JPS61296123A - Carbon fiber exhibiting ultrahigh-strength composite property - Google Patents

Carbon fiber exhibiting ultrahigh-strength composite property

Info

Publication number
JPS61296123A
JPS61296123A JP13422485A JP13422485A JPS61296123A JP S61296123 A JPS61296123 A JP S61296123A JP 13422485 A JP13422485 A JP 13422485A JP 13422485 A JP13422485 A JP 13422485A JP S61296123 A JPS61296123 A JP S61296123A
Authority
JP
Japan
Prior art keywords
fiber
strength
carbon fiber
carbon fibers
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13422485A
Other languages
Japanese (ja)
Other versions
JPH0737685B2 (en
Inventor
Toru Hiramatsu
徹 平松
Tomimasa Higuchi
樋口 富壮
Hideo Komatsu
小松 秀雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP60134224A priority Critical patent/JPH0737685B2/en
Publication of JPS61296123A publication Critical patent/JPS61296123A/en
Publication of JPH0737685B2 publication Critical patent/JPH0737685B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:Carbon fibers, having a specific high average fiber tensile strength and tensile strength of resin-impregnated strand and further ultrahigh-strength fiber properties and capable of giving composite materials having an ultrahigh strength with very little resin dependence and exhibiting ultrahigh-strength composite properties. CONSTITUTION:Ammonia is blown into a solution of a copolymer of acrylonitrile with a small amount of itaconic acid, etc., to modify the copolymer, and the reultant solution is extruded and spun through a spinneret into a coagulation bath. The resultant fibers are then washed with water and dried to give acrylic fibers, which are heat-treated in air at 240-260 deg.C temperature and then carbonized by increasing the temperature to 1,200 deg.C in nitrogen atmosphere to afford carbon fibers. The carbon fibers are treated in a treating bath filled with an aqueous solution of nitric acid while applying a positive voltage thereto and heat-treated in nitrogen atmosphere at 700 deg.C to give the aimed carbon fibers having at least 530kg/mm<2> average fiber tensile strength and >=650kg/mm<2> tensile strength of a resin-impregnated strand.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、その機械的強度において全く新規な超高強度
繊維物性を有する炭素繊維に係り、さらに詳しくは、平
均単繊維引張強度が少なくとも530KCI/mm2で
あり、樹脂含浸ストランド強度が少なくとも650KO
/mm2という炭素繊維としてこれまで知られなかった
超高強度繊維物性を有する炭素繊維に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to carbon fibers having completely novel ultra-high mechanical strength fiber properties, and more specifically, carbon fibers having an average single fiber tensile strength of at least 530 KCI. /mm2 and the resin-impregnated strand strength is at least 650 KO
The present invention relates to a carbon fiber having an ultra-high strength fiber property of /mm2, which was hitherto unknown as a carbon fiber.

〈従来の技術〉 従来、炭素繊維は、その優れた機械的性質、特に、比強
度および比弾性率を利用した複合材料の補強用繊維とし
て工業的に広く生産され、使用されているが、これらの
複合材料の用途、特に航空、宇宙用途においては、炭素
繊維の高強度化に対する要望がますます高くなっている
<Prior art> Conventionally, carbon fibers have been widely produced and used industrially as reinforcing fibers for composite materials, taking advantage of their excellent mechanical properties, especially their specific strength and specific modulus. In applications of composite materials, particularly in aviation and space applications, there is an increasing demand for higher strength carbon fibers.

このような高強度化に対する要望に応じて、これまで数
多くの提案が為されているが、これらの提案のほとんど
【j、炭素繊維の製造に使用されるプレカーリの改良、
酸化および7/または炭化条件の最適化などにに関する
ものにであり、必ずしも上記要望を充分に満足するほど
の飛躍的な機械的強度の向上をもたらすものではなかっ
た。
In response to this demand for higher strength, many proposals have been made to date, but most of these proposals [j.
This method is related to the optimization of oxidation and/or carbonization conditions, and does not necessarily bring about a dramatic improvement in mechanical strength sufficient to fully satisfy the above requirements.

すなわち、高温の加熱雰囲気中で苛酷な条件の下にプレ
カーリ−を酸化し、次いで炭化する工程を採用しな(プ
ればならない炭素繊維の工業的′3IA造する場合、単
糸本数が数千本に及ぶ繊維糸条を大量に上記苛酷な条件
下に加熱し、炭M繊維に転換することは技術的に極めて
困難であり、原料のプレカーリの改良品るいはその製造
条件の最適化などの公知の方法をもってしては、飛躍的
な炭素繊維の機械的強度の向上を期待することができな
かった。このことは炭素繊維の品質、性能を一定水準に
保持して大量に生産性よく、製造する場合にますます顕
著になる工業的問題であるといえる。
In other words, in the case of industrial production of carbon fiber, the process of oxidizing the pre-curly under harsh conditions in a high-temperature heating atmosphere and then carbonizing it is necessary. It is technically extremely difficult to heat a large amount of fiber threads up to a book length under the harsh conditions mentioned above and convert them into charcoal M fibers. It has not been possible to expect a dramatic improvement in the mechanical strength of carbon fiber using known methods. It can be said that this is an industrial problem that is becoming more and more prominent during manufacturing.

特に、炭素繊維そのものの機械的強度が改良されても、
その機械的強度が複合材Hの機械的強度に寄与されない
、すなわち強度利用率か低い傾向を示すという問題があ
った。
In particular, even if the mechanical strength of carbon fiber itself is improved,
There was a problem that the mechanical strength did not contribute to the mechanical strength of the composite material H, that is, the strength utilization rate tended to be low.

加えてその製造法にa″3いて、手段か複雑であったり
、製造条件の]ン1〜ロールか難しいなど、T業的製法
としも問題があった たとえば従来公知の炭素繊維の機械的強度は、平均単繊
維引張強度が高々520にΩ/mm2未満にすぎず、し
かもこのような平均単繊維強度を有する従来の炭素繊維
は樹脂含浸ストランド強度が低く、最大約570KC1
/mm2で必り、複合材131における強度利用率が低
く、複合材わlにその強度が利用されないという本質的
欠点があった。
In addition, the manufacturing method is complicated, and the manufacturing conditions are difficult to roll.For example, there are problems with the mechanical strength of conventionally known carbon fibers. The average single fiber tensile strength of carbon fibers is only less than 520Ω/mm2 at most, and conventional carbon fibers with such average single fiber strength have low resin-impregnated strand strength, with a maximum of about 570KC1.
/mm2, the strength utilization rate in the composite material 131 is necessarily low, and there is an essential drawback that the strength is not utilized in the composite material 131.

そして、この欠点は、複合材料の構成成分である7トリ
ツクス樹脂の種類が相違するとより顕著になり、この炭
素繊維の樹脂依存性によって切角炭素繊維そのものの機
械的強度を改良、向上させても、複合材料の機械的強度
の改良、向上に役立たないという実際上の問題があった
This drawback becomes more pronounced when the type of 7trix resin that is a component of the composite material differs, and even if the mechanical strength of the cut carbon fiber itself is improved or improved due to the resin dependence of the carbon fiber. However, there was a practical problem in that it was not useful for improving or increasing the mechanical strength of composite materials.

通常、炭素繊維は、71〜リツクス樹脂に対で−る接着
性を改良し・、複合材料の層間剪断強度(I L33)
を向上させるために、該炭素繊維にはその繊維の表面に
官能基を発生せしめる電解処理が施されている(たとえ
ば、特公昭55−20033号公報参照)が、この処理
は、炭素繊維の接着性の改良が目的であって繊維そのも
のまたは複合材料そのものの強度の向上を期待し得るも
のではなかった。
Typically, carbon fibers improve the adhesion to 71~lix resins and increase the interlaminar shear strength (IL33) of composite materials.
In order to improve the bonding of carbon fibers, the carbon fibers are subjected to electrolytic treatment to generate functional groups on the surface of the fibers (see, for example, Japanese Patent Publication No. 55-20033). The purpose of this method was to improve properties, and no improvement in the strength of the fiber or composite material itself could be expected.

他方、炭素繊維そのものの強度を改良する手段として、
炭素繊維を高濃度の硫酸、硝酸、燐酸などの無機酸中に
長時間浸漬して該繊維表面をエツチングし、次いで高調
の不活性雰囲気中で加熱処理して前記無機酸処理によっ
て発生した繊維表面の官能基を除去する方法が提案され
ている(たとえば、特開昭54.−594.97号公報
、特公昭52’−35796月公報)。このような処理
による炭素繊維の強度の向上は、特開昭54−5949
7号公報によれば、前記エツチング処理によって、炭素
繊維の製造工程で形成された該繊維表面の傷が除去され
ることによると言われている。
On the other hand, as a means to improve the strength of carbon fiber itself,
Carbon fibers are immersed in a highly concentrated inorganic acid such as sulfuric acid, nitric acid, or phosphoric acid for a long time to etch the fiber surface, and then heat treated in a highly concentrated inert atmosphere to remove the fiber surface generated by the inorganic acid treatment. A method for removing the functional group has been proposed (for example, Japanese Patent Application Laid-Open No. 54-594.97, Japanese Patent Publication No. 52-35796). The improvement of the strength of carbon fiber through such treatment was disclosed in Japanese Patent Application Laid-Open No. 54-5949.
According to Publication No. 7, it is said that the etching process removes scratches on the surface of the carbon fibers formed during the manufacturing process of the carbon fibers.

しかしながら、本発明者らの検討したところによれば、
炭素繊維のように耐薬品性の極めて良好な繊維に、その
表面がエツチングされるJ:うな厳しい処理を施すと、
繊維の表層部のみならず、場合によっては繊維の内部構
造まで損傷され、必ずしも該炭素繊維の機械的強度の向
上するものではないこと、処理に供される炭素繊維の種
類によっては反って繊維が損傷され、機械的強度が低下
することおよび械的強度が向上しても、樹脂含浸ストラ
ンド強度は向上することがなく、複合材料の強度向上に
寄与しないことを見出した。特に無機酸によるエツチン
グ処理に供される炭素繊維の機械的強度が大きくなるに
つれて、この処理による炭素繊維の強度の向上は小さく
、大幅な樹脂含浸ストランド強度の改良は期待できず、
しかも、このような炭素繊維から得られる複合材料の機
械的強度はその樹脂依存性が大きくなることが判明した
However, according to the inventors' investigation,
When a fiber with extremely good chemical resistance, such as carbon fiber, is subjected to a harsh treatment, its surface becomes etched.
Not only the surface layer of the fiber but also the internal structure of the fiber may be damaged, and the mechanical strength of the carbon fiber may not necessarily be improved. Depending on the type of carbon fiber subjected to treatment, the fiber may warp or It has been found that even if the strand is damaged and the mechanical strength is decreased and the mechanical strength is improved, the strength of the resin-impregnated strand does not improve and does not contribute to improving the strength of the composite material. In particular, as the mechanical strength of carbon fibers subjected to etching treatment with inorganic acids increases, the improvement in the strength of carbon fibers due to this treatment is small, and no significant improvement in the strength of the resin-impregnated strands can be expected.
Moreover, it has been found that the mechanical strength of composite materials obtained from such carbon fibers is highly dependent on the resin.

