JPS61278174A - Manufacture of photoelectric conversion device - Google Patents

Manufacture of photoelectric conversion device

Info

Publication number
JPS61278174A
JPS61278174A JP60120196A JP12019685A JPS61278174A JP S61278174 A JPS61278174 A JP S61278174A JP 60120196 A JP60120196 A JP 60120196A JP 12019685 A JP12019685 A JP 12019685A JP S61278174 A JPS61278174 A JP S61278174A
Authority
JP
Japan
Prior art keywords
type
polyacetylene
photoelectric conversion
type polymer
polymer semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60120196A
Other languages
Japanese (ja)
Inventor
Makoto Murase
誠 村瀬
Arimitsu Usuki
有光 臼杵
Yasuhiro Kitahara
北原 康広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP60120196A priority Critical patent/JPS61278174A/en
Publication of JPS61278174A publication Critical patent/JPS61278174A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To obtain a photoelectric conversion device of the type of hetero junction of P-type and N-type polymer semiconductors which has a extremely strong junction force between the P-type and N-type polymer semiconductors and a high photoelectric conversion efficiency, by swelling the base material of the N-type polymer semiconductor with an organic solvent, contacting the base material with the P-type polymer semiconductor, and thereafter drying the base material. CONSTITUTION:Polyacetylene 2, the base material of an N-type polymer semiconductor, is first swelled with an organic solvent and contacted with a P-type polymer semiconductor 3. The organic solvent is preferably a non-proton organic solvent. The reason for this is that there is a concern that polyacetylene is reduced by protons and the pi-conjugated double bond structure is destroyed, and the dopant of N-type doner is destroyed by electron-receiving type protons. More ideally, it is preferable to use hexene which was used in composing the vapor-liquid interface of polyacetylene or toluene which is inter-soluble with hexene. Thereafter, the connector polyacetylene between the polyacetylene 2 swelled by the organic solvent and the P-type polymer semiconductor 3 is dried.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、P型、 Kl型半導体とも高分子化合物から
なるp −11へテロ接合型光電変換素子を製造する方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a p-11 heterojunction photoelectric conversion element made of a polymer compound for both P-type and Kl-type semiconductors.

〔従来の技術〕[Conventional technology]

近年、高分子化合物に電気的機能を付与し、光電変換素
子、ダイオード、トランジスタ、光センサー等のデバイ
スに利用しようとする試みが行なわれている。
In recent years, attempts have been made to impart electrical functions to polymer compounds and use them in devices such as photoelectric conversion elements, diodes, transistors, and optical sensors.

その中でも、太陽電池へ応用することができる光電変換
素子に関しては、ポリアセチレン、ポリピロール、ポリ
チェニレンな、どの導電性高分子を使用したp−■墓へ
テロ接合型光電変換素子が報告されている。
Among them, with respect to photoelectric conversion elements that can be applied to solar cells, p-type heterojunction type photoelectric conversion elements using conductive polymers such as polyacetylene, polypyrrole, and polythenylene have been reported.

例えば、P型、!1型型半体ともポリアセチレンを使用
したものあるいは本発明者らが先に提案したIf型ポリ
アセチレンとポリピロール系化合物またはポリチェニレ
ン系化合物の一方または双方から成るp型高分子半導体
とfCC分会たもの(特願昭59−247084号)な
どが挙げられる。このような高分子化合物を使用した光
電変換素子は。
For example, type P! The type 1 halves both use polyacetylene, or the p-type polymer semiconductor consisting of If-type polyacetylene and one or both of polypyrrole-based compound or polythenylene-based compound and fCC branch (specially proposed by the present inventors). (No. 59-247084). Photoelectric conversion elements using such polymer compounds.

従来のシリコン等の無機化合物を使用した素子に比べて
、軽量性、柔軟性に優れており、しかも大面積化が可能
である。
Compared to conventional devices using inorganic compounds such as silicon, they are lighter and more flexible, and can be made larger in area.

