体レーザゲ実現することが可能となる。
FIG. 3 is a graph showing the characteristics of the semiconductor laser configured as described above. The horizontal axis is injection 1! The vertical axis is the optical output of the emitted light. In the figure, the solid line shows the characteristics of the semiconductor laser according to the present invention, and the broken line shows the characteristics of the conventional semiconductor laser having a double heterostructure in only two directions. As shown in the figure, in the semiconductor laser according to the present invention, compared to the conventional semiconductor laser, the threshold current is reduced to about 275, and the quantum efficiency is increased. has been achieved. This is because carriers and emitted light are effectively confined in the active layer, as described above. These effects make it possible to realize a high-power semiconductor laser with low current operation.

第4図は本発明による半導体レーザの襄遣方法に用いら
れる光照射有機金網化学気相成長法を示す概略図である
。)f、 AsH3,f(IS*、↑MOa、 TM^
4DEZnの原料カスが゛マスフローコントローラ(M
FC)を通してチェンバー404に導入された後、反応
して基板406上へUAA@、 AtGmAm等の#膜
がエピタキシャル成長する。使用後のガスはa−タリポ
ンプ(RP、 )な通して排気されるウチェンバー内で
は、RF;イル405による誘導加熱によりサセプタ4
07が600〜800℃に加熱される。一方、エキシマ
レーザ等の光源401から出射された元はミラー402
を経て基板406へ照射される。途中にはマスク405
が置かれており、そのパターンに応じて基板406への
光照射領域と非照射領域が決定される。エキシマレーザ
光としては、例えばArFを用いたIS’3nmの高出
力コヒーレント光が使われる。上記の方式によυ、i6
E仮のtf:意の場所に光を照射しながらエピタキシャ
ル成長することができる。
FIG. 4 is a schematic diagram showing the light irradiation organic wire mesh chemical vapor deposition method used in the semiconductor laser processing method according to the present invention. )f, AsH3,f(IS*, ↑MOa, TM^
4DEZn raw material waste is transferred to mass flow controller (M
# film such as UAA@, AtGmAm, etc. is epitaxially grown on the substrate 406 by reaction. After use, the gas is exhausted through the a-tary pump (RP).In the chamber, the susceptor 4 is
07 is heated to 600-800°C. On the other hand, the source of light emitted from a light source 401 such as an excimer laser is a mirror 402.
The light is then irradiated onto the substrate 406. There is a mask 405 on the way
A light irradiation area and a non-irradiation area of the substrate 406 are determined according to the pattern. As the excimer laser light, for example, a high-power coherent light of IS'3 nm using ArF is used. According to the above method, υ, i6
E Temporary tf: Epitaxial growth can be performed while irradiating light onto desired locations.

第3図は光照射を伴なう有機金属化学気相成長法による
混晶組成制御の原理を示すグラフである。
FIG. 3 is a graph showing the principle of mixed crystal composition control by organometallic chemical vapor deposition accompanied by light irradiation.

41#I軸はエピタキシャル成畏編度、縦軸はA4!G
&1−xAmのAtMi成比Xである。図中、実線は光
照射を伴なわない通常の有機金属化学気相成長法の場合
、破線は光照射を伴なう有機金属化学気相成長法の場合
のデータをそれぞれ示している。照射光は波長195n
mのArFエキシマレーザ九である。グラフより明らか
なように、すべての成長温度範囲において、光照射によ
りAt、jfi4成比Xが大きくなる。これはエキシマ
レーザ光のエネルギーにより、原料のTMAt の分解
が促進されるためである。したがって第4図に示した方
法を用いれば、第1図及び第2図のような半導体レーザ
を実現することができる。丁なわち、元の照射されない
領域はAt組成比Xの小さい活性層に、また光の照射さ
れる鎖酸はhL組成比Xの大きい第3のり2ンド層にな
る。し九がって、これらの層をプレーナ状に同時に製造
することができる。これら以外のノー、例えば第1.第
2のクラッド脇等には光照射を行っても、行わなくても
良い。
41# The I axis is epitaxial, and the vertical axis is A4! G
The AtMi composition ratio X of &1-xAm. In the figure, the solid line shows data for normal metal-organic chemical vapor deposition without light irradiation, and the broken line shows data for metal-organic chemical vapor deposition with light irradiation. Irradiation light has a wavelength of 195n
m ArF excimer laser 9. As is clear from the graph, the At and jfi4 ratios X increase due to light irradiation in all growth temperature ranges. This is because the energy of the excimer laser light accelerates the decomposition of the raw material TMAt. Therefore, by using the method shown in FIG. 4, semiconductor lasers as shown in FIGS. 1 and 2 can be realized. That is, the original non-irradiated region becomes an active layer with a small At composition ratio X, and the chain acid irradiated with light becomes a third adhesive layer with a large hL composition ratio X. These layers can thus be manufactured simultaneously in planar form. Nos other than these, such as No. 1. Light irradiation may or may not be applied to the sides of the second cladding, etc.