〈発明の解決しようとする問題点〉 本発明の目的は、前記公知の無機酸によるエツヂング処
理−説官能基化処理によって19られる高−〇 − 強度炭素繊組の機械的強度を凌駕する従来知られなかっ
た超高強度eli維物性を有し、しかも、樹脂依存性の
極めて少ない超高強度の複合月利を与える超高強度]ン
ポジッ1〜物性を示す炭素繊維を提供するにあり、さら
に他の目的は、このような極めて優れた実用性能を有す
る超高強度炭素繊維の製造法、特に炭素繊維の製造工程
で形成された構造的欠陥を選択的に除去し、炭素繊維の
複合月利補強用W、紐としての有効、かつ有用な前記繊
維構造および強化特性を与える処理方法を提供するにあ
る。
<Problems to be Solved by the Invention> The object of the present invention is to improve the mechanical strength of the conventionally known high-strength carbon fibers, which exceeds the mechanical strength of the high-strength carbon fibers obtained by the etching treatment and functionalization treatment using the known inorganic acid. It is an object of the present invention to provide a carbon fiber having ultra-high strength eli fiber physical properties that have never been found before, and also exhibiting ultra-high strength composite properties that are extremely low in resin dependence. The purpose of this is to develop a manufacturing method for ultra-high strength carbon fibers with extremely excellent practical performance, in particular to selectively remove structural defects formed during the carbon fiber manufacturing process, and to improve the composite reinforcement of carbon fibers. The object of the present invention is to provide a processing method that provides the above-mentioned fiber structure and reinforcing properties that are effective and useful as W and strings.

以下、本発明の目的を達成するための具体的手段につい
て詳述する。
Hereinafter, specific means for achieving the object of the present invention will be explained in detail.

〈問題点を解決するための手段〉 上記本発明の目的【Jl、少なくとも530Kg/mm
2の平均単繊維引張強度および650KO/mm2以上
の樹脂含浸ストランド引張強度を有し、しかもこの高度
の炭素繊維の単繊維強度がコンボジッ1−の物性に実質
的にそのまま反映させることができる超高強度炭素繊維
によって達成することができる。
<Means for solving the problems> The above object of the present invention [Jl, at least 530Kg/mm
It has an average single fiber tensile strength of 2 and a resin-impregnated strand tensile strength of 650 KO/mm2 or more, and moreover, this high single fiber strength of carbon fiber can be reflected in the physical properties of the composite 1- as is. Strength can be achieved by carbon fiber.

本発明になる炭素繊維は、少なくとも530にΩ/mm
2の平均単繊維引張強度および650KCl /mm 
2以上の樹脂含浸ストランド引張強度を有する点、すな
わち、平均単繊維引張強度のみならず、=1ンポジッ]
・物性の1尺度である樹脂含浸ストランド強度において
も従来の炭素繊維の強度水準を大幅に越えている点に特
徴がおる。
The carbon fiber according to the present invention has a resistance of at least 530 Ω/mm.
Average single fiber tensile strength of 2 and 650KCl/mm
point having a resin-impregnated strand tensile strength of 2 or more, i.e., not only the average single fiber tensile strength, but also = 1 point]
・The strength of the resin-impregnated strands, which is one measure of physical properties, is also unique in that it significantly exceeds the strength level of conventional carbon fibers.

この炭素繊維の平均単繊維引張強度が530KO/mm
2以上、好ましくは550g/mm2以上という極めて
高い値を示し、しかも樹脂含浸ストランド引張強度が6
50Kc+/mm2以上、好ましくは700に/mm2
以上という機械的強度を有するということは、航空機の
一次構造材料などの極めて高い水準の機械的強度、すな
わち強度面で極めて高度の信頼性を要求される複合(オ
利において、その性能向上に寄与するところは極めて大
きいのであり、このような複合材料の補強繊維としての
性能を飛躍的に改良、向上させる本発明の炭素繊維の工
業的ならびに商業的意義は極めて大きい。
The average single fiber tensile strength of this carbon fiber is 530KO/mm
2 or more, preferably 550 g/mm2 or more, and the resin-impregnated strand tensile strength is 6.
50Kc+/mm2 or more, preferably 700/mm2
Having this mechanical strength means that it contributes to improving the performance of composite materials that require an extremely high level of mechanical strength such as the primary structural material of aircraft, which requires an extremely high degree of reliability in terms of strength. Therefore, the industrial and commercial significance of the carbon fiber of the present invention, which dramatically improves and improves the performance as a reinforcing fiber of such composite materials, is extremely large.

しかも、本発明になる炭素繊維は、高い機械的強度に加
えて、摩擦係数が少なくとも0.25以上、好ましくは
0.28〜0.60であり、平均単繊維直径が5.5μ
m以下、好ましくは4,5μm以下で必るという特徴を
有するから、しなやかで、集束性に富み、複合材料に成
形する場合に優れた加工性を示と同時に、高速のワイン
デング成形を可能とし、成形コス1〜の低減、成形時の
糸傷みの少ない高い機械的強度を有する複合材料を与え
る。
Moreover, in addition to high mechanical strength, the carbon fiber of the present invention has a coefficient of friction of at least 0.25 or more, preferably 0.28 to 0.60, and an average single fiber diameter of 5.5μ.
Since it has the characteristic that it has a diameter of less than m, preferably less than 4.5 μm, it is flexible and has good cohesiveness, and exhibits excellent workability when molded into composite materials, and at the same time enables high-speed winding molding. , a composite material having a molding cost of 1 or more and having high mechanical strength with little thread damage during molding is provided.

さらに、本発明の炭素繊維は、炭素繊維に対して強い酸
化作用を示すアルカリ金属および遷移金属の含有量が3
00ppm以下、好ましくは10oppm以下であり、
優れた耐酸化性を有しているから、機械的強度にhnえ
て高い耐酸化性を要求される航空機の一次構造材料など
の用途に有利に使用することができる。
Furthermore, the carbon fiber of the present invention has a content of alkali metals and transition metals that have a strong oxidizing effect on carbon fibers.
00ppm or less, preferably 10oppm or less,
Since it has excellent oxidation resistance, it can be advantageously used in applications such as primary structural materials for aircraft, which require high oxidation resistance in addition to mechanical strength.

さらに、本発明の炭素繊維は、熱分解性有機物量が約0
.05〜05重量%、好ましくはO9−〇 − 1〜0.4%で、かつX線電子分光法(ESCA)によ
って検出される繊維表面の官能基量(ChS/C15)
比が0.1〜0.4、好ましくは0゜15〜0.3の範
囲内であり、複合材r3+を構成す、る71〜リツクス
樹脂依存性が小さいという特徴を有するために、炭素繊
維を補強繊維とする複合材料の機械的強度が、複合材料
を構成する71〜リツクス樹脂の種類によって相違しな
い、すなわち樹脂依存性が小さいという特徴を有する。
Furthermore, the carbon fiber of the present invention has an amount of pyrolyzable organic matter of about 0.
.. The amount of functional groups on the fiber surface (ChS/C15) is 05 to 05% by weight, preferably O9-0-1 to 0.4%, and detected by X-ray electron spectroscopy (ESCA).
The ratio is within the range of 0.1 to 0.4, preferably 0.15 to 0.3, and carbon fiber The mechanical strength of a composite material having 71 to 60% as reinforcing fibers does not differ depending on the type of 71 to Rix resin constituting the composite material, that is, it has a characteristic that its dependence on the resin is small.

すなわち、上記熱分解性有機物量が0.05%よりも小
ざく、FSCAにによる(O1S/C1S〉比がo、1
c+;りも小さいと、炭素繊維表面の官能基量が少なく
なりすぎて、樹脂に対する接着性が低下するし、他方、
熱分解性有機物量が0゜5%よりも大きく、ESCAに
よる(01s/C15)比が0.4%にりも大きくなる
と、繊維表面の不活性化が不充分になるため、樹脂含浸
ストランド強度が低下し、かつ樹脂依存性も大きくなる
のである。
That is, the amount of thermally decomposable organic matter is less than 0.05%, and the (O1S/C1S> ratio according to FSCA is o, 1
If c+;
If the amount of thermally decomposable organic matter is greater than 0.5% and the (01s/C15) ratio by ESCA is greater than 0.4%, the inactivation of the fiber surface will be insufficient and the strength of the resin-impregnated strand will decrease. decreases, and resin dependence also increases.

以下、本発明の炭素繊維の製造法について、その−態様
を具体的に説明する。
Hereinafter, aspects of the carbon fiber manufacturing method of the present invention will be specifically explained.

まず、このような本発明の炭素繊維は、従来公知のll
5Sの向上を目的として炭素繊維の表面に官能基を形成
させる電解処理方法または炭素繊維の製造工程で形成さ
れた繊維表面の傷などを除去することを目的として、濃
厚、かつ高温の無機酸でエツチングした後、高温の不活
性雰囲気中で加熱して、上記酸処理によって形成された
11Ii維表面の官能基を除去する方法のいずれによっ
ても得ることができない。
First, the carbon fiber of the present invention is manufactured by conventionally known ll
The electrolytic treatment method that forms functional groups on the surface of carbon fibers for the purpose of improving 5S, or the purpose of removing scratches on the fiber surface formed during the manufacturing process of carbon fibers, is performed using a concentrated and high temperature inorganic acid. It cannot be obtained by any of the methods of etching and then heating in a high temperature inert atmosphere to remove the functional groups on the surface of the 11Ii fibers formed by the acid treatment.

