JPS6128451A - Catalyst for steam reforming of hydrocarbon - Google Patents

Catalyst for steam reforming of hydrocarbon

Info

Publication number
JPS6128451A
JPS6128451A JP59147678A JP14767884A JPS6128451A JP S6128451 A JPS6128451 A JP S6128451A JP 59147678 A JP59147678 A JP 59147678A JP 14767884 A JP14767884 A JP 14767884A JP S6128451 A JPS6128451 A JP S6128451A
Authority
JP
Japan
Prior art keywords
catalyst
calcium
ruthenium
alumina
steam reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59147678A
Other languages
Japanese (ja)
Inventor
Hidekazu Kikuchi
英一 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP59147678A priority Critical patent/JPS6128451A/en
Publication of JPS6128451A publication Critical patent/JPS6128451A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To perform the steam reforming of hydrocarbons with high efficiency, by using a catalyst which is prepared by baking a mixture consisting of a calcium compound an an aluminum compound while supporting ruthenium by the baked mixture in a specific ratio. CONSTITUTION:A mixture consisting of a calcium compound and an aluminum compoun is baked to obtain a solid baked substance comprising calcium/alumina spinnel or consisting of said spinnel and calcium oxide and/or alumina and containing 10-50wt% of calcium oxide and 0.02-10wt% of ruthenium is supported by said baked substance. Thus obtained catalyst is a reforming one prevented from the deposition of carbon or sintering within a wide temp. range of 300-900 deg.C under a condition of low steam/carbon ratio and having high activity and durability.

Description

【発明の詳細な説明】 の炭化水素類の水蒸気改質用触媒に関するもので、都市
ガス製造用改質触媒声料電池用改質触媒などに用いられ
る。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a catalyst for steam reforming of hydrocarbons, and is used as a reforming catalyst for city gas production, a reforming catalyst for voice cells, and the like.

従来の技術 従来、天然ガス、ナフサ、LPGなどの炭化水素類を水
蒸気改質する触媒としては、「都市ガス工業概要■(実
務編)」(日本瓦斯協会、1981年)P77〜82に
示されているようにニッケル系触媒が主として使用され
ている。
Conventional technology Conventionally, catalysts for steam reforming hydrocarbons such as natural gas, naphtha, and LPG are shown in "City Gas Industry Overview ■ (Practical Edition)" (Japan Gas Association, 1981), pages 77-82. Nickel-based catalysts are mainly used.

また、特開昭57−4232号公報には、炭化水素類の
水蒸気改質用触媒組成物として、従来公知の白金族金属
触媒組成物に認められる触媒活性、触媒寿命、炭素析出
、強度等に関する問題を解消すべく、一定量のシリカを
含有し、アルカリ金属およびアルカリ土類金属の含有量
が1重量%以下であシ、特定の結晶構造を有する活性ア
ルミナに一定量のルテニウムを担持してなる水蒸気改質
用触媒組成物が開示されている。
Furthermore, JP-A No. 57-4232 describes the catalytic activity, catalyst life, carbon deposition, strength, etc. observed in conventionally known platinum group metal catalyst compositions as catalyst compositions for steam reforming of hydrocarbons. In order to solve this problem, a certain amount of ruthenium is supported on activated alumina, which contains a certain amount of silica, has a content of alkali metals and alkaline earth metals of 1% by weight or less, and has a specific crystal structure. A steam reforming catalyst composition is disclosed.

また、特開昭58−196849号公報には炭化水素の
オートサーマル改質用触媒にロジウム系触媒が示されて
いる。
Further, Japanese Patent Application Laid-Open No. 196849/1984 discloses a rhodium-based catalyst as a catalyst for autothermal reforming of hydrocarbons.