以上、AtGaA1のA4組成比を光照射により制御す
る方法について述べたが、これ以外の材料にも本発明は
適用可能である。例えば、At組成比を光によシ制御し
て、活性層のrnGaFと第3のタラツドノ−のInG
aAtPを同時にプレーナ状に作り込むこともaT能で
ある。また、エキシマレーザ光の波長を変えたり、他の
光源を用いることにより、InGa^−PなどhL以外
の組成比を光で制御することも可能である。
Although the method of controlling the A4 composition ratio of AtGaA1 by light irradiation has been described above, the present invention is also applicable to other materials. For example, by controlling the At composition ratio by light, rnGaF in the active layer and InG in the third layer can be formed.
Simultaneously creating aAtP into a planar shape is also an aT function. Furthermore, by changing the wavelength of excimer laser light or using another light source, it is also possible to control the composition ratio of materials other than hL, such as InGa^-P, with light.

〔効果〕〔effect〕

本発明は次のような優れた効果を有する。 The present invention has the following excellent effects.

第1に、しきい値電流が小さく、微分端子効率の晶い大
出力半導体レーザな実現できる。これは前述のように、
従来のm厚方向への1次元的なダブルへテロ構造とは異
なり、本発明の半導体レーザCよ2次元的なダブルへテ
ロ構造を有し、キャリアと放射光に対していい閉じ込め
効果?有する次めである。また、横方向にもダブルへテ
ロ構」危を持つために、横モードのKIIi御にも有利
である。
First, it is possible to realize a high-output semiconductor laser with a small threshold current and a high differential terminal efficiency. As mentioned above, this
Unlike the conventional one-dimensional double heterostructure in the m-thickness direction, the semiconductor laser C of the present invention has a two-dimensional double heterostructure, which has a good confinement effect on carriers and emitted light. The next step is to have one. Also, since it has the danger of a double heterostructure in the lateral direction, it is also advantageous for controlling the KIIi in lateral mode.

第2に、大気にさらすことなく連続したエピタキシャル
成長で半導体レーザを製造することができる。これによ
り従来のように薄膜表面の酸化や汚染などの憇影響な受
けることがなくなり、発光効率の高い半導体レーザケ安
定に歩留)良く作ることができる。
Second, semiconductor lasers can be manufactured by continuous epitaxial growth without exposure to the atmosphere. This eliminates the undesirable effects of oxidation and contamination on the thin film surface as in the past, and allows semiconductor lasers with high luminous efficiency to be produced stably and at a high yield.

yJIJ3に、4I造プロセスが簡略化され、低コスト
化が実現できる。従来、フォトエツチング工程を通るた
びにエピタキシャル成長を行なってい九のに対して、本
発明によれば、フォトエッチフグ工8をaTことなく連
続し1こ1回のエピタキシャル成長で半導体レーザを作
製することができる。これにより低コスト比が実現され
る。
In yJIJ3, the 4I manufacturing process is simplified and costs can be reduced. Conventionally, epitaxial growth was performed each time the photoetching process was passed, but according to the present invention, a semiconductor laser can be manufactured by continuous epitaxial growth one by one without passing through the photoetching process 8. can. This results in a low cost ratio.

以上述べたように、本発゛−iは号れ念効果を有するも
のであろう
As mentioned above, this project-i will have a commemorative effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による半導体レーザを示す斜視図である
。 第2図は本発明による半導体レーザ(4−おける^tI
A成比、エネルギーギヤラグ、屈折率の分布を示すグラ
フである。 @3図は本発明による半導体レーザの特性を示すグラフ
である。 第4図は光照射有機金属化学気相成長法の概略図である
。 第3図は光照射有機金属化学気相成長法による混晶組成
制御の原理な示すグラフである。 以上 第1UA 第2@ 0      ダ0      /DOシ支入嘴こシ先
 (、、、八) 第3図 114図 第3図
FIG. 1 is a perspective view showing a semiconductor laser according to the present invention. Figure 2 shows the semiconductor laser according to the present invention (4-
It is a graph showing the distribution of A composition ratio, energy gear lag, and refractive index. Figure @3 is a graph showing the characteristics of the semiconductor laser according to the present invention. FIG. 4 is a schematic diagram of the light irradiation metalorganic chemical vapor deposition method. FIG. 3 is a graph showing the principle of mixed crystal composition control by light irradiation metalorganic chemical vapor deposition. Above is the 1st UA 2nd @ 0 Da 0 /DO Si input beak tip (,,,8) Fig. 3 114 Fig. 3