このp型、 1L型型半体とも高分子化合物よりなる光
電変換素子は、一般にp型高分子半導体とn型高分子半
導体とを接合して、#造されている。
Both the p-type and 1L-type halves are made of a polymer compound, and the photoelectric conversion element is generally manufactured by bonding a p-type polymer semiconductor and an n-type polymer semiconductor.

p型とn型の高分子半導体の接合としては、(4)プレ
ス等により圧着、接着する方法、 (A) p型高分子
−半導体上でチーグラ型触媒を用いてポリアセチレン金
重合させて、その後練ポリアセチレンをrI型に機能化
させる方法、 (c) 1に型高分子半導体上にp型高
分子半導体を直接電解重合させる方法などが考えられて
いる(0 、に、Ohi4ngら、Appl・phys
、 Letter 、33(IL 18 、1978 
、特開昭55−130160.150161.1588
70.13887i、158879.146982゜1
5478Q号公報)。
The p-type and n-type polymer semiconductors can be joined by (4) pressure bonding and adhesion using a press, etc., (A) polyacetylene gold polymerization using a Ziegler catalyst on the p-type polymer-semiconductor, and then A method of functionalizing refined polyacetylene into rI type, and (c) a method of directly electrolytically polymerizing a p-type polymer semiconductor on a 1-type polymer semiconductor are being considered.
, Letter, 33 (IL 18, 1978
, JP-A-55-130160.150161.1588
70.13887i, 158879.146982゜1
5478Q Publication).

しかしながら、上記の(a)方法では2両高分子半導体
を完全に接触させることはできず、接合力は低く、更に
接触を編めるために圧力を加えると。
However, in the above method (a), it is not possible to bring the two polymer semiconductors into complete contact, and the bonding force is low, and if pressure is applied to further form the contact.

素子自体の破壊をまねいてしまう。また(b)方法では
、p型高分子半導体に触媒を塗布するため、p型半導体
の劣化をまねき、しかも残存触媒により光!変換効率が
低下してしまう、、 (C)方法においては、p型高分
子半導体の電解重合時に正極としてIl型高分子半導体
を使用するため、このn型半導体の劣化が滅しく、光電
変換効率が低下してしまう。
This may lead to destruction of the element itself. In addition, in method (b), since a catalyst is applied to the p-type polymer semiconductor, it causes deterioration of the p-type semiconductor, and furthermore, the remaining catalyst causes a loss of light! In method (C), since an Il-type polymer semiconductor is used as a positive electrode during electrolytic polymerization of a p-type polymer semiconductor, the deterioration of this n-type semiconductor is unlikely, and the photoelectric conversion efficiency is reduced. will decrease.

上記のように従来の方法では、P型半導体とn型半導体
との不完全な接合あるいは半導体基材の劣化などの問題
があり、光wL斐換効率の高い素子を得ることはできな
い。
As described above, in the conventional method, there are problems such as incomplete bonding between the P-type semiconductor and the n-type semiconductor or deterioration of the semiconductor substrate, and it is not possible to obtain an element with high light wL exchange efficiency.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、上記従来の問題点を解消し、p型とlI型と
の接合力が極めて強く、かつ光電変換効率の高いp型・
n型へテロ接合型光電変換素子を製造する方法を提供し
ようとするものである。
The present invention solves the above-mentioned conventional problems, and provides an extremely strong bonding force between p-type and II-type, as well as a high photoelectric conversion efficiency.
The present invention aims to provide a method for manufacturing an n-type heterojunction photoelectric conversion element.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、pm高分子半導体とポリアセチレンから成る
It型高分子半導体とのp−ng会の光電変換素子を製
造する方法でおって、!11型高子半導体の基材を有機
溶媒で膨潤させると共にp型高分子半導体と接触させて
、しかる後練基材を乾燥することによりp型高分子半導
体と上記基材とを接合させることを特徴とするものであ
る。
The present invention is a method for manufacturing a p-ng photoelectric conversion element of a pm polymer semiconductor and an It type polymer semiconductor made of polyacetylene, comprising: The base material of the 11-type polymer semiconductor is swollen with an organic solvent and brought into contact with the p-type polymer semiconductor, and the p-type polymer semiconductor and the base material are bonded by drying the post-mixed base material. This is a characteristic feature.

なお9本発明にかかる11型高分子半導体の基材は、p
型高分子半導体に接触させる前にxi mに機能化させ
てもよく、またp型高分子半導体と接触あるいは乾燥さ
せた後11mに機能化させてもよい。
9 The base material of the 11-type polymer semiconductor according to the present invention is p
The xi m may be functionalized before contacting with the p-type polymer semiconductor, or the 11 m may be functionalized after contacting or drying with the p-type polymer semiconductor.