しかしながら従来使用されているニッケル系触媒は、炭
素が析出しやすく、触媒活性劣化や触媒層の閉そくを起
こしやすい。また、高温においてニッケルと担体との反
応によシネ活性なニッケル・アルミナスピネルを生成し
、触媒活性が低下するなど、シンタリングしやすく、耐
熱性が弱いなどの問題点がある。このため、ニッケル系
触媒では、炭素析出を抑制したシ、シンタリングを防止
するために、水蒸気・炭化水素比、すなわち炭化水素中
の炭素1原子当シの水蒸気のモル数(以下スチーム・カ
ーボン比と称する。)を高くしたり、反応温度を下げる
などの対策をほどこしている。このため、水蒸気改質の
効率の向上が抑えられている。また、ニッケル系触媒に
第3成分を添加する試みもなされているが、炭素析出抑
制、耐久性、耐熱性の向上には十分満足できる結果が得
られていない。
However, conventionally used nickel-based catalysts tend to deposit carbon, which tends to cause catalyst activity deterioration and catalyst layer blockage. In addition, there are other problems such as the reaction between nickel and the carrier at high temperatures to produce cine-active nickel-alumina spinel, which reduces catalytic activity, makes it easy to sinter, and has poor heat resistance. For this reason, in nickel-based catalysts, in order to suppress carbon precipitation and prevent sintering, the steam-to-hydrocarbon ratio, that is, the number of moles of water vapor per atom of carbon in the hydrocarbon (hereinafter referred to as the steam-to-carbon ratio), is Measures are being taken such as increasing the reaction temperature (referred to as .) and lowering the reaction temperature. For this reason, improvement in the efficiency of steam reforming is suppressed. Further, attempts have been made to add a third component to the nickel-based catalyst, but no satisfactory results have been obtained in suppressing carbon precipitation, improving durability, and heat resistance.

前記特開昭57−4232号公報に記載の触々某組成物
では、その実施例からも明らかなように、ルテニウムの
担持量を高く、かつ反応温度が高温領域にある場合には
、スチーム・カーボン比を高くする必要があること、ま
た担体として用いられる活性アルミナとしてはα−アル
ミナおよびβ−アルミナを使用することができないこと
、またアルカリ土類金属が1重量%以上になると触媒活
性が低下し、炭素が析出しやすくなるなどの問題がある
As is clear from the examples, in the various compositions described in JP-A-57-4232, when the supported amount of ruthenium is high and the reaction temperature is in the high temperature range, steam It is necessary to increase the carbon ratio, α-alumina and β-alumina cannot be used as activated alumina used as a support, and the catalyst activity decreases when the alkaline earth metal content exceeds 1% by weight. However, there are problems such as carbon becoming more likely to precipitate.

前記特開昭58−196849号公報記載のロジウム系
触媒に関しては、空気を混入させて部燃反応を起こさせ
ることによシ触媒低活性を補ったり、触媒の前段に耐久
性のある酸化鉄を設置することによシ触媒活性の低下を
防止するなどの対策が必要である。
Regarding the rhodium-based catalyst described in JP-A-58-196849, the low activity of the catalyst can be compensated for by mixing air to cause a partial combustion reaction, or by adding durable iron oxide to the front stage of the catalyst. Measures must be taken to prevent the catalyst activity from decreasing due to installation.

以上、従来の炭化水素の水蒸気改質触媒には触媒活性、
触媒寿命、炭素析出、耐熱性などに関する問題がある。
As mentioned above, conventional hydrocarbon steam reforming catalysts have catalytic activity,
There are problems with catalyst life, carbon deposition, heat resistance, etc.

問題点を解決するための手段 本発明は、前記従来の技術における問題点を解決するも
ので6D、反応温度が約300℃という低温触媒活性を
必要とする領域はもちろん、約900℃という炭素析出
、活性劣化を起こしやすい高温領域においても低スチー
ム・カーボン比の条件で、はとんど炭素を析出すること
なく、炭化水素類の水蒸気改質を高効率で行える触媒を
提供しようとするものである。
Means for Solving the Problems The present invention solves the problems in the conventional techniques as described above.6D, the reaction temperature is about 300°C, which requires low-temperature catalytic activity, and the reaction temperature is about 900°C, which requires carbon precipitation. The purpose of this project is to provide a catalyst that can perform steam reforming of hydrocarbons with high efficiency even in high-temperature regions where activity deterioration is likely to occur, under conditions of a low steam/carbon ratio, without precipitation of carbon. be.

したがって、本発明の目的は、300〜900℃という
広範囲の温度領域での水蒸気改質において、低スチーム
・カーがン比の条件下で、炭素析出、シンタリングを防
止し、さらに活性、耐久性を向上させた炭化水素類の水
蒸気改質用触媒を提供することにある。
Therefore, the purpose of the present invention is to prevent carbon precipitation and sintering under conditions of low steam carbon ratio in steam reforming over a wide temperature range of 300 to 900°C, and to improve activity and durability. An object of the present invention is to provide a catalyst for steam reforming of hydrocarbons that has improved properties.