Claims (2)

【特許請求の範囲】[Claims] (1)ストライプ状の活性層の上下に、前記活性層より
もエネルギーギヤツプの大きい第1及び第2のクラッド
層を配置し、かつ、前記活性層の左右に、前記活性層よ
りもエネルギーギヤツプの大きい第3のクラッド層を配
置したことを特徴とする半導体レーザ。
(1) Above and below a striped active layer, first and second cladding layers having a larger energy gap than the active layer are arranged, and on the left and right sides of the active layer, cladding layers with a larger energy gap than the active layer are arranged. A semiconductor laser characterized in that a third cladding layer with a large gap is disposed.
(2)マスクを用いて選択的に光の照射を行なう有機金
属化学気相成長法により、前記活性層及び前記第3のク
ラッド層を同時にプレーナ状に形成することを特徴とす
る半導体レーザの製造方法。
(2) Manufacturing a semiconductor laser characterized in that the active layer and the third cladding layer are simultaneously formed into a planar shape by metalorganic chemical vapor deposition in which light is selectively irradiated using a mask. Method.
JP10548886A 1986-05-08 1986-05-08 Semiconductor laser and manufacture thereof Pending JPS62261188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10548886A JPS62261188A (en) 1986-05-08 1986-05-08 Semiconductor laser and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10548886A JPS62261188A (en) 1986-05-08 1986-05-08 Semiconductor laser and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS62261188A true JPS62261188A (en) 1987-11-13

Family

ID=14408977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10548886A Pending JPS62261188A (en) 1986-05-08 1986-05-08 Semiconductor laser and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS62261188A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63188932A (en) * 1987-01-31 1988-08-04 Toyoda Gosei Co Ltd Method for vapor growth of gallium nitride compound semiconductor
JPS63236385A (en) * 1987-03-25 1988-10-03 Hitachi Ltd Semiconductor light emitting element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63188932A (en) * 1987-01-31 1988-08-04 Toyoda Gosei Co Ltd Method for vapor growth of gallium nitride compound semiconductor
JPS63236385A (en) * 1987-03-25 1988-10-03 Hitachi Ltd Semiconductor light emitting element

Similar Documents

Publication Publication Date Title
JPH0750448A (en) Semiconductor laser and manufacture thereof
JPH02159783A (en) Semiconductor laser device and manufacture thereof
JP2752423B2 (en) Method for diffusing Zn into compound semiconductor
JPS6180882A (en) Semiconductor laser device
JPH08148757A (en) Manufacture of semiconductor laser
JP3432909B2 (en) Semiconductor laser
JP2799372B2 (en) Quantum wire laser and manufacturing method thereof
JPS62261188A (en) Semiconductor laser and manufacture thereof
JP2000031596A (en) Semiconductor laser and its manufacture
JP4817306B2 (en) Manufacturing method of surface emitting semiconductor laser wafer and manufacturing method of semiconductor laser array
JPH04180684A (en) Semiconductor laser
JP2005026625A (en) Surface-emitting laser and its manufacturing method
JPH11112075A (en) Semiconductor laser device and its manufacture
JP2010199219A (en) Distribution feedback semiconductor laser and method of manufacturing the same
JP3211383B2 (en) Method of manufacturing semiconductor multilayer film reflector
JPH0414277A (en) Semiconductor laser and its manufacture
JPS6355993A (en) Manufacture of semiconductor light emitting device
Choi et al. Selective growth and regrowth of high Al content AlGaAs for use in BH lasers
JPS62248279A (en) Semiconductor laser and manufacture thereof
JPH01149500A (en) Manufacture of semiconductor laser device
JPH05259582A (en) Semiconductor growth method and manufacture of semiconductor laser
JPS6179281A (en) Manufacture of semiconductor laser
JPH01226191A (en) Manufacture of algainp buried structure semiconductor laser
JPH05175607A (en) Method of forming semiconductor multilayer film and manufacture of semiconductor laser
JPH03209893A (en) Semiconductor laser and manufacture thereof