すなわち、電解処理の場合は、実質上炭素繊維の表面に
I LSSを向上せしめるための官能基が形成されるだ
けであり、炭素繊維そのものの機械的強度の大幅な向上
には全く寄与しないし、また、)層厚無機酸によるエツ
ヂング処理後、不活性化処理することによって得られる
炭素繊維は、ある程度機械的強度が向上する(プれども
、530Kg/mm2以上という平均単繊維強度を有す
るものを得ることは実際上不可能であり、しかもこの方
法によって得られた炭素繊維は、樹脂依存性が太きく、
650にΩ/mm2以上という高度の樹脂ス]・ランド
強度を有する繊維を得ることはできないのである。
That is, in the case of electrolytic treatment, functional groups for improving ILSS are essentially formed on the surface of the carbon fiber, and it does not contribute at all to a significant improvement in the mechanical strength of the carbon fiber itself. In addition, the mechanical strength of carbon fibers obtained by etching with an inorganic acid and then inactivation improves to some extent (although carbon fibers with an average single fiber strength of 530 kg/mm2 or more In addition, the carbon fibers obtained by this method are highly resin-dependent;
It is therefore impossible to obtain fibers having a high resin land strength of 650Ω/mm2 or higher.

すなわち、本発明の方法は、基本的には炭素繊維を硝酸
イオンを必須成分として含有する高温の電解質水溶液中
で電解処理する、すなわち、炭素繊維の結晶性をできる
だけ損うことなく、電気・化学的に酸化する、換言すれ
ば、この処理にJ:る繊維の非晶化を繊維の極く限られ
た最表面、すなわち超薄最外層領域に止め、次いで不活
性雰囲気中で加熱処理して、該電解・酸化によって該表
層部領域に形成された官能基を実質的に不活性化または
脱官能基化する、より具体的には、前記熱分解性有機物
の量が0.05〜05重量%およびX線電子分光法(E
SCA)によって検出される(01S/C15)比が約
0.1〜0.4の範囲内になるように不活性化処理して
、繊維表面に形成された表層部の官能基を実質的に除去
する方法が適用される。
That is, the method of the present invention basically involves electrolytically treating carbon fibers in a high-temperature aqueous electrolyte solution containing nitrate ions as an essential component. In other words, the amorphization of the fibers subjected to this treatment is limited to the very limited outermost surface of the fibers, that is, the ultra-thin outermost layer region, and then heat-treated in an inert atmosphere. , to substantially inactivate or defunctionalize the functional groups formed in the surface region by the electrolysis and oxidation, more specifically, the amount of the thermally decomposable organic substance is 0.05 to 0.5% by weight. % and X-ray electron spectroscopy (E
Inactivation treatment is performed so that the (01S/C15) ratio detected by SCA) is within the range of about 0.1 to 0.4, and the functional groups in the surface layer formed on the fiber surface are substantially removed. A method of removal is applied.

ここで、上記本発明の処理に供される炭素繊維−12= は、その機械的強度が大きければ大きいものほど本発明
の処理によって得られる炭素繊維の強度も大きくなるの
で有利である。
Here, it is advantageous for the carbon fiber-12= to be subjected to the treatment of the present invention because the greater its mechanical strength, the greater the strength of the carbon fiber obtained by the treatment of the present invention.

たとえば、本発明の方法によって処理された後の炭素繊
維の平均単繊維引張り強度が少なくとも530KO/m
m2以上、好ましくは550KCI/mm2以上の強度
を有する炭素繊維を得るためには、原料炭素繊維として
、たとえばその平均用i維強度が少なくとも4.50K
O/mm2)好ましくは480Kg/mm2以上である
ことが望ましい。
For example, the average single fiber tensile strength of the carbon fibers after being treated by the method of the invention is at least 530 KO/m
In order to obtain carbon fibers having a strength of 550KCI/mm2 or more, preferably 550KCI/mm2 or more, the raw material carbon fibers must have an average i-fiber strength of at least 4.50K.
O/mm2) preferably 480 Kg/mm2 or more.

そして、このような相対的に平均単繊維強度の大きい原
料炭素繊維は、硝酸イオンを必須成分とする電解質水溶
液中で電気・化学的に処理され、該炭素繊維の内部はも
ちろんその表面層の結晶性をできる限り損うことなしに
、繊維表面に存在する欠陥、付着物および構造歪などを
選択的、かつ効率的に除去または減少および緩和するこ
とが必要である。
Then, such raw material carbon fibers with relatively high average single fiber strength are electro-chemically treated in an electrolyte aqueous solution containing nitrate ions as an essential component, and the crystals of the surface layer as well as the inside of the carbon fibers are treated. It is necessary to selectively and efficiently remove, reduce, and alleviate defects, deposits, structural distortions, etc. existing on the fiber surface without impairing properties as much as possible.

このような原料炭素繊維の結晶性を損傷するこ−13= となく、該原料炭素繊維を処理するためには、原料炭素
繊維の摩擦係数が0.25以上、好ましくは0.28〜
0.60.その平均単繊維直径が5゜5μm以下、好ま
しくは4.5μm以下、窒素含有量が1〜8%、好まし
くは2〜7%およびアルカリ金属および遷移金属の合計
含有量が3001)pm以下、好ましくは1o’opp
m以下であることが望ましい。すなわち、摩擦係数が0
.25よりも小さい原料炭素繊維はその表面平滑性が低
過ぎるためか前記電気・化学的酸化処理によって繊維の
結晶性が損われ易いし、他方、摩擦係数は大きければ大
きいほど好ましいが、摩擦係数が0゜60を越える著し
く表面の平滑な原料炭素繊維は実際上製造が困難である
、すなわち、このような平滑な炭素繊維の製造には、そ
の製造原料であるプレカーサそのものが十分に平滑でな
げなければならないが、このような平滑な表面を有する
プレカーサの製造が困難なことおよび表面が平滑なプレ
カーサはその耐炎化および炭化の焼成工程で単繊維相互
間に融着が発生し易くなり、機械的強度の高い原料炭素
繊維の製造が困難になる。もちろん本発明の処理方法に
おいても、平滑な原おl炭素繊維からはより平滑な炭素
繊維が得られるが、得られる炭素繊維が平滑であるとい
うことは、炭素繊維の集束性を向上さ−Vるのでより好
ましいことである。
In order to process the raw carbon fiber without damaging the crystallinity of the raw carbon fiber, the friction coefficient of the raw carbon fiber should be 0.25 or more, preferably 0.28 to 0.28.
0.60. The average single fiber diameter is 5.5 μm or less, preferably 4.5 μm or less, the nitrogen content is 1 to 8%, preferably 2 to 7%, and the total content of alkali metals and transition metals is 3001) pm or less, preferably is 1o'opp
It is desirable that it be less than m. In other words, the coefficient of friction is 0.
.. The crystallinity of raw carbon fibers smaller than 25 is likely to be damaged by the electrochemical oxidation treatment, perhaps because the surface smoothness is too low. It is actually difficult to manufacture raw carbon fibers with an extremely smooth surface exceeding 0°60. In other words, in order to manufacture such smooth carbon fibers, the precursor itself, which is the raw material for its manufacture, must be sufficiently smooth. However, it is difficult to manufacture a precursor with such a smooth surface, and a precursor with a smooth surface tends to cause fusion between single fibers during the firing process for flame resistance and carbonization, making it difficult to mechanically It becomes difficult to produce raw material carbon fiber with high strength. Of course, even in the treatment method of the present invention, smoother carbon fibers can be obtained from smooth raw carbon fibers, but the fact that the obtained carbon fibers are smooth means that the cohesiveness of the carbon fibers is improved. This is more preferable.

また、原料炭素繊維の繊維直径が5.5μmを越えると
きは、原おl炭素線の平均単繊維強度が低くなり易い、
すなわち450Kg/mm2を越える原料炭素繊維を製
造し難くし、処理によって得られる炭素繊維の直径が大
きくなり、その柔軟性や高次加工性が低くなるので好ま
しくない。
In addition, when the fiber diameter of the raw carbon fiber exceeds 5.5 μm, the average single fiber strength of the raw carbon fiber tends to be low.
That is, this is not preferable because it makes it difficult to produce raw carbon fibers exceeding 450 kg/mm2, increases the diameter of the carbon fibers obtained by treatment, and reduces its flexibility and high-order processability.

原料炭素繊維の窒素含有量については、その値が8%を
越えるときは、原料炭素繊維の炭化が十分でない、すな
わち強度的おj:び緻密性の点で十分でなく、電気・化
学的酸化処理ににつで繊維の結晶性が損われ易くなるの
で好ましくないし、1%よりも低いときは、該電気・化
学的酸化処理によって炭素繊維内に黒鉛と硝酸イオンと
の層間化合物が形成され易く、得られる炭素繊維の樹脂
金浸ストランド強度が低下するので好ましくない。
Regarding the nitrogen content of the raw material carbon fiber, when the value exceeds 8%, the carbonization of the raw material carbon fiber is insufficient, that is, the strength and density are insufficient, and electrochemical oxidation This is not preferable because the crystallinity of the fiber is likely to be damaged by the treatment, and if it is less than 1%, an intercalation compound of graphite and nitrate ions is likely to be formed within the carbon fiber due to the electrochemical oxidation treatment. This is not preferable because the resin-gold immersed strand strength of the resulting carbon fibers decreases.

最後に、原料炭素繊維中に含有されるアルカリおよび遷
移金属の量については、その合計量が300ppmを越
えるときは、該電気・化学的酸化処理において、上記金
属が酸化触媒として作用し、炭素繊維表層部の酸化を不
均一にし、機械的強度の向上を抑制するので好ましくな
いのである。
Finally, regarding the amounts of alkali and transition metals contained in the raw material carbon fiber, if the total amount exceeds 300 ppm, the above metals act as an oxidation catalyst in the electrochemical oxidation treatment, and the carbon fiber This is undesirable because it makes the oxidation of the surface layer uneven and suppresses improvement in mechanical strength.