すなわち、本発明はカルシウム化合物とアルミニウム化
合物との混合物を焼成して得られ、実質上カルシウム・
アルミナスピネルよりなるか、あるいはカル、/1クム
・アルミナスピネルと酸化カルシウムおよび/またはア
ルミ力とよりなシ、かつ10〜50重量%の酸化カルシ
ウム分を含有する固体焼成物に0.02〜10重量%の
ルテニウムを担持してなる炭化水素類の水蒸気改質用触
媒を提供するものである。
That is, the present invention is obtained by firing a mixture of a calcium compound and an aluminum compound, and substantially contains calcium and aluminum compounds.
0.02 to 10% to a solid fired product made of alumina spinel or 1 cum alumina spinel and calcium oxide and/or aluminum oxide and containing 10 to 50% by weight of calcium oxide. The present invention provides a catalyst for steam reforming of hydrocarbons, which supports ruthenium in an amount of % by weight.

本発明の触媒の製造に用いられるカルシウム化合物の例
として消石灰、石灰石および硝酸カルシウムをあげるこ
とができる。
Slaked lime, limestone and calcium nitrate may be mentioned as examples of calcium compounds used in the preparation of the catalysts of the invention.

本発明に用いるアルミニウム化合物として、例えばα−
アルミナ、β−アルミナ、γ−アルミナおよび水酸化ア
ルミニウムをあげることができる。
As the aluminum compound used in the present invention, for example, α-
Mention may be made of alumina, β-alumina, γ-alumina and aluminum hydroxide.

本発明における前記固体焼成物は、例えば消石灰とアル
ミナとの混線、アルミナへの硝酸カルシウムの含浸、あ
るいは炭酸カルシウムと硝酸アルミニラムとの共沈など
を行なった後、800〜1300℃の温度で焼成して得
られる。この焼成温度が800℃以下になるとカルシウ
ム・アルミナスピネルが生成しに〈<、また1300℃
以上になると焼結によシ触媒としての表面積および細孔
容積が低下して好ましくない。前記焼成温度は好ましく
は950〜1200 ’Cである。
The solid fired product in the present invention is produced by, for example, mixing slaked lime and alumina, impregnating alumina with calcium nitrate, or co-precipitating calcium carbonate and aluminum nitrate, and then firing at a temperature of 800 to 1300°C. can be obtained. If the firing temperature is below 800℃, calcium alumina spinel will be formed.
If it is more than that, the surface area and pore volume of the catalyst decrease due to sintering, which is not preferable. The firing temperature is preferably 950-1200'C.

かくして得られた前記固体焼成物は、実質上カルシウム
・アルミナスピネルよりなるか、あるいは主要部のカル
シウム・アルミナスピネルと少量の酸化カルシウムおよ
び/またはアルミナとよりなり、かつ10〜50重量%
、好ましくは約30重量%の酸化カルシウム分を含有す
る。前記酸化カルシウム分の含有量が50重量−以上に
なると前記固体焼成物中、ひいては触媒中の酸化カルシ
ウムの含有量が多くなって触媒の活性が低下すると共に
触媒強度も低下して破壊され易くなり好ましくない。一
方、前記酸化カルシウム分の含有量が10重量%未満に
なると、助触媒としての作用効果を有するカルシウム・
アルミナスピネルの含有量が少なくなシ、触媒活性、耐
久性、炭素析出抑制などの触媒性能が低下して好ましく
ない。前記酸化カルシウム分の含有量が30重量%前後
である場合、特に前記固体焼成物中、ひいては触媒中の
カルシウム・アルミナスピネルの含有量が多いため活性
、寿命、炭素析出抑制などの触媒性能が最も優れた触媒
が得られる。
The solid fired product thus obtained consists essentially of calcium-alumina spinel, or mainly consists of calcium-alumina spinel and a small amount of calcium oxide and/or alumina, and contains 10 to 50% by weight.
, preferably about 30% by weight of calcium oxide. When the content of the calcium oxide component exceeds 50% by weight, the content of calcium oxide in the solid calcined product and eventually in the catalyst increases, and the activity of the catalyst decreases, as well as the strength of the catalyst decreases, making it easy to break. Undesirable. On the other hand, when the calcium oxide content is less than 10% by weight, calcium oxide, which has the effect of acting as a promoter,
The content of alumina spinel is low, which is undesirable because catalyst performance such as catalyst activity, durability, and suppression of carbon precipitation deteriorates. When the content of calcium oxide is around 30% by weight, the catalyst performance such as activity, life, and suppression of carbon precipitation is the best because the content of calcium and alumina spinel is particularly high in the solid calcined product and even in the catalyst. An excellent catalyst is obtained.