本発明において、p型高分子半導体はn m高分子半導
体と対になり、p型・n型へテロ接合の光電変換素子を
形成するものである。
In the present invention, a p-type polymer semiconductor is paired with an nm polymer semiconductor to form a p-type/n-type heterojunction photoelectric conversion element.

該p型高分子半導体を構成する高分子化合物としては、
ポリピロール系化合物、ポリチェニレン系化合物、ポリ
7ラン系化合物、ポリアニリン系化合物、ポリアズレン
系化合物等が挙げられる。
As the polymer compound constituting the p-type polymer semiconductor,
Examples include polypyrrole compounds, polythenylene compounds, poly7rane compounds, polyaniline compounds, and polyazulene compounds.

例えば、上記ポリピロール系化合物とはポリピロー/v
、ポリーN−メチルビロール、ポリーN−二千ルビロー
ル等であり、ポリチェニレン系化合物とはボリチェニV
7.ポリー6−メチlレチェニレン、ボU−3、4−ツ
メチルチェニレン等であり、ポリ7ラン未化合物とはポ
リフラン等であり。
For example, the polypyrrole compound mentioned above is polypyrrole/v
, poly-N-methylpyrrol, poly-N-2,000-ruvirol, etc., and polythenylene-based compounds include polythenylene V
7. These include poly-6-methyl-rechenylene, bo-U-3,4-methyl-chenylene, etc., and the poly-7-ran uncompounds include polyfuran and the like.

ポリアニリン系化合物とはポリアニリン、ポリー〇−ヨ
ード7ニリン、ポリー〇−ブロモアニリン等であり、ポ
リアズレン系化廿物とはポリアズレン、 11−ブチル
アズレン、アミノアズレン等である。しかして、これら
高分子化合物は1種または2種以上を使用する。なお2
種以上の高分子化合物を使用する場合には、その混合重
会体でも共重合体でも使用することができる。
The polyaniline compounds include polyaniline, poly(0-iodo-7-niline), poly(0-bromoaniline), and the like, and the polyazulene compounds include polyazulene, 11-butylazulene, aminoazulene, and the like. Therefore, one type or two or more types of these polymer compounds are used. Note 2
When using more than one type of polymer compound, a mixed polymer or copolymer thereof can be used.

上記高分子化合物をp型に機能化させる方法としては、
該高分子化合物の電解置台と同時にドーピング剤がドー
ピングされることを利用するのがよい。
As a method for functionalizing the above-mentioned polymer compound into p-type,
It is preferable to utilize the fact that the doping agent is doped at the same time as the electrolytic stand for the polymer compound.

この方法は、上記高分子化合物の単量体とドーピング剤
とをf4解させた電解液中に正電極及び負電極を浸漬し
て、該電解液に直流電流を通電することにより正電極上
に高分子化合物が析出するもの、である。該高分子化合
物は電解液中のドーピング剤をとり込みP型に機能化し
ている。この正電極に酸化インジウム、酸化スズ等の透
明材料を使用すると光電変換素子の電極としてそのまま
使用することができる。また2通常する直流電流は。
In this method, a positive electrode and a negative electrode are immersed in an electrolytic solution in which a monomer of the polymer compound and a doping agent have been dissolved in F4, and a direct current is passed through the electrolytic solution, so that a direct current is applied to the positive electrode. This is one in which a polymer compound precipitates. The polymer compound takes in the doping agent in the electrolyte and is functionalized into a P-type. If a transparent material such as indium oxide or tin oxide is used for this positive electrode, it can be used as it is as an electrode of a photoelectric conversion element. Also, the direct current that normally occurs is 2.

その電流密度が正電極単位面積当り1〜10 rnA/
l噛の範囲内が望ましい。
The current density is 1 to 10 rnA/per unit area of the positive electrode.
It is desirable that it be within the range of 1 bit.

また、上記高分子化合物をP型に機能化させるドーピン
グ剤としては、過塩素酸塩、四フッ化ホウ酸塩、六7ツ
化リン酸塩等がある。例えば、過塩素酸塩は、過塩素酸
銀、過塩素酸ナトIJウム。
Doping agents for functionalizing the above-mentioned polymer compound into P-type include perchlorates, tetrafluoroborates, hexagonal phosphates, and the like. For example, perchlorates include silver perchlorate and sodium perchlorate.

過塩素酸テトラメチルアンモニウム等が挙ケラれ。Examples include tetramethylammonium perchlorate.