この平均単繊維引張り強度が450KO/mm2以上で
、摩擦係数が0.25以上の表面が平滑で緻密な繊維構
造を有する上記原料炭素繊維の製造方法としては、たと
えば繊維製造用の前駆体繊維(プレカーザ)として、緻
密性の高い、具体的には後述するヨード吸着量(Δ1−
)で表示して5〜45、好ましくは10〜30のアクリ
ロニトリル(以下、ΔNと略す)を主成分とする重合体
を用いて、紡糸原液を一旦空気や不活性雰囲気中に吐出
した後、吐出糸条を凝固浴に導いて凝固せしめる、いわ
ゆる乾・湿式紡糸法を適用することによって得られる表
面平滑性、緻密性に富む繊維を使用するのがよい。
As a method for producing the above-mentioned raw material carbon fiber having an average single fiber tensile strength of 450 KO/mm2 or more, a friction coefficient of 0.25 or more, and a smooth surface and dense fiber structure, for example, precursor fibers for fiber production ( As precursor), highly dense iodine adsorption amount (Δ1-
) using a polymer whose main component is acrylonitrile (hereinafter abbreviated as ΔN) with an index of 5 to 45, preferably 10 to 30, and the spinning stock solution is once discharged into air or an inert atmosphere, and then discharged. It is preferable to use fibers with high surface smoothness and denseness obtained by applying the so-called dry/wet spinning method in which the yarn is introduced into a coagulation bath and coagulated.

そして、該プレカーザの焼成、すなわち酸化(耐炎化)
、炭化条件としては、繊維表面の傷、内部ボイドなどの
構造的欠陥、不純物などの付着物および歪などの少ない
炭素繊維か得られる条件を設定するのがよい。
Then, the precursor is fired, i.e. oxidized (flame resistant)
It is preferable to set carbonization conditions such that carbon fibers with less structural defects such as scratches on the fiber surface and internal voids, less deposits such as impurities, and less distortion are obtained.

すなわち、炭素繊維は、合成繊維のような製造プロセス
に比較すると、極めて苛酷な製造プロセスを経由してお
り、特に高温度で処理した場合に急激な温度の上昇に晒
されると、炭素繊維に構造的欠陥が形成され易くなるか
ら、炭化条件としてはこのような欠陥の生じない条件、
たとえば、300〜700’Cおよび1000〜120
0’b度領域における昇温速度を約’l000℃/分以
下、好ましくは500’C/分以下として炭化するのが
よい。
In other words, carbon fibers go through an extremely harsh manufacturing process compared to those for synthetic fibers, and when exposed to sudden increases in temperature, especially when processed at high temperatures, carbon fibers undergo structural damage. Since defects are likely to be formed, the carbonization conditions should be conditions in which such defects do not occur.
For example, 300-700'C and 1000-120'C
Carbonization is preferably carried out at a heating rate of about 1,000°C/min or less, preferably 500'C/min or less in the 0'b degree range.

炭化の最高温度については、得られる炭素繊維の窒素含
有量が目安となり、炭化滞留時間の影響もあるが、この
窒素含有量が1〜8%の範囲内になるように調整するの
がよく、たとえば最高温度としては、1100〜190
0’C,好ましくは1200〜1700’Cに設定する
のがよい。
The maximum temperature for carbonization is determined by the nitrogen content of the obtained carbon fiber, and is influenced by the carbonization residence time, but it is best to adjust the nitrogen content to within a range of 1 to 8%. For example, the maximum temperature is 1100 to 190
It is recommended to set the temperature to 0'C, preferably 1200 to 1700'C.

また、アルカリおよび遷移金属の合計含有量を300p
pm以下にするためには、AN共重合体の共重合成分と
して当該金属の含有量の少ないモノマを選択、使用し、
かつプレカーザの製造工程において、これらの金属の導
入を避けるために、使用する溶剤、製造用水なども該金
属の含有量ができるだけ少ないもの、たとえば当該金属
の含有量が51)l)m以下の溶剤および用水を使用す
べきである。
In addition, the total content of alkali and transition metals is 300p.
pm or less, select and use a monomer with a low content of the metal as a copolymerization component of the AN copolymer,
In addition, in order to avoid the introduction of these metals in the manufacturing process of Precasa, the solvent and manufacturing water used must be ones that have as little metal content as possible, for example, solvents with a metal content of 51)l)m or less. and irrigation water should be used.

さらに電気・化学的酸化処理に使用する電解液および水
洗水としも、上記アルカリおよび遷移金属の含有量がで
きるだけ少ないもの、たとえばその合計量が30 I)
 pm以下、好ましくは1 oppm以下のものを使用
するのがよい。
Furthermore, the electrolytic solution and washing water used in the electrochemical oxidation treatment must have as low a content of the alkali and transition metals as possible, for example, a total amount of 30 I).
pm or less, preferably 1 oppm or less.

かくして得られる炭素繊維は、硝酸イオンを必須成分と
して含有する無機電解質水溶液中で電気化学的に酸化処
理されるが、酸化が炭素繊維の表面に止まり、内層部に
及ぶのを防止するために、硝酸イオンの濃度が0.1〜
15規定、好ましくは1〜11規定、電解液温度が40
〜120’C1好ましくは50〜100℃、電解処理時
の電気量が繊維1g当り50〜600クーロン、好まし
くは100〜500クーロン、処理時間が0.05〜1
0分、好ましくは0.1〜3分間の条件下で処理するの
がよい。
The carbon fiber thus obtained is electrochemically oxidized in an inorganic electrolyte aqueous solution containing nitrate ions as an essential component, but in order to prevent the oxidation from stopping at the surface of the carbon fiber and spreading to the inner layer, The concentration of nitrate ions is 0.1~
15 normal, preferably 1 to 11 normal, and the electrolyte temperature is 40
~120'C1 Preferably 50 to 100°C, the amount of electricity during electrolytic treatment is 50 to 600 coulombs per 1 g of fiber, preferably 100 to 500 coulombs, and the treatment time is 0.05 to 1
The treatment is preferably carried out for 0 minutes, preferably 0.1 to 3 minutes.

上記電解質濃度、温度、処理時間および電気量が上記範
囲よりも低い場合は、該電気化学的酸化処理によって炭
素繊維表層部の欠陥、構造歪を有効に減少、緩和するこ
とができないし、また、これらの条件が上記範囲の上限
をはずれると、炭素繊維の内層部まで酸化が進行し、酸
化によって形成された非晶化層の官能基を不活性化、す
なわち脱官能基化することができなくなるので好ま1ノ
くない。
If the electrolyte concentration, temperature, treatment time and amount of electricity are lower than the above ranges, the electrochemical oxidation treatment cannot effectively reduce or alleviate defects and structural distortion in the carbon fiber surface layer, and If these conditions are outside the upper limits of the above ranges, oxidation will progress to the inner layer of the carbon fiber, making it impossible to inactivate the functional groups in the amorphous layer formed by oxidation, that is, to defunctionalize them. So I don't like it.

このような酸化処理を施された炭素繊維は、水洗、乾燥
された後、たとえば、窒素、ヘリュウム、アルゴンなど
の不活性気体雰囲気または水素もしくは水素化合物中な
どの還元性雰囲気中で高温下、たとえば600〜900
’C,好ましくは650〜= 19− 850’Cの温度範囲で0.1〜10分間、好ましくは
0.2〜2分間加熱処理され、前記電気化学的酸化処理
によって繊維の表層部に形成された官能基を不活性化し
、該炭素繊維の熱分解性有機物の含有量を0.05〜0
5重量%、好ましくは0.1〜0.4%およびFSCA
ににって検出される(01S/C15)比を約0.1〜
0.4、好ましくは0.15〜0.3の範囲内にするの
がよい。
After being washed with water and dried, the carbon fibers subjected to such oxidation treatment are subjected to high temperature e.g. 600-900
'C, preferably in the temperature range of 650 to 19-850'C for 0.1 to 10 minutes, preferably 0.2 to 2 minutes, and is formed on the surface layer of the fiber by the electrochemical oxidation treatment. The content of thermally decomposable organic matter in the carbon fiber is reduced from 0.05 to 0.
5% by weight, preferably 0.1-0.4% and FSCA
The (01S/C15) ratio detected by
0.4, preferably within the range of 0.15 to 0.3.

この不活性化処理の加熱温度および加熱時間が上記範囲
外になると、熱分解性有機物の含有量a3よび(Ch 
s/C1s>比が上記範囲外になり易く、該表層部の不
活性化が不充分となり、該表層部の官能基が実質的に脱
官能基化されなくなって、樹脂依存性の小さい繊維が得
られなくなったり、あるいはこの不活性化処理によって
炭素繊維の)幾械的強度が低下するので好ましくない。
If the heating temperature and heating time of this inactivation treatment are outside the above range, the content of thermally decomposable organic matter a3 and (Ch
s/C1s> ratio is likely to be outside the above range, the surface layer portion is not sufficiently inactivated, and the functional groups in the surface layer portion are not substantially defunctionalized, resulting in fibers with low resin dependence. This is not preferable because it may not be possible to obtain carbon fibers or the mechanical strength of the carbon fibers may be reduced due to this inactivation treatment.

ここで、単繊維摩擦係数、熱分解性有機物量、X線光電
子分光法(FSCA)、平均単繊維強度、樹脂含浸スト
ランド強度、Δ1−、アルカリおよび溢移金属含有量、
平均単繊維直径は次の測定法にしたがって測定された値
でおる。
Here, single fiber friction coefficient, amount of pyrolyzable organic matter, X-ray photoelectron spectroscopy (FSCA), average single fiber strength, resin-impregnated strand strength, Δ1-, alkali and spilled metal content,
The average single fiber diameter is a value measured according to the following measurement method.

111i帷摩擦係数 JIS−1−1015に規定されている測定法に準じて
、溶媒で繊維に付着しているザイジング剤などを除去し
た炭素繊維を試料として、金属(梨地、クロムメッキ表
面)に対する静摩擦係数をシーグ一式摩擦係数試験機を
用いて測定した。
111i Coefficient of Friction According to the measurement method specified in JIS-1-1015, the static friction against metal (matte finish, chrome plated surface) is measured using carbon fiber as a sample after removing the sizing agent attached to the fiber with a solvent. The coefficient was measured using a Sieg complete friction coefficient tester.

熱分解性有機物量 約20mClの炭素繊維(サンプル)を溶剤で洗浄し、
*rrtt表面に付着するサイジングなどを除去し、柳
本製作所製のCI−I Nコーダー・MT−3型装置を
用いて、次の条件で測定した。
A carbon fiber (sample) with a pyrolyzable organic content of about 20 mCl was washed with a solvent,
*The sizing etc. adhering to the rrtt surface were removed, and measurement was performed using a CI-IN coder MT-3 model manufactured by Yanagimoto Seisakusho under the following conditions.