前記固体焼成物を構成するカルシウム・アルミナスピネ
ル(Ca At20a  )は助触媒としての作用効果
を有し、活性劣化あるいは閉そくの原因となる炭素析出
を抑制すると共に、ルテニウムの担持状態を改善し、活
性増大、耐久性向上、触媒強度向上などの効果を発揮し
、ルテニウムの水蒸気改質触媒性能を格段に優れたもの
にしている。カルシウム・アルミナスピネルの代りに触
媒中のカルシウムがCa0O形で存在するものでは、助
触媒効果は発揮されず、逆にCaOが存在するために触
媒活性の低下、炭素析出、耐久性の低下、強度の低下な
どを引き起こす。
Calcium-alumina spinel (Ca At20a), which constitutes the solid fired product, has the effect of acting as a cocatalyst, suppressing carbon precipitation that causes activity deterioration or blockage, and improving the supported state of ruthenium and increasing the activity. It has the effect of increasing the amount of ruthenium, improving durability, and improving catalyst strength, making the performance of ruthenium steam reforming catalysts significantly superior. If calcium in the catalyst is present in the Ca0O form instead of calcium/alumina spinel, the cocatalyst effect will not be exhibited; on the contrary, the presence of CaO will cause a decrease in catalytic activity, carbon precipitation, decrease in durability, and strength. This causes a decrease in

本発明の前記固体焼成物に活性成分たるルテニウムを担
持させるに際しては、例えば三塩化ルテニウムなどのル
テニウム化合物をアセトン、・アセトニトリル、アルコ
ールなどの有機溶剤に溶解した溶液を該固体焼成物に含
浸後1.還元する方法によシ担持される。
When supporting ruthenium as an active ingredient on the solid fired product of the present invention, the solid fired product is impregnated with a solution of a ruthenium compound such as ruthenium trichloride in an organic solvent such as acetone, acetonitrile, or alcohol. .. It is supported by a reducing method.

有機溶剤の代りに水を使用すると、ルテニウムの沈殿が
生じ十分なルテニウム量を担持てきないし、また触媒上
のルテニウムの分散が悪く、これらのため水溶液で含浸
させた触媒は低活性である。
When water is used instead of an organic solvent, ruthenium precipitates and cannot support a sufficient amount of ruthenium, and ruthenium is poorly dispersed on the catalyst, resulting in a catalyst impregnated with an aqueous solution having low activity.

それに対し、アセトンなどの有機溶剤を使用すると、ル
テニウムの沈殿が生じないで十分な量のルテニウムを担
持てき、かつ触媒上のルテニウムの分散も良く、高活性
で耐久性に優れた触媒が得られる。
On the other hand, when an organic solvent such as acetone is used, a sufficient amount of ruthenium can be supported without precipitation of ruthenium, and the ruthenium is well dispersed on the catalyst, resulting in a highly active and durable catalyst. .

本発明の触媒の活性成分たるルテニウムはニッケル、白
金、ロジウム、・フラジラムなどより融点が高いため、
ルテニウムを担持してなる本発明の触媒はシンタリング
しに<<、耐熱性にすぐれている。前記固体焼成物に担
持されるルテニウムの担持量は通常0.02〜10重量
%、好ましくは0.05〜2重量%の範囲である。該担
持量が002重量%未満では十分な活性を示さず、一方
10重号チ以上ではルテニウムの担持状態が悪化して、
相持量の増加に見合う活性増大がない。
Ruthenium, which is the active component of the catalyst of the present invention, has a higher melting point than nickel, platinum, rhodium, fragilum, etc.
The catalyst of the present invention, which supports ruthenium, has excellent resistance to sintering and heat resistance. The amount of ruthenium supported on the solid fired product is usually in the range of 0.02 to 10% by weight, preferably 0.05 to 2% by weight. If the supported amount is less than 0.002% by weight, sufficient activity is not exhibited, while if it is more than 10% by weight, the supported state of ruthenium deteriorates,
There is no increase in activity commensurate with the increase in mutual amount.

本発明の触媒を用いて水蒸気改質される炭化水素類の例
として、ナフサ、LPG1天然ガスなどがあげられる。
Examples of hydrocarbons that can be steam reformed using the catalyst of the present invention include naphtha, LPG1 natural gas, and the like.