四7ツ化ホウ酸朧は、四フッ化ホウ酸ナトリウム。Tetrafluoroboric acid oboro is sodium tetrafluoroborate.

四7ツ化ホウ酸テトラメチルアンモニウム、四フッ化ホ
ウ酸テトラブチルアンモニウム等が挙ケラれ、六7ツ化
リン酸塩は、六7ツ化リン酸ナトリウム、六フッ化りy
dテトラメチ/レアンモニウム。
Examples include tetramethylammonium tetrafluoroborate, tetrabutylammonium tetrafluoroborate, etc., and hexafluoride phosphates include sodium hexafluoride phosphate, sodium hexafluoride phosphate, etc.
dTetramethy/leammonium.

六7ツ化リン酸テトラブチルアンモニウム等が挙げられ
る。しかして、これらドーピング剤は1種または2種以
上を使用する。
Examples thereof include tetrabutylammonium hexagonal phosphate. Therefore, these doping agents may be used alone or in combination of two or more.

上記ドーピング剤のドーピング量は、前記高分子化合物
1モルに対して0.01〜C1,5七〜の範囲内が望ま
しい、該ドーピング量がa、01モル未満の場合、高分
子化合物がp型に機能しがたく、他方、α3モA/を越
える場合、ドーピング量に見合うだけの比抵抗の低下が
凭られない1.なp、比抵抗に換算した場合、p型高分
子半導体が10〜10婁Ω・備の範囲内となるようにド
ーピングするのがよい。
The doping amount of the doping agent is preferably within the range of 0.01 to C1,57 to 1 mole of the polymer compound.If the doping amount is less than a,01 mole, the polymer compound is of p-type. On the other hand, if α3moA/ is exceeded, the specific resistance cannot be reduced by an amount commensurate with the amount of doping.1. It is preferable to dope the p-type polymer semiconductor so that the p-type polymer semiconductor has a specific resistance of 10 to 10 ohms.

また、該p型高分子半導体の形状としては、板状または
膜状で使用するのが操作の容易性より望ましい。その場
合の厚さは、101〜I Q pinの範囲内が望まし
い。その厚さが101μIn未満ではp型ドーピング剤
とfl型ドーピング剤との拡散により絶縁相が形成され
、高分子化合物がp型に機能しにくくなり、しかも収り
扱いが困難である。
Further, as for the shape of the p-type polymer semiconductor, it is preferable to use it in the form of a plate or a film for ease of operation. In that case, the thickness is preferably within the range of 101 to IQ pin. If the thickness is less than 101 μIn, an insulating phase is formed due to diffusion of the p-type doping agent and the fl-type doping agent, making it difficult for the polymer compound to function as a p-type, and moreover, it is difficult to accommodate and handle it.

他方、厚さが10μfilを越える場合には、照射光を
p調高分子半導体から入射させる際に光の吸収が大きく
なり、接合界面まで光が透過せず、光起電力が得られな
いおそれがある。更に優れた光電変換素子は0.1〜1
1.5μrnの厚さの範囲内で得られる。
On the other hand, if the thickness exceeds 10 μfil, the absorption of light will be large when the irradiation light is incident from the p-tone polymer semiconductor, and there is a risk that the light will not be transmitted to the bonding interface and no photovoltaic force will be obtained. be. Even better photoelectric conversion elements are 0.1 to 1
Obtained within a thickness range of 1.5 μrn.

Tl型高分子半導体は上記p型高分千半4体と対になる
ものである。
The Tl-type polymer semiconductor is a pair of the above-mentioned p-type polymer semiconductor.

該Tl型高分子半導体を構成する高分子化合物としては
、ポリアセチレンを用いるu譲ボ+sアtチレンはシス
体でもトランス体でもどちらでも使用することができる
As the polymer compound constituting the Tl-type polymer semiconductor, polyacetylene can be used in either the cis form or the trans form of u-containing polyester + s-atylene.

本発明において2口型高分子半導体の基材であるポリア
セチレンをまずf磯溶謀で膨潤させると共に前記p調高
分子半導体と接触させる。
In the present invention, polyacetylene, which is the base material of the two-port polymer semiconductor, is first swollen by f-isomerization and brought into contact with the p-tone polymer semiconductor.