CHNコーダーの試料燃焼炉を950’C,酸化炉を8
50’C,還元炉を550’Cにそれぞれ昇温し、ヘリ
ュウムを180m1Z分の速度で流し、上記洗浄し炭素
繊維を精密に秤量した後、前記試利燃焼炉に入れる。
CHN coder sample combustion furnace at 950'C, oxidation furnace at 8
The temperature of the carbon fibers was raised to 50'C and the reduction furnace to 550'C, helium was flowed at a rate of 180ml/Z, and the washed carbon fibers were accurately weighed and placed in the trial combustion furnace.

吸引ポンプを用いて該試料燃焼炉中の分解ガスの一部を
約5分間、酸化炉および還元炉を経由して吸引した後、
CHN]−ブーの熱伝導度型検出器によって002Mと
して定量し、検量によって熱分解性有機物量を試料に対
する0wt%として求める。
After sucking a part of the cracked gas in the sample combustion furnace through the oxidation furnace and reduction furnace for about 5 minutes using a suction pump,
CHN]-Bu's thermal conductivity type detector as 002M, and the amount of thermally decomposable organic matter is determined by calibration as 0 wt% with respect to the sample.

この測定法のメリットは、通常のC,H,N元素分析装
置のように、酸素ガスを流さないで、ヘリュウムガスの
みの雰囲気下で炭素繊維を加熱することにより、炭素繊
維中のGo、CO2,CH4となの熱分解性有機物量を
定量できることである。
The advantage of this measurement method is that it heats the carbon fibers in an atmosphere of helium gas only, without flowing oxygen gas, unlike a normal C, H, N elemental analyzer. , CH4 and the like can be quantified.

X線光電子分光法(FSCA) 具体的な装置として、国際電機(株)製のモデルFS−
200を用いた。
X-ray photoelectron spectroscopy (FSCA) A specific device is model FS- manufactured by Kokusai Denki Co., Ltd.
200 was used.

炭素繊維(サンプル)を溶剤で洗浄し、サイジングなど
の表面付着物を除去した後、該炭素繊維をカッ1〜し、
銅製の試料支持台上に拡げて並べた= 22− 後、X線源としてAIKα1,2を用い、試料チャンバ
ー中を1 * 10E−8To r rに保つ。そして
運動エネルギーが955eVの01Sピ一ク面積および
1202eVのC1Sピーク面積の比から表面酸素原子
/表面炭素原子<018/C1S〉の比を求める。
After cleaning the carbon fiber (sample) with a solvent and removing surface deposits such as sizing, the carbon fiber is cut,
After spreading and arranging them on a copper sample support stand, the inside of the sample chamber was maintained at 1*10E-8 Torr using AIKα1,2 as an X-ray source. Then, the ratio of surface oxygen atoms/surface carbon atoms <018/C1S> is determined from the ratio of the 01S peak area with kinetic energy of 955 eV and the C1S peak area with 1202 eV.

窒素含有量 約2gの炭素繊維を採取して精密に秤量した後、柳本制
作所製のCHNコーダー・M丁−3型装置を使用して炭
素、水素、窒素の含有量を測定した。
Carbon fibers having a nitrogen content of approximately 2 g were collected and weighed precisely, and then the contents of carbon, hydrogen, and nitrogen were measured using a CHN coder model M-3 manufactured by Yanagimoto Seisakusho.

平均単繊維強度 JIS−R−7601に規定されている単繊維試験法に
準じて測定した。測定回数100回のの1直の平均値を
以って示した。
Average single fiber strength Measured according to the single fiber test method specified in JIS-R-7601. The average value of one shift of 100 measurements is shown.

樹脂含浸ストランド強度 J I5−R7601に規定されている樹脂含浸ス1へ
ランド試験法に準じて測定した。この場合に次の2種類
の樹脂処方△およびB並びに硬化条件を用いて試験し、
樹脂依存性も併せて評価した。
Resin-impregnated strand strength Measured according to the resin-impregnated strand test method specified in J I5-R7601. In this case, the following two types of resin formulations △ and B and curing conditions were used for testing,
Resin dependence was also evaluated.

樹脂処方 A: ・”BΔKEI  ITF” FRI 4221100
部 ・3−フッ化囲素モノエチルアミン (BF3ME△)       3部 ・アセトン             4部硬化条件:
130’C130分 樹脂処方 B: ・ パエピ]−ト”828 35部 ・N、N、N’−、N−−テトラグリシジルアミノ・ジ
フェニルメタン(”E LM” 434 ”)35部 ・“エピクロン”152      30部。
Resin prescription A: ・"BΔKEI ITF" FRI 4221100
3 parts 3-fluorinated monoethylamine (BF3ME△) 3 parts acetone 4 parts Curing conditions:
130'C130 minutes Resin formulation B: - 35 parts of Paepito'828 - 35 parts of N,N,N'-,N--tetraglycidylamino diphenylmethane ("ELM"434") - 152 30 parts of "Epiclone" Department.

・4,4−−ジアミノシフ■ニルスルホン(DO3> 
      32部 ・BF3MFA          05部硬化条件:
樹脂濃度が55%のメチルエチルケ1ヘン溶液を使用し
て含浸し、硬化条件としては、60’Cの真空乾燥機中
で約12時間脱溶媒した後、180’Cで約2時間加熱
した。
・4,4--diaminosif ■ Nilsulfone (DO3>
32 parts/BF3MFA 05 parts Curing conditions:
Impregnation was carried out using a 55% resin concentration methyl ethyl alcohol solution, and the curing conditions were as follows: desolvation in a vacuum dryer at 60'C for about 12 hours, followed by heating at 180'C for about 2 hours.

各10回のストランド強度の試験値の平均値を以って示
した。
The average value of the strand strength test values obtained 10 times each is shown.

ヨード吸着量(△L) 乾燥したプレカーザ(試別〉を長さ約1cmにカットし
、ハンドカードで開繊した後、精秤して05CIの共栓
付き三角フラスコに入れる。該フラスコにヨード溶液(
I2 :50.76g、2゜4−ジクロロフェノール1
0C]、酢酸90Ωおよびヨウ化カリウム100gを表
裏、11のメスフラスコに移して水で溶解して定容とす
る>100m1を添加して60±05°Cで50分間振
盪しながら吸着処理する。
Amount of iodine adsorption (△L) Cut the dried precursor (trial) into approximately 1 cm length, spread it with a hand card, weigh it accurately, and place it in a 05CI Erlenmeyer flask with a stopper.Add the iodine solution to the flask. (
I2: 50.76g, 2゜4-dichlorophenol 1
0 C], 90 Ω of acetic acid and 100 g of potassium iodide were transferred into a volumetric flask (No. 11), dissolved in water to give a constant volume, and >100 ml was added thereto, followed by adsorption treatment at 60±05° C. with shaking for 50 minutes.

ヨード吸着した試別を流水中で30分間水洗した後、遠
心脱水する。脱水した試11をさらに約2時間風乾した
後、再度ハンドカードで開繊する。
After washing the iodine-adsorbed sample under running water for 30 minutes, it is centrifugally dehydrated. The dehydrated sample No. 11 was further air-dried for about 2 hours, and then opened again using a hand card.

上記のヨード吸着前後の試別につき、繊維方向を揃えて
から、同時に色差計でL値を測定し、ヨード吸着前後の
試料のL値をそれぞれ1−1および1−2として測定す
る。吸着前後のL値の差(I−1−i2) をもってΔLとした。
For the above-mentioned testing before and after adsorption of iodine, after aligning the fiber directions, the L value is simultaneously measured using a color difference meter, and the L values of the samples before and after adsorption of iodine are measured as 1-1 and 1-2, respectively. The difference in L values before and after adsorption (I-1-i2) was defined as ΔL.

アルカリおよび遷移金属含有量 試別をプラズマリアクター(ヤマ1へ斜字社製PR−5
03)を用いて低温灰化し、塩酸に溶解した後、約50
’Cで加熱し、塩酸を飛した後幅硝酸に再溶解して、原
子吸光分析法により測定した。
Alkali and transition metal content testing was performed using a plasma reactor (Yama 1 to Italic Co., Ltd. PR-5).
After low-temperature ashing using 03) and dissolving in hydrochloric acid, about 50
The mixture was heated at 20°C to remove the hydrochloric acid, then redissolved in nitric acid and measured by atomic absorption spectrometry.

試別が水溶液の場合は、適度に濃縮した後、そのまま原
子吸光分析法により測定した。
When the sample was an aqueous solution, it was appropriately concentrated and then directly measured by atomic absorption spectrometry.

平均単繊維直径 繊維糸条の目付と密度から算出した繊維糸条の断面積を
構成フィラメント数で除して平均単lIA維の断面積を
求める。単繊維の断面形状に関係なく、丸断面であると
仮定し、上記平均単繊維断面積から平均単繊維直径を算
出する。
Average Single Fiber Diameter The cross-sectional area of the fiber yarn calculated from the basis weight and density of the fiber yarn is divided by the number of constituent filaments to determine the average cross-sectional area of the single IIA fiber. Regardless of the cross-sectional shape of the single fiber, it is assumed that the single fiber has a round cross section, and the average single fiber diameter is calculated from the average single fiber cross-sectional area.

以下、実施例により本発明の効果を具体的に説明する。EXAMPLES Hereinafter, the effects of the present invention will be specifically explained with reference to Examples.

実施例1 アクリロニ1ヘリル(八N>99.5モル%、イタコン
105モル%からなる固有粘度[η]が1.80のAN
共重合体のジメチルスルホキシド(DMSO>溶液にア
ンモニアを吹込み、該共重合体のカルボキシル末端基の
水素をアンモニュウム基で置換してポリマを変性する。
Example 1 AN having an intrinsic viscosity [η] of 1.80, consisting of acryloni 1-helyl (8N>99.5 mol%, itacon 105 mol%)
A dimethyl sulfoxide (DMSO) solution of the copolymer is bubbled with ammonia to replace the hydrogens of the carboxyl end groups of the copolymer with ammonium groups to modify the polymer.