水蒸気改質反応は、通常、反応圧力大気圧〜数10 k
g/cm 、および反応温度300〜900℃の条件下
で行われる。スチーム・カービン比においては、反応温
度900℃の高温で、1モル/原子に下げても炭素析出
なしに改質することができる。水蒸気改質により、H2
、CH4、Coなどが得られる。触媒形状はベレット、
シリンダー、す/グ、粉体、ハニカム、球状など様々な
ものが使用でき、条件に合わせて選ばれる。
Steam reforming reactions are usually carried out at reaction pressures ranging from atmospheric pressure to several tens of kilometres.
g/cm 2 and reaction temperature of 300 to 900°C. Regarding the steam/carbine ratio, even if the reaction temperature is as high as 900° C. and the ratio is lowered to 1 mol/atom, modification can be carried out without carbon precipitation. By steam reforming, H2
, CH4, Co, etc. are obtained. The catalyst shape is a pellet,
Various types can be used, such as cylinder, su/g, powder, honeycomb, and spherical, and are selected according to the conditions.

実施例 以下実施例および比較例により本発明を具体的に説明す
る。
EXAMPLES The present invention will be specifically explained using Examples and Comparative Examples.

実施例1 活性アルミナ(r−アルミナ)を1200℃で2時間焼
成してα−アルミナを製造した。このα−アルミナを3
2〜60メツシユの大きさにし、その236IIを硝酸
カルシウム1.8 mo l /J3の水溶液1pに浸
漬した後、加熱して乾固させ、24時間オーブン中10
0℃で乾燥させた。この固形物をさらに600℃3時間
、1000℃3時間の条件で焼成した。得られた固体焼
成物337IIに三塩化ルテニウム3.47gを溶解し
たアセトン溶液を含浸させた後、還元して、ルテニウム
相持量0.5重量%の本発明の触媒的339gを得た。
Example 1 Activated alumina (r-alumina) was fired at 1200° C. for 2 hours to produce α-alumina. This α-alumina is
The 236II was made into a size of 2 to 60 meshes, immersed in 1 p of an aqueous solution of calcium nitrate 1.8 mol/J3, heated to dryness, and placed in an oven for 24 hours.
It was dried at 0°C. This solid material was further calcined at 600°C for 3 hours and at 1000°C for 3 hours. The obtained solid calcined product 337II was impregnated with an acetone solution in which 3.47 g of ruthenium trichloride was dissolved, and then reduced to obtain 339 g of the catalyst of the present invention having a ruthenium content of 0.5% by weight.

前記固体焼成物中にはカルシウム・アルミナスピネルが
含まれており、酸化カルシウム分は30重量%であった
The solid fired product contained calcium alumina spinel, and the calcium oxide content was 30% by weight.

この触媒を用いて、固定床流通型改質装置(反応管内径
20 m )で、ブタンの水蒸気改質を行った結果を第
1図に示す。反応条件は触媒・原料流量比74.4Cグ
ラム−触媒・分1モル〕、スチーム・カーデフ比1〔モ
ル/原子〕という厳しい条件である。第1図に示したよ
うに600℃以上の温度でブタンを完全に改質すること
ができた。
Fig. 1 shows the results of steam reforming of butane using this catalyst in a fixed bed flow reformer (reaction tube inner diameter 20 m). The reaction conditions were severe: a catalyst/raw material flow rate ratio of 74.4 C grams - 1 mole of catalyst per minute] and a steam/cardiff ratio of 1 [mol/atom]. As shown in FIG. 1, butane could be completely modified at a temperature of 600° C. or higher.

また、炭素析出がみられず、さらに5’hrの試験中に
分解率の低下が小さかった。なお、使用触媒の比表面積
は7.29 m2/グラムであった。
Further, no carbon precipitation was observed, and the decomposition rate decreased little during the 5'hr test. The specific surface area of the catalyst used was 7.29 m2/g.

比較例1および2 担体としてα−アルミナおよびγ−アルミナ(750℃
3時間焼成物)を用いて、実施例1と同様にルテニウム
を0.5重量%担持してそれぞれ比較触媒lおよび2を
調製した。これらの触媒を用いて、実施例1と同一の条
件でブタンの水蒸気改質を行った。その結果を第1図に
示す。実施例1に比較してブタン分解率が低かった。ま
た、炭素析出量がかなシ多く、さらに4 hrの試験中
に反応温度700℃で分解率の低下がそれぞれ30%以
上と大きく、実施例1に比較して触媒活性劣化が大きか
った。なお、比較例1の触媒の比表面積は8.73m2
/グラムであった。
Comparative Examples 1 and 2 α-alumina and γ-alumina (750°C
Comparative catalysts 1 and 2 were prepared by supporting 0.5% by weight of ruthenium in the same manner as in Example 1 using the 3-hour calcined product). Steam reforming of butane was carried out under the same conditions as in Example 1 using these catalysts. The results are shown in FIG. Compared to Example 1, the butane decomposition rate was lower. Further, the amount of carbon deposited was significantly large, and the decomposition rate decreased by 30% or more at a reaction temperature of 700° C. during the 4 hr test, and the deterioration of catalyst activity was greater than in Example 1. The specific surface area of the catalyst of Comparative Example 1 was 8.73 m2.
/gram.