上hE 有tJm 溶には、ペンタン2ヘキサン、ベン
ゼン、トルエン等の無極性有秦溶諜、アセトン、アセト
ニトリル、ジメチルホルムアミド等の極性有’1ktB
謀のいずれも使用することができ、それら有機溶媒のう
ちの1撫または2種以上を使用する。
For the upper hE and tJm solutions, nonpolar solvents such as pentane, hexane, benzene, and toluene, and polar solvents such as acetone, acetonitrile, and dimethylformamide are used.
Any of these organic solvents may be used, and one or more of these organic solvents may be used.

しかし、望ましくは、非プロトン性の有機溶媒であるの
がよい。これはポリアセチレンはプロトンにより還元さ
れ、π共役型の2重結合構造が破壊され、かつn型ドナ
ーのドーピング剤が電子受容型のプロトンにより破壊さ
れるおそれがあるためである。更に理想的には、ポリア
セチレンの気液界面合成の際に使用したベキサンあるい
はヘキサンと相溶性のめるトルエンを使用するのがよい
However, it is preferable to use an aprotic organic solvent. This is because polyacetylene is reduced by protons, the π-conjugated double bond structure is destroyed, and the n-type donor doping agent is likely to be destroyed by electron-accepting protons. More ideally, toluene, which is compatible with bexane or hexane used in the gas-liquid interfacial synthesis of polyacetylene, is preferably used.

また、ポリアセチレンとp調高分子半導体とを接触させ
る方法としては、p型高分子半導体上にポリアセチレン
をしわがよらないように、しかもp型高分子半導体とポ
リアセチレンとの間に気体や異物が混入しないように均
一に接触させるだけでよい。したがって、p型高分子半
導体とポリアセチレンとを加圧する必要はない。
In addition, as a method for bringing polyacetylene into contact with a p-type polymer semiconductor, it is necessary to avoid wrinkles of the polyacetylene on the p-type polymer semiconductor, and to prevent gases or foreign substances from entering between the p-type polymer semiconductor and the polyacetylene. All you need to do is to make sure that they are in even contact. Therefore, there is no need to pressurize the p-type polymer semiconductor and polyacetylene.

なお9通常はポリアセチレンを前記有機溶媒で膨潤させ
た後、該ポリアセチレンをp型高分子半接触体を浸漬さ
せてポリアセチレンを膨潤させてもよいu更に有機溶媒
中でポリアセチレンとP機高分子半導体とを接触させる
こともできる。この場合、p型窩分子半導体も有機溶媒
で膨潤する。
9 Usually, after the polyacetylene is swollen in the organic solvent, the polyacetylene may be immersed in a p-type polymer semi-contact member to swell the polyacetylene. It is also possible to contact the In this case, the p-type cavity molecular semiconductor also swells with the organic solvent.

その後、上記有機溶媒で膨潤したポリアセチレンとp型
窩分子半導体との板触体のポリアセチレンを乾燥させる
。なお、前記のようにP機高分子半導体も膨潤している
場合は、該p型窩分子半導体も乾燥させる。
Thereafter, the polyacetylene swollen with the organic solvent and the p-type cavity molecule semiconductor are dried. Note that if the P-type polymer semiconductor is also swollen as described above, the p-type polymer semiconductor is also dried.

この乾燥により、高分子中に含浸している有機溶媒を蒸
発除去する。乾燥条件は、有機溶媒がほぼ完全に除去さ
れる範囲であり、その方法としては、自然乾燥あるいは
有機溶媒の蒸発速度を高めるために加熱乾燥により行な
う。なお、加熱乾燥の場合、加熱温度は200°C以下
とするのが望ましい。200°Cより高温であると、P
型、n型の高分子半導体が劣化するおそれがある。
This drying evaporates and removes the organic solvent impregnated into the polymer. The drying conditions are such that the organic solvent is almost completely removed, and the method is natural drying or heating drying to increase the evaporation rate of the organic solvent. In addition, in the case of heat drying, the heating temperature is preferably 200°C or less. If the temperature is higher than 200°C, P
There is a risk that the type and n-type polymer semiconductors may deteriorate.

!!型高分子半導体の基材であるポリアセチレンをII
型に機能化させるのは、ポリアセチレントP型高分子半
導体とを接触させる前でもよく、接触または乾燥後でも
よい。なお、接触した後にn型に暗能化させる場合には
、ポリアセチレンのみに!ii機能化処理を施す。
! ! Polyacetylene, which is the base material of type polymer semiconductor, is
The mold may be functionalized before contacting with the polyacetylene P-type polymer semiconductor, or after contacting or drying. In addition, if you want to darken to n-type after contact, use only polyacetylene! ii) Perform functionalization treatment.