この変性ポリマの濃度が20重量%であるDMSO溶液
を目開きが3μの焼結金属フィルターを濾材としてシ濾
過し、紡糸原液とする。得られた紡糸原液を孔径0゜1
mm、孔数1500ホールの紡糸口金を通して一旦空気
中に吐出し、約3mmの空間を走行させた後約30’C
,30%DMSO水溶液中に導入して吐出繊維糸条を凝
固させた。
A DMSO solution containing the modified polymer having a concentration of 20% by weight is filtered through a sintered metal filter having a mesh opening of 3 μm to obtain a spinning stock solution. The obtained spinning stock solution was
Once discharged into the air through a spinneret with 1,500 holes and run through a space of about 3 mm, it was heated to about 30'C.
, 30% DMSO aqueous solution to coagulate the discharged fiber yarn.

得られた凝固繊維糸条を水洗し、温水中で4倍に延伸し
て水膨潤、m紐糸条を1qた。この水膨潤繊維糸条をポ
リエチレングリコール(P F G >変性ポリジメチ
ルシロキサン(PFG変性@50重帛%)の0.8%水
溶液とアミノ変性ポリジメチルシロキサンーン〈アミノ
変性量1重量%〉85部とノニオン系界面活性剤15部
からなる0、8%水分散液の混合油剤浴中に浸漬した俊
、表面温度130′Cの加熱ロール上で乾燥、緻密化し
た。乾燥、緻密化した繊維糸条を加熱スチーム中で3倍
に延伸し、単糸繊度が0.6デニール(d)、Iヘータ
ルデニール900 (D>のアクリル系繊維糸条を得た
The obtained coagulated fiber yarn was washed with water and stretched 4 times in warm water to swell with water to obtain 1 q of m string yarn. This water-swollen fiber thread was mixed with a 0.8% aqueous solution of polyethylene glycol (PFG > modified polydimethylsiloxane (PFG modified @ 50% by weight)) and amino-modified polydimethylsiloxane (amino modification amount: 1% by weight) 85 The fibers were immersed in a mixed oil bath of a 0.8% aqueous dispersion containing 15 parts of a nonionic surfactant and 15 parts of a nonionic surfactant, then dried and densified on a heated roll with a surface temperature of 130'C.The dried and densified fiber The yarn was drawn three times in heated steam to obtain an acrylic fiber yarn with a single filament fineness of 0.6 denier (d) and an I heathal denier of 900 (D>).

得られた繊維糸条の△Lは23であった。The obtained fiber yarn had a ΔL of 23.

なお、上記の紡糸において、DMSOとしてはアルカリ
金属および遷移金属の合計含有量が約lppmである精
製DMSOおよび用水としては上記金属の合計含有量が
約1pl:)mである純水を使用した。得られたアクリ
ルプレカーザ中に含有される上記金属含有量は約50p
pmであった。
In the above spinning, purified DMSO with a total content of alkali metals and transition metals of about 1 ppm was used as DMSO, and pure water with a total content of the above metals of about 1 pl:)m was used as water. The content of the above metals contained in the obtained acrylic precursor is approximately 50p.
It was pm.

この1−一タルデニールが900Dのアクリル系Fia
vL糸条を4本合糸し、リング状ノズルを用いて、圧力
0.7Kq/cm2のI7’−開11&i処理を施し、
24、0〜260’Cの空気中で延伸倍率1.05の下
に加熱し水分率が4.5%の酸化繊維糸条を作成した。
This 1-1 tal denier is 900D acrylic Fia.
Four vL yarns were combined and subjected to I7'-open 11&i treatment at a pressure of 0.7 Kq/cm2 using a ring-shaped nozzle,
24. Oxidized fiber yarn with a moisture content of 4.5% was prepared by heating in air at 0 to 260'C at a draw ratio of 1.05.

次いで、この酸化繊維糸条を最高温度が1400′Cの
窒素雰囲気中で300〜700 ’Cの温度域にお【プ
る昇温速度を約250’C/分、1000〜1200’
Cの温度域における昇温速度を約400°C/分に設定
して炭素化し、炭素繊維糸条を得た。
Next, this oxidized fiber yarn was heated to a temperature range of 300 to 700'C in a nitrogen atmosphere with a maximum temperature of 1,400'C at a heating rate of about 250'C/min, 1,000 to 1,200'C.
Carbonization was carried out by setting the heating rate in the temperature range of C to about 400°C/min to obtain a carbon fiber yarn.

得られた炭素繊維糸条の平均単繊維強度は490Kc+
/mm2)樹脂含浸ストランド強度(樹脂処方A〉は5
90KQ/mm2であツタ。マタ、得られた原料炭素繊
維の摩擦係数は0.41、平均単繊維直径は4.4μ、
アルカリおよび遷移金属の合計含有量は80ppm並び
に窒素含有量は4.2%であった。
The average single fiber strength of the obtained carbon fiber yarn was 490Kc+
/mm2) Resin-impregnated strand strength (resin formulation A> is 5
Ivy at 90KQ/mm2. The friction coefficient of the raw carbon fiber obtained was 0.41, the average single fiber diameter was 4.4μ,
The total content of alkali and transition metals was 80 ppm and the nitrogen content was 4.2%.

かくして得られた原料炭素繊維糸条を温度80’c、s
度5規定の硝酸水溶液(アルカリおよび遷移金属の合計
含有量10DDm)を満した処理浴槽中に、セラミック
ス製ガイドを介して導入し、糸速0.3m/分で連続的
に走行さμ“、かつ処理浴槽の直前に設置した金R製ガ
イドローラによって該炭素繊維糸条に陽電圧を印加し、
処理浴槽中に設置した陰極板との間に0.12Aの電流
を通した。ここで炭素繊維糸条の処理浴槽にあける浸漬
長は約0.2mS処理時間は約40秒、炭素繊維10当
りの電気量は150クーロンであった。
The raw carbon fiber yarn thus obtained was heated to a temperature of 80'C, s.
The yarn was introduced through a ceramic guide into a treatment bath filled with an aqueous solution of nitric acid (total content of alkali and transition metals: 10 DDm) with a standard temperature of 5°C, and was continuously run at a yarn speed of 0.3 m/min. and applying a positive voltage to the carbon fiber yarn using a gold R guide roller installed just before the treatment bath;
A current of 0.12 A was passed between the cathode plate and the cathode plate installed in the treatment bath. The immersion length of the carbon fiber yarn in the treatment bath was approximately 0.2 mS, the treatment time was approximately 40 seconds, and the amount of electricity per 10 carbon fibers was 150 coulombs.

このような電気化学的酸化処理の施された炭素繊維糸条
をアルカリおよび遷移金属の合計含有量が1pDmの水
洗浴中で水洗し、約200’Cの加熱空気中で乾燥した
後、700’Cの窒素雰囲気中で約1分間加熱して、前
記処理によって形成された繊維中の官能基を脱官能基し
た。得られた炭素繊維糸条の平均単繊維強度および樹脂
処方AおよびBの樹脂含浸ストランド強度を測定した結
果、それぞれ600Kg/mm2.730KO/mm2
および720Kg/mm2 であツタ。
The carbon fiber yarn subjected to such electrochemical oxidation treatment was washed in a water washing bath with a total content of alkali and transition metal of 1 pDm, dried in heated air at about 200'C, and then heated at 700'C. C. for about 1 minute in a nitrogen atmosphere to defunctionalize the functional groups in the fibers formed by the treatment. The average single fiber strength of the obtained carbon fiber yarn and the resin impregnated strand strength of resin formulations A and B were measured, and the results were 600 Kg/mm2.730 KO/mm2, respectively.
and ivy at 720Kg/mm2.

かくして得られた炭素繊維の摩擦係数は0.43、平均
単、Ill直径は4.4μm、アルカリおよび遷移金属
の合計含有量は9oppmおよび窒素含有量は4.2%
であり、熱分解性有機物量は0゜25重量%おにびFS
C△によって検出される(Ch S/C15)比は0.
20であった。
The friction coefficient of the carbon fiber thus obtained was 0.43, the average single diameter was 4.4 μm, the total alkali and transition metal content was 9 oppm, and the nitrogen content was 4.2%.
The amount of thermally decomposable organic matter is 0°25% by weight of Onibi FS.
The (Ch S/C15) ratio detected by CΔ is 0.
It was 20.

次に、この炭素1紺を補強繊維とし、71〜リツクス樹
脂として樹脂処方Bの組成を有する樹脂を使用し樹脂含
浸ストランド強度を測定したところ、その引張破断強度
は365KQ/mm2であった。
Next, the strength of the resin-impregnated strand was measured using the carbon 1 navy blue as a reinforcing fiber and a resin having the composition of resin formulation B as the 71-Rix resin, and the tensile strength at break was 365 KQ/mm2.

ここで、上記引張破断強度の測定には、次の条件下で行
ったものである。
Here, the tensile strength at break was measured under the following conditions.

まず、樹脂処方Bに示した樹脂の55%メチルエヂルケ
トン溶液を炭素繊維に含浸し、この樹脂含浸炭素繊維を
金型内に引揃えて積層し、65℃の真空乾燥機内で約1
時間予熱し、さらに3mm1−I Cl以下の減圧下で
65°Cで約12時間、135°Cで約5分間の減圧I
BM泡処理を行った。その後、加熱プレス機に移して、
180’Cで約10分間予熱した後、3KCI/Cm2
の圧力でプレスしたまま180’Cで2時間加熱処理し
て、厚さが1.6mmの複合tJ il平板を作成した
First, carbon fibers are impregnated with a 55% methyl edyl ketone solution of the resin shown in resin formulation B, and the resin-impregnated carbon fibers are stacked in a mold, and dried in a vacuum dryer at 65°C for about 10 minutes.
Preheat for an additional 12 hours at 65°C under reduced pressure below 3 mm 1-I Cl, then reduce pressure I at 135°C for approximately 5 minutes.
BM foam treatment was performed. Then, transfer it to a hot press machine,
After preheating at 180'C for about 10 minutes, 3KCI/Cm2
A composite tJil flat plate having a thickness of 1.6 mm was prepared by heat treatment at 180'C for 2 hours while being pressed under a pressure of .

この平板から長さく繊維軸方向>150mm。The length from this flat plate is >150 mm in the fiber axis direction.

巾6mm厚さ1.6mmの試験片を切出し、グリップの
滑り防止のために該試験片の両端の表央両面に長さ45
mm、巾1mmのアルミ板を接着剤(東亜合成化学社製
“アロンアルファ゛′)で接着する。
A test piece with a width of 6 mm and a thickness of 1.6 mm was cut out, and a length of 45 mm was placed on both sides of the front and center of the test piece to prevent the grip from slipping.
Aluminum plates with a width of 1 mm and a width of 1 mm are adhered using an adhesive ("Aron Alpha'" manufactured by Toagosei Kagaku Co., Ltd.).