実施例2および3 前記固体焼成物中の酸化カルシウム分をそれぞれ10重
量%(実施例2)および50重量%(実施例3)とした
以外、実施例1と同様にして本発明の触媒を調製した。
Examples 2 and 3 The catalyst of the present invention was prepared in the same manner as in Example 1, except that the calcium oxide content in the solid calcined product was 10% by weight (Example 2) and 50% by weight (Example 3), respectively. did.

これらの2触媒を用いて、実施例1と同様にブタンの水
蒸気改質を行った結果を第2図に示す。
Using these two catalysts, butane was steam reformed in the same manner as in Example 1. The results are shown in FIG.

いずれの触媒にもカルシウム・アルミナスピネルが含ま
れていた。いずれの触媒も、比較例1および2に比較し
てブタン分解率が高く、かつ炭素析出も少なく、活性劣
化も小さかった。
Both catalysts contained calcium alumina spinel. All catalysts had a higher butane decomposition rate than Comparative Examples 1 and 2, less carbon deposition, and less activity deterioration.

さらに5時間の試験中に反応温度700℃で実施例2で
は分解率の低下が12チであった。
Furthermore, during the 5-hour test, the decomposition rate decreased by 12 degrees in Example 2 at a reaction temperature of 700°C.

また、実施例2におけるブタンの水蒸気改質ガスの組成
を第3図に示す。反応温度が高いほどH2およびCOが
、また低いほどCH4が多く生成する。なお、実施例2
および3の比表面積はそれぞれ8.79m27グラムお
よび8.00 m2/グラムであった。
Further, the composition of the butane steam reformed gas in Example 2 is shown in FIG. The higher the reaction temperature is, the more H2 and CO are produced, and the lower the reaction temperature is, the more CH4 is produced. In addition, Example 2
The specific surface areas of and 3 were 8.79 m27 grams and 8.00 m2/g, respectively.

比較例3 担体として酸化カルシウムを選び、実施例1と同様にル
テニウムを0.5重量%担持した触媒を用いて、実施例
1と同様にブタンの水蒸気改質を行った。その結果を第
2図に示す。酸化カルシウム分をまったく含まない触媒
の例(比較例1)では、実施例1,2および3に比較し
てブタンの分解率が低く、炭素析出、活性劣化が大きか
つたが、担体中にアルミナをまったく含まない触媒の例
(比較例3)では、実施例1,2および3に比較してブ
タン分解率が低く、炭素析出が多く、かつ触媒強度も弱
く、もろかった。このように1酸化カルシウム含有量が
10〜50重量%領域外では活性、炭素析出抑制、耐久
性が劣っている。なお、比較例3の使用触媒の比表面積
は6.37 m2/グラム であった。
Comparative Example 3 Butane was steam reformed in the same manner as in Example 1, using calcium oxide as a carrier and using a catalyst supporting 0.5% by weight of ruthenium in the same manner as in Example 1. The results are shown in FIG. In the case of a catalyst containing no calcium oxide (Comparative Example 1), the butane decomposition rate was lower than in Examples 1, 2, and 3, and carbon precipitation and activity deterioration were large. An example of a catalyst containing no catalyst (Comparative Example 3) had a lower butane decomposition rate than Examples 1, 2, and 3, had a large amount of carbon deposited, and had weak and brittle catalyst strength. As described above, when the calcium monoxide content is outside the range of 10 to 50% by weight, activity, suppression of carbon precipitation, and durability are poor. Note that the specific surface area of the catalyst used in Comparative Example 3 was 6.37 m2/g.

発明の効果 本発明の触媒を用いて炭化水素類の水蒸気改質反応を行
なった場合、 反応温度が900℃という高く、かつスチーム・カーデ
ン比が低い場合にも、炭素析出抑制効果が顕著であシ、
触媒活性の低下が抑制されると共に、触媒の寿命が長く
、また触媒が耐熱性にすぐれているという効果がある。
Effects of the Invention When a steam reforming reaction of hydrocarbons is carried out using the catalyst of the present invention, the effect of suppressing carbon precipitation is remarkable even when the reaction temperature is as high as 900°C and the steam-carden ratio is low. C,
This has the effect that a decrease in catalyst activity is suppressed, the life of the catalyst is long, and the catalyst has excellent heat resistance.