このポリアセチレンをXl型に機能化させる方法として
は、ナトリウム−ナフタレンi体のTHF溶液に浸漬す
る方法、有機アミン化合物と金属アミドとの混会物をド
ーピング剤として、その炭化水素溶液を利用する方f−
A(特願昭58−189658号、59−6900号、
59−42273号による。)、6るいはテトラメチル
アンモニウム塩、デトラエチルアンモニウム塩等のドー
ピング剤を電気的にドーピングする方法等が挙げられる
Methods for functionalizing this polyacetylene into the Xl type include a method of immersing it in a THF solution of sodium-naphthalene i-form, and a method of using a mixture of an organic amine compound and a metal amide as a doping agent and a hydrocarbon solution thereof. f-
A (Patent Application No. 58-189658, No. 59-6900,
According to No. 59-42273. ), a method of electrically doping with a doping agent such as hexafluoride, tetramethylammonium salt, detraethylammonium salt, and the like.

該ポリアセチレンにドーピング剤をドーピングする量は
、ポリアセチレン1モルに対シて0.01〜0.3モル
の範囲内が望ましい。該ドーピング量がQ、01モル未
満の場合、ポリアセチレンが115に機能しがたく、他
方、α3モルを越える場合。
The amount of doping agent doped into the polyacetylene is preferably within the range of 0.01 to 0.3 mol per 1 mol of polyacetylene. When the doping amount is less than 1 mole of Q, polyacetylene has difficulty functioning as 115, while on the other hand, when it exceeds 3 moles of α.

ドーピングしただけの比抵抗の低下が見られない。No decrease in resistivity was observed due to doping.

なお、比抵抗に換算した場tk 、 n型のポリアセチ
レンが10−3〜101Ω・備の範囲内になるようにド
ーピングするのがよい。
Note that it is preferable to dope the n-type polyacetylene so that the specific resistance, tk, falls within the range of 10<-3> to 10<1>[Omega].

また、ポリアセチレンの形状としては、膨潤時に膜状ま
たは板状で使用するのが操作の容易性より望ましい。こ
の膨潤時に膜状または・板状とした場合のその厚さとし
ては[L1μm〜10flの範囲内が望ましい。その厚
さが[L1μm未満では、有機I@謀を蒸発させた際に
、乾燥による収縮でポリアセチレンが破れるおそれがあ
り、しかも取り扱いが困難である。他方、厚さが10m
を越える場分、高分子化会物の利点である柔軟性が低下
するおそれがある。更に優れた光電変換機能は1μrn
〜1flの厚さの範囲内で得られる。
Further, as for the shape of the polyacetylene, it is preferable to use it in the form of a film or a plate during swelling for ease of operation. When it is formed into a membrane or plate shape during this swelling, its thickness is preferably in the range of 1 μm to 10 fl. If the thickness is less than 1 μm, there is a risk that the polyacetylene will be torn due to shrinkage due to drying when the organic I@plot is evaporated, and it will be difficult to handle. On the other hand, the thickness is 10m
If the amount exceeds this, there is a risk that the flexibility, which is an advantage of polymerized compounds, may be reduced. Even better photoelectric conversion function is 1μrn
Obtained within a thickness range of ~1 fl.

本発明により製造された光電変換素子は、金。The photoelectric conversion element manufactured according to the present invention is made of gold.

銀、銅、白金等の電極をそれぞれ11型高分子半導体、
P型高分子半導体に接続し、光を照射して。
Electrodes of silver, copper, platinum, etc. are each made of 11-type polymer semiconductor,
Connect it to a P-type polymer semiconductor and irradiate it with light.

使用される。この光照射により、 ti型嵩高分子半導
体p型筒分子半導体との界面で電子の模勧が生じ、起電
力が発生する。
used. By this light irradiation, electrons are stimulated at the interface between the Ti-type bulky polymer semiconductor and the P-type cylindrical molecule semiconductor, and an electromotive force is generated.

なお、この光電変換素子への光照射は、p型高分子半導
体側から行なうのが、起電力が大きい。
Note that the electromotive force is large when the photoelectric conversion element is irradiated with light from the p-type polymer semiconductor side.