この試験片をインストロン引張試験機を使用して引張速
度5mm/分で引張り、破断強力を測定し、これを試験
片の断面積で除して引張破断強度を求めた。
This test piece was pulled at a tensile rate of 5 mm/min using an Instron tensile tester, the breaking strength was measured, and this was divided by the cross-sectional area of the test piece to determine the tensile breaking strength.

なお、上記試験片の炭素繊維とマトリックス樹脂の体積
分率は、はぼ60%対40%であった。
The volume fractions of carbon fiber and matrix resin in the test piece were approximately 60% to 40%.

この炭素繊維を315°Cの空気中に300時間放置し
た後の重量減少率から、該炭素繊維の耐酸化性を調べた
結果、重量減少率は2.7%で優れた耐酸化性を示した
The oxidation resistance of this carbon fiber was investigated based on the weight loss rate after leaving it in air at 315°C for 300 hours. As a result, the weight loss rate was 2.7%, indicating excellent oxidation resistance. Ta.

さらに、この炭素繊維をエポキシ系サイジング剤の有機
溶媒溶液中にローラを介して連続的に浸漬した後、乾燥
しサイジング剤を約05%付着ざ甘、得られたサイジン
グ処理炭素繊維について、次の試験法によりその際過毛
羽発生数を測定した結果、5個/mという値を示し優れ
た耐擦過性を有していることが判明した。
Furthermore, this carbon fiber was continuously immersed in an organic solvent solution of an epoxy sizing agent via a roller, and then dried so that about 0.5% of the sizing agent was attached. As a result of measuring the number of excessive fluffs generated using a test method, it was found to have a value of 5 pieces/m, indicating that it had excellent abrasion resistance.

擦過毛羽発生数の測定法 測定装置として、表面が平滑な直径10mmのステンレ
ス製の棒5本を5Qcm間隔で各々平行に、かつそれら
の表面を炭素繊維糸条が120゜の接触角で接触しなが
ら通過するように該棒をジグザグに配置した擦過装置を
使用した。
Method for Measuring the Number of Fuzz Generation As a measuring device, five stainless steel rods with a diameter of 10 mm with smooth surfaces were placed parallel to each other at intervals of 5 Q cm, and carbon fiber threads contacted the surfaces at a contact angle of 120°. A scraping device was used in which the rods were arranged in a zigzag manner so as to pass through the rods.

この装置により炭素繊維糸条に1デニール当り0゜08
C1の入り側張力を与えて、3m/分の糸速で通過せし
め、側面から繊維糸条に対し直角ににレーザー光線を照
射し、発生した毛羽数を毛羽検出装置で検出、カウント
し、炭素繊維糸条1m当りの毛羽個数(個/m)で表示
した。
With this device, the carbon fiber yarn is 0°08 per denier.
Applying tension on the entry side of C1, the yarn is passed through at a speed of 3 m/min, a laser beam is irradiated from the side at right angles to the fiber yarn, and the number of fuzz generated is detected and counted by a fuzz detection device. It was expressed as the number of fuzz pieces per meter of yarn (pieces/m).

実施例2〜3、比較例1 AN99.5モル%とイタコン酸05モル%とからなる
AN共重合体(極限粘度[η]1.80)をアンモニア
で変性し、この変性ポリマの濃−33= 度が20重量%のDMSO溶液を作成した。この溶液を
充分に)濾過し、60°Cの温度に調整した紡糸原液を
孔径0.05mm、ホール数3000の紡糸口金を通し
て、濃度50%、温度60°CのDMSO水溶液中に凝
固引取り速度をそれぞれ5゜15および25m/分で吐
出した。
Examples 2 to 3, Comparative Example 1 An AN copolymer (intrinsic viscosity [η] 1.80) consisting of 99.5 mol% AN and 05 mol% itaconic acid was modified with ammonia, and the concentration of this modified polymer was = A DMSO solution with a strength of 20% by weight was prepared. This solution was thoroughly filtered, and the spinning stock solution adjusted to a temperature of 60°C was passed through a spinneret with a pore diameter of 0.05 mm and a number of holes of 3000, and coagulated into a DMSO aqueous solution with a concentration of 50% and a temperature of 60°C at a take-up speed. were discharged at 5°15 and 25 m/min, respectively.

凝固繊維糸条を水洗後、熱水中で4倍に延伸した後、シ
リコーン系油剤を付与した後、130〜160’Cに加
熱されたローラ表面に接触させて乾燥・緻密化し、さら
に加圧スチーム中で3倍に延伸して単繊維繊度が0.6
デニール(d>、lヘ−タルデニールが1800(D)
の3水準のアクリル系繊維プレカーサを得た。これらの
プレカーサの八り値は、それぞれ紡糸速度5m/分のも
のは38、紡糸速度44m〜分のものが44、紡糸速度
25m/分のものが53であった。
After washing the coagulated fiber threads with water, they are stretched four times in hot water, applied with a silicone oil, and then brought into contact with a roller surface heated to 130 to 160'C to dry and densify them, and then pressurized. Single fiber fineness is 0.6 after being stretched 3 times in steam.
Denier (d>, l Hetal denier is 1800 (D)
Three levels of acrylic fiber precursors were obtained. The occlusion values of these precursors were 38 at a spinning speed of 5 m/min, 44 at a spinning speed of 44 m/min, and 53 at a spinning speed of 25 m/min.

これらのプレカーサを夫々2本合糸し、実施例1と同様
にして、エアー開繊処理、並びに酸化、炭化して、3水
準の原料炭素繊維を作成した。
Two of each of these precursors were doubled, and in the same manner as in Example 1, they were air-opened, oxidized, and carbonized to produce three levels of raw carbon fibers.

得られた原料炭素繊維糸条の力学的性質およびその伯の
物性を測定した結果、第1表に示す通りであった。
The mechanical properties and physical properties of the obtained raw carbon fiber yarn were measured, and the results were as shown in Table 1.

これら3水準の原料炭素繊維を炭素繊維1g当り400
クーロン/CIの電気量とした以外実施例1と同様の条
件下に電気・化学的に酸化処理し、水洗、乾燥した後、
実施例1と同様に脱官能基化処理した。
These three levels of raw carbon fiber are used at a rate of 400
After electrochemical oxidation treatment under the same conditions as in Example 1 except that the amount of electricity was Coulomb/CI, washed with water, and dried,
Defunctionalization treatment was carried out in the same manner as in Example 1.

得られた炭素繊維の)浅域的性質およびその他の物性を
第1表に示した。
Table 1 shows the shallow-area properties and other physical properties of the obtained carbon fibers.

実h1眉列4および5、比較例2 実施例1と同様にして、アクリル系繊維ブレカーリの紡
糸時のポリマ吐出量を変更することによって、単繊維l
li度がそれぞれ0.4d、0.8dおよび1.1dで
必り、1〜−タルデニールがそれぞれ600D、120
0Dおよび1650Dの3種類のブレカーリを得た。
Actual h1 eyebrow rows 4 and 5, Comparative Example 2 In the same manner as in Example 1, by changing the amount of polymer discharged during spinning of the acrylic fiber Brekali, single fiber l
Li degree is 0.4d, 0.8d and 1.1d respectively, and 1~-tal denier is 600D and 120D respectively.
Three types of brecari, 0D and 1650D, were obtained.

この3種類のブレカーリ−について、それぞれ5本、3
本おJ:び2本合糸したものを実施例1と同様にエアー
開繊処理、酸化および炭化処理して3水準の原料炭素繊
維を作成した。
For these three types of brekari, 5 and 3 pieces respectively.
The two yarns were air-opened, oxidized, and carbonized in the same manner as in Example 1 to prepare raw carbon fibers of three levels.

第1表 得られた原料炭素繊維の物性を第2表に示した。Table 1 Table 2 shows the physical properties of the raw carbon fibers obtained.

これらの原料炭素繊維について、炭素繊維1g当り15
0クーロンの電気量とし、他は実施例1ど同様の条件下
に電気・化学的に酸化処理した後、水洗、乾燥し、次い
で脱官能基化処理した。
Regarding these raw carbon fibers, 15 per gram of carbon fiber
After electro-chemical oxidation treatment under the same conditions as in Example 1 except that the amount of electricity was 0 coulomb, the sample was washed with water, dried, and then defunctionalized.

得られた3水準の炭素繊維の繊維物性並びにコンポジッ
1へ物性を第2表に湿した。
The fiber physical properties of the three levels of carbon fiber obtained and the physical properties of Composite 1 are shown in Table 2.

実施例6〜9、比較例3.4 実施例1におCプる原料炭素繊維の製造において、酸化
繊維糸条の炭化条件として、炭化の最高温度をそれぞれ
1050’C,1150’C11250’C。
Examples 6 to 9, Comparative Example 3.4 In the production of the raw material carbon fiber in Example 1, the maximum carbonization temperature was 1050'C, 1150'C, 11250'C as the carbonization condition of the oxidized fiber yarn, respectively. .

1650″C11850°Cおよび1950’Cに変更
した以外は同様の条件下に炭化し1.5水準の原料炭素
繊維を作成した。
Carbonization was performed under the same conditions except that the temperature was changed to 1650''C, 11850°C, and 1950'C to produce a 1.5 level raw carbon fiber.

得られた原料炭素繊維糸条の繊維物性を第3表に示した
Table 3 shows the fiber properties of the obtained raw carbon fiber yarn.

これら5水準の原料炭素繊維について、電解処理の電気
量を第3表に示す通り変更した以外、実施例1と同様に
電気・化学的に処理し、次いで水洗、乾燥俊、脱官能基
化処理した。
These five levels of raw carbon fibers were electrochemically and chemically treated in the same manner as in Example 1, except that the amount of electricity in the electrolytic treatment was changed as shown in Table 3, and then washed, dried, and defunctionalized. did.

第2表 1ワられた炭素w!絹の物・11を第3表に示した。Table 2 1 wa wasted carbon lol! Silk item No. 11 is shown in Table 3.