また、本発明の触媒を用いることにより、反応温度が3
00℃というような改質が十分に行われにくい条件でも
、触媒活性が高いため、炭化水素類の水蒸気改質を十分
に行うことができる。
Furthermore, by using the catalyst of the present invention, the reaction temperature can be reduced to 3.
Even under conditions such as 00° C. where reforming is difficult to be carried out sufficiently, the catalyst activity is high, so hydrocarbons can be sufficiently steam reformed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の触媒の1例としての実施例1におい
て得られた触媒と、従来技術における触媒の例としての
比較例1および2において得られた触媒とをそれぞれ用
いてブタンの水蒸気改質反応を行なった場合の反応温度
とブタン分解率との関係を示すグラフである。 第2図は、本発明の触媒の例としての実施例1゜2およ
び3において得られた触媒と、従来技術における触媒の
例としての比較例1および3において得られた触媒とを
それぞれ用いてブタンの水蒸気改質反応を行なった場合
の固体焼成物中の酸化カルシウム分の含有量とブタン分
解率との関係を示すグラフである。 第3図は、本発明の触媒の1例としての実施例2におい
て得られた触媒を用いてブタンの水蒸気改質反応を行な
った場合の反応温度と生成ガス組成との関係を示すグラ
フである。
FIG. 1 shows butane steam produced using the catalyst obtained in Example 1 as an example of the catalyst of the present invention and the catalyst obtained in Comparative Examples 1 and 2 as examples of the catalyst in the prior art, respectively. It is a graph showing the relationship between reaction temperature and butane decomposition rate when a reforming reaction is performed. FIG. 2 shows the results obtained using the catalysts obtained in Examples 1, 2 and 3 as examples of catalysts of the present invention and the catalysts obtained in Comparative Examples 1 and 3 as examples of catalysts in the prior art, respectively. It is a graph showing the relationship between the content of calcium oxide in a solid fired product and the butane decomposition rate when a steam reforming reaction of butane is performed. FIG. 3 is a graph showing the relationship between reaction temperature and product gas composition when a butane steam reforming reaction is carried out using the catalyst obtained in Example 2 as an example of the catalyst of the present invention. .

Claims (1)

【特許請求の範囲】 1、カルシウム化合物とアルミニウム化合物との混合物
を焼成して得られ、実質上カルシウム・アルミナスピネ
ルよりなるか、あるいはカルシウム・アルミナスピネル
と酸化カルシウムおよび/またはアルミナとよりなり、
かつ10〜50重量%の酸化カルシウム分を含有する固
体焼成物に0.02〜10重量%のルテニウムを担持し
てなる炭化水素類の水蒸気改質用触媒。 2、焼成が800〜1300℃の温度で行なわれる特許
請求の範囲第1項記載の炭化水素類の水蒸気改質用触媒
。 3、該ルテニウムが、有機溶剤にルテニウム化合物を溶
解してなる溶液を前記固体焼成物に含浸させた後還元し
て担持される特許請求の範囲第1項記載の炭化水素類の
水蒸気改質用触媒。
[Claims] 1. Obtained by firing a mixture of a calcium compound and an aluminum compound, and substantially consisting of calcium-alumina spinel, or consisting of calcium-alumina spinel and calcium oxide and/or alumina,
A catalyst for steam reforming of hydrocarbons, comprising a solid calcined product containing 10 to 50 weight % of calcium oxide and supporting 0.02 to 10 weight % of ruthenium. 2. The catalyst for steam reforming of hydrocarbons according to claim 1, wherein the calcination is carried out at a temperature of 800 to 1300°C. 3. For steam reforming of hydrocarbons according to claim 1, in which the ruthenium is supported by impregnating the solid fired product with a solution obtained by dissolving a ruthenium compound in an organic solvent and then reducing it. catalyst.
JP59147678A 1984-07-18 1984-07-18 Catalyst for steam reforming of hydrocarbon Pending JPS6128451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59147678A JPS6128451A (en) 1984-07-18 1984-07-18 Catalyst for steam reforming of hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59147678A JPS6128451A (en) 1984-07-18 1984-07-18 Catalyst for steam reforming of hydrocarbon

Publications (1)

Publication Number Publication Date
JPS6128451A true JPS6128451A (en) 1986-02-08

Family

ID=15435801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59147678A Pending JPS6128451A (en) 1984-07-18 1984-07-18 Catalyst for steam reforming of hydrocarbon

Country Status (1)

Country Link
JP (1) JPS6128451A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4954882A (en) * 1988-08-19 1990-09-04 Kabushiki Kaisha Toshiba Color television set having a teletext receiver built-in
JPH069632U (en) * 1991-10-14 1994-02-08 喜代枝 津久田 Walking aid belt
JPH07289571A (en) * 1990-12-31 1995-11-07 Yumiko Munekata Means for restoring ankle motion function
WO2002066371A2 (en) * 2001-02-16 2002-08-29 Battelle Memorial Institute A catalyst and method of steam reforming
US6607678B2 (en) 1999-08-17 2003-08-19 Battelle Memorial Institute Catalyst and method of steam reforming
US6734137B2 (en) 1999-08-17 2004-05-11 Battelle Memorial Institute Method and catalyst structure for steam reforming of a hydrocarbon
US7722854B2 (en) 2003-06-25 2010-05-25 Velocy's Steam reforming methods and catalysts
US8277773B2 (en) 2004-02-13 2012-10-02 Velocys Corp. Steam reforming method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4954882A (en) * 1988-08-19 1990-09-04 Kabushiki Kaisha Toshiba Color television set having a teletext receiver built-in
JPH07289571A (en) * 1990-12-31 1995-11-07 Yumiko Munekata Means for restoring ankle motion function
JPH069632U (en) * 1991-10-14 1994-02-08 喜代枝 津久田 Walking aid belt
US6607678B2 (en) 1999-08-17 2003-08-19 Battelle Memorial Institute Catalyst and method of steam reforming
US6734137B2 (en) 1999-08-17 2004-05-11 Battelle Memorial Institute Method and catalyst structure for steam reforming of a hydrocarbon
US6958310B2 (en) 1999-08-17 2005-10-25 Battelle Memorial Institute Catalyst and method of steam reforming
US7335346B2 (en) 1999-08-17 2008-02-26 Battelle Memorial Institute Catalyst and method of steam reforming
WO2002066371A2 (en) * 2001-02-16 2002-08-29 Battelle Memorial Institute A catalyst and method of steam reforming
WO2002066371A3 (en) * 2001-02-16 2003-03-06 Battelle Memorial Institute A catalyst and method of steam reforming
US7722854B2 (en) 2003-06-25 2010-05-25 Velocy's Steam reforming methods and catalysts
US8277773B2 (en) 2004-02-13 2012-10-02 Velocys Corp. Steam reforming method

Similar Documents

Publication Publication Date Title
KR101166943B1 (en) Catalyst for hydrogen generation through steam reforming of hydrocarbons
JP2008507389A (en) Promoted calcium-aluminate supported catalysts for synthesis gas generation
KR20010071434A (en) Catalyst and process for reforming hydrocarbon
EP1732688B1 (en) Nickel supported on titanium stabilized promoted calcium aluminate carrier
AU5191998A (en) Alumina-supported ruthenium catalyst
JP4648567B2 (en) Autothermal reforming catalyst and method for producing fuel gas for fuel cell
GB2048102A (en) Catalyst for steam reforming of hydrocarbons
JPH0510133B2 (en)
US4207211A (en) Catalyst for steam reforming of hydrocarbons and process of preparing the catalyst
JP4648566B2 (en) Autothermal reforming catalyst and method for producing fuel gas for fuel cell
JPS6128451A (en) Catalyst for steam reforming of hydrocarbon
JP2002535119A (en) Catalyst carrier supporting nickel, ruthenium and lanthanum
KR20120037821A (en) Ni-based hydrotalcite-like catalyst for diesel steam reforming, preparing method thereof, and producing method of hydrogen using the same
US4110256A (en) Catalyst for reforming fuel and method for producing same
KR101828791B1 (en) Thermally stable monolith catalysts for reforming reaction
JPH05168924A (en) Steam reforming catalyst
US11691128B2 (en) Thermally stable monolith catalysts for methane reforming and preparing method of the same
JPS63248444A (en) Steam reforming and/or partial oxidation catalyst for hydrocarbon
KR20170027674A (en) High Efficiency Ni-based Catalyst for Steam Methane Reforming and use thereof
JPS60147242A (en) Catalyst for steam reforming of hydrocarbon
CN1087657C (en) Process for preparing catalyst for producing synthetic gas from hydrocarbons
JPS6150640A (en) Catalyst for preparing methane-containing gas
JP2635105B2 (en) Catalyst for partial oxidation of hydrocarbons
JPS60220143A (en) Catalyst for preparing methane-containing gas
ZA200105594B (en) Catalyst carrier carrying nickel ruthenium and lanthanum.