そのため、p型窩分子半導体は、照射光の透過率の大な
るもの全使用するのがよい。
Therefore, it is preferable to use all p-type cavity molecular semiconductors that have a high transmittance to irradiated light.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、P型半導体とII m半導体との接合
が強固な光電変換素子を簡便に製造することができる。
According to the present invention, a photoelectric conversion element with a strong junction between a P-type semiconductor and a IIm semiconductor can be easily manufactured.

また本発明では、P型半導体と■1型型半体との接合に
際して、従来のごとき圧着等による外力を加えないため
、厚さが極めて薄く、シかも材料劣化の少ない光電変換
素子をtM造することができる。
In addition, in the present invention, when joining the P-type semiconductor and the 1-type half body, no external force is applied by crimping or the like as in conventional methods, so the photoelectric conversion element is extremely thin and has less material deterioration due to tM manufacturing. can do.

七のため、製造された光電変換素子の抵抗は低い。7, the resistance of the manufactured photoelectric conversion element is low.

従って2本発明では、充電変換効率の高い素子を製造す
ることができる。
Therefore, in the present invention, an element with high charge conversion efficiency can be manufactured.

〔実施例〕 以下9本発明の詳細な説明する。〔Example〕 Hereinafter, nine aspects of the present invention will be described in detail.

実施例1゜ 第1図及び第2図に示すような本実施例にががる光電変
換素子を形成した。なお、第1図は光電変換素子の斜視
図、第2図は第1図のn−mに沿う断面図である。
Example 1 A photoelectric conversion element according to this example as shown in FIGS. 1 and 2 was formed. Note that FIG. 1 is a perspective view of the photoelectric conversion element, and FIG. 2 is a sectional view taken along line nm in FIG. 1.

まず、以丁のようにwt解重合を利用してP型高分子半
導体を形成した。
First, a P-type polymer semiconductor was formed using wt depolymerization as described in Itcho.

ピロール単量体とドーピング剤としての四7.:。47. Pyrrole monomer and as a doping agent. :.

化ホウ酸テトラブチルアンモニウムとをアセトニトリル
に溶解した溶液に正及び負電極を浸漬し。
The positive and negative electrodes were immersed in a solution of tetrabutylammonium borate dissolved in acetonitrile.

該膜・負電極間に正電極単位面積当りa rnA / 
dの直流電流を約7秒間流した。なお正電極は導電性ネ
サガラス(In!01 ) 、負TjL極はステンレス
板を用いた。これにより正電極のネサガラス上に膜厚o
、 o s prn 、長さ20M11X幅20M1の
ポリピロール膜を析出させた。、該ポリピロール膜は比
抵抗が10・口のpm半導体であった。p型ポリビロー
IL/膜は、電極に析出したままで光電変換素子に供し
た。
Between the membrane and the negative electrode, a rnA / per unit area of the positive electrode
A direct current of d was applied for about 7 seconds. Note that conductive Nesa glass (In!01) was used for the positive electrode, and a stainless steel plate was used for the negative TjL electrode. This results in a film thickness of o on the Nesa glass of the positive electrode.
, o sprn , a polypyrrole film having a length of 20M11 and a width of 20M1 was deposited. The polypyrrole film was a pm semiconductor with a specific resistance of 10. The p-type polybillow IL/film was applied to the photoelectric conversion element while being deposited on the electrode.

次に以下のようにn型高分子半導体を形成した。Next, an n-type polymer semiconductor was formed as follows.

チーグラ型触媒を用いて合成し、ヘキサンで触媒を取り
除き精製して、ポリアセチレン膜を形成したU線膜はヘ
キサンで膨潤していた。
The U-ray membrane, which was synthesized using a Ziegler type catalyst and purified by removing the catalyst with hexane to form a polyacetylene membrane, swelled with hexane.

次に2−アミノエチルアミノメチルトリメチlレジラン
とリチウムアミドとを入れたトルエン溶液を60分加熱
還流し、該溶液に上記膨潤ポリアセチレン膜を浸漬し、
膨潤11型ボリアtチレン膜を得た。該n型ポリアセチ
レン膜はヘキサンとトルエンとで膨潤していた。なお該
n@ポリアセチレンは乾燥状態では膜厚が20μmであ
り、比抵抗が10’Ω・αであった。
Next, a toluene solution containing 2-aminoethylaminomethyltrimethyl resinane and lithium amide was heated to reflux for 60 minutes, and the swollen polyacetylene membrane was immersed in the solution.
A swollen type 11 boria t-tyrene membrane was obtained. The n-type polyacetylene film was swollen