比較例5 アクリル系繊維ブレカーサを作+jAするに際して、紡
糸時に使用する用水とししてアルカリ金属を含有する未
精製水(アルカリ金属含有量的61)l)m>を使用し
、アルカリa3よび遷移金属含有量が約300ppmの
アクリル系繊維ブレカーサを得た。
Comparative Example 5 When producing acrylic fiber breaker, unpurified water containing alkali metal (alkali metal content: 61) was used as water used during spinning, and alkali a3 and transition metal An acrylic fiber breaker having a content of about 300 ppm was obtained.

このプレカーサを実施例1と同様の条件下に酸化および
炭化し、アルカリおよび遷移金属の含有量が約/150
pI)m、平均単繊維強度が約470KO/mm2の原
料炭素繊維を得た。
This precursor was oxidized and carbonized under the same conditions as in Example 1, and the content of alkali and transition metals was about /150.
A raw carbon fiber having pI)m and average single fiber strength of about 470 KO/mm2 was obtained.

この原料炭素111i紐を実施例1と同様に、電気・化
学的に酸化処理し、水洗、乾燥後、脱官能単処理した。
This raw carbon 111i string was electrochemically and chemically oxidized in the same manner as in Example 1, washed with water, dried, and then subjected to a single defunctionalization treatment.

得られた炭素繊維の平均単繊維強度は520KCI/m
m2)樹脂処方△による樹脂含浸ストランド強度は62
0KO/mm2であったが、アルカリおよび遷移金属の
合計含有量が510ppmであり、315°Cの空気中
で約300時間加熱()た後の重量減少率は15%で、
耐酸化性に劣ってい−39= 第3表 た。
The average single fiber strength of the obtained carbon fibers was 520 KCI/m
m2) Resin impregnated strand strength with resin prescription △ is 62
The total content of alkali and transition metals was 510 ppm, and the weight loss rate after heating in air at 315 °C for about 300 hours was 15%.
Poor oxidation resistance -39 = Table 3.

比較例6 実施例3の原料炭素繊維の製造において、電解処理液の
調製および水洗に、アルカリ金属の含有量が約501)
Dmの軟水を使用した以外、他は実施例3と同様にして
、原料炭素繊維を得、この炭素繊維を原料として、実施
例3と同一条件下に電気・化学的酸化処理し、次いで脱
官能基処理して、アルカリおよび遷移金属の合計含有量
が約350ppmの炭素繊維を得た。
Comparative Example 6 In the production of the raw material carbon fiber of Example 3, the content of alkali metal was approximately 501) in the preparation of the electrolytic treatment liquid and in the washing with water.
Raw material carbon fibers were obtained in the same manner as in Example 3, except that Dm soft water was used, and this carbon fiber was subjected to electrochemical oxidation treatment under the same conditions as in Example 3, and then defunctionalized. After base treatment, carbon fibers with a total alkali and transition metal content of about 350 ppm were obtained.

この炭素繊維を315°Cの空気中で300時間放置し
た後の重量減少率を測定したところ、11%で必あり、
耐酸化性に欠けていることが判った。
When we measured the weight loss rate of this carbon fiber after leaving it in air at 315°C for 300 hours, it was 11%.
It was found that it lacked oxidation resistance.

実施例10〜15、比較例7〜12 実施例1において、原料炭素繊維の電気化学的酸化処理
および脱官能基処理の条件を第4表に示すように、それ
ぞれ変更して処理した。
Examples 10 to 15, Comparative Examples 7 to 12 In Example 1, the conditions for electrochemical oxidation treatment and defunctionalization treatment of raw carbon fibers were changed as shown in Table 4.

得られた炭素繊維の物性の測定結果を第4表に実施例1
の炭素i維と共に、それぞれ比較して示した。
The measurement results of the physical properties of the obtained carbon fibers are shown in Table 4 for Example 1.
They are shown in comparison with carbon i-fibers.

Claims (4)

【特許請求の範囲】[Claims] (1)少なくとも530Kg/mm^2の平均単繊維引
張強度および650Kg/mm^2以上の樹脂含浸スト
ランド引張強度を有する超高強度コンポジット物性を示
す炭素繊維。
(1) Carbon fibers exhibiting ultra-high strength composite physical properties having an average single fiber tensile strength of at least 530 Kg/mm^2 and a resin-impregnated strand tensile strength of 650 Kg/mm^2 or more.
(2)特許請求の範囲第1項において、炭素繊維の繊維
摩擦係数が少なくとも0.25であり、かつその平均単
繊維直径が5.5μm以下である超高強度コンポジット
物性を示す炭素繊維。
(2) The carbon fiber according to claim 1, which exhibits ultra-high strength composite physical properties in which the carbon fiber has a fiber friction coefficient of at least 0.25 and an average single fiber diameter of 5.5 μm or less.
(3)特許請求の範囲第1〜2項において、炭素繊維に
含有されるアルカリ金属および遷移金属の量が300p
pm以下である超高強度コンポジット物性を示す炭素繊
維。
(3) In claims 1 and 2, the amount of alkali metals and transition metals contained in the carbon fiber is 300p.
Carbon fiber that exhibits ultra-high strength composite physical properties of less than pm.
(4)特許請求の範囲第1〜3項において、炭素繊維の
熱分解性有機物量が約0.05〜0.5重量%およびX
線電子分光法(ESCA)によつて検出される炭素繊維
表面の官能基量(O_1S/C_1S)比が0.1〜0
.4の範囲内である超高強度コンポジット物性を示す炭
素繊維。
(4) In claims 1 to 3, the amount of thermally decomposable organic matter in the carbon fiber is about 0.05 to 0.5% by weight and
The functional group amount (O_1S/C_1S) ratio on the carbon fiber surface detected by ray electron spectroscopy (ESCA) is 0.1 to 0.
.. Carbon fiber exhibiting ultra-high strength composite physical properties within the range of 4.
JP60134224A 1985-06-21 1985-06-21 Carbon fiber with ultra high strength composite properties Expired - Fee Related JPH0737685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60134224A JPH0737685B2 (en) 1985-06-21 1985-06-21 Carbon fiber with ultra high strength composite properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60134224A JPH0737685B2 (en) 1985-06-21 1985-06-21 Carbon fiber with ultra high strength composite properties

Publications (2)

Publication Number Publication Date
JPS61296123A true JPS61296123A (en) 1986-12-26
JPH0737685B2 JPH0737685B2 (en) 1995-04-26

Family

ID=15123320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60134224A Expired - Fee Related JPH0737685B2 (en) 1985-06-21 1985-06-21 Carbon fiber with ultra high strength composite properties

Country Status (1)

Country Link
JP (1) JPH0737685B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01306619A (en) * 1988-05-30 1989-12-11 Toray Ind Inc High-strength and high elastic modulus carbon fiber
JP2006152530A (en) * 2004-11-01 2006-06-15 Toray Ind Inc Carbon fiber woven fabric and method for producing the same
JP2011106044A (en) * 2009-11-16 2011-06-02 Mitsubishi Rayon Co Ltd Oiling agent composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle and method for producing the same, and carbon fiber bundle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58214527A (en) * 1982-06-08 1983-12-13 Toray Ind Inc Carbon fiber bundle of high strength and elongation
JPS6088129A (en) * 1983-10-13 1985-05-17 Mitsubishi Rayon Co Ltd Preparation of carbon yarn having high strength and high elasticity
JPH0415288A (en) * 1990-05-09 1992-01-20 Pub Works Res Inst Ministry Of Constr Solid stabilizer for 'shirasu' soil (a soil of volcanic ashes) and its use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58214527A (en) * 1982-06-08 1983-12-13 Toray Ind Inc Carbon fiber bundle of high strength and elongation
JPS6088129A (en) * 1983-10-13 1985-05-17 Mitsubishi Rayon Co Ltd Preparation of carbon yarn having high strength and high elasticity
JPH0415288A (en) * 1990-05-09 1992-01-20 Pub Works Res Inst Ministry Of Constr Solid stabilizer for 'shirasu' soil (a soil of volcanic ashes) and its use

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01306619A (en) * 1988-05-30 1989-12-11 Toray Ind Inc High-strength and high elastic modulus carbon fiber
JP2006152530A (en) * 2004-11-01 2006-06-15 Toray Ind Inc Carbon fiber woven fabric and method for producing the same
JP2011106044A (en) * 2009-11-16 2011-06-02 Mitsubishi Rayon Co Ltd Oiling agent composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle and method for producing the same, and carbon fiber bundle

Also Published As

Publication number Publication date
JPH0737685B2 (en) 1995-04-26

Similar Documents

Publication Publication Date Title
EP1130140B1 (en) Acrylonitril-based precursor fiber for carbon fiber and method for production thereof
JP2530767B2 (en) Carbon fiber and manufacturing method thereof
USRE33537E (en) Ultrahigh strength carbon fibers
JP2003073932A (en) Carbon fiber
JP4953410B2 (en) Carbon fiber and method for producing the same
Zhang et al. Manufacture of carbon fibers from polyacrylonitrile precursors treated with CoSO4
JPS61296123A (en) Carbon fiber exhibiting ultrahigh-strength composite property
JP4726102B2 (en) Carbon fiber and method for producing the same
JPH01306619A (en) High-strength and high elastic modulus carbon fiber
JPH054463B2 (en)
JP2010047865A (en) Carbon fiber for composite material and composite material produced by using the same
JP2007186802A (en) Method for producing flame retardant fiber and carbon fiber
JPS60181322A (en) Manufacture of carbon fiber
JPH0415288B2 (en)
JP2004232155A (en) Light-weight polyacrylonitrile-based carbon fiber and method for producing the same
JPS62149964A (en) Production of ultrahigh strength carbon fiber
JP2004156161A (en) Polyacrylonitrile-derived carbon fiber and method for producing the same
JPS6141326A (en) Preparation of precursor for carbon fiber
JPH02264011A (en) Acrylic fiber for graphite fibers
JP3697793B2 (en) Precursor for carbon fiber, method for producing the same, and method for producing carbon fiber
JP3964011B2 (en) Acrylonitrile-based precursor fiber for carbon fiber and method for producing the same
JPH0615722B2 (en) Method for producing acrylic fiber for producing carbon fiber
JP5842343B2 (en) Method for producing carbon fiber precursor acrylic fiber bundle
JP2004277192A (en) Carbon fiber for carbon fiber-reinforced carbon composite material, and production method therefor
JPS62141124A (en) Carbon fiber for production of ultra-high strength composite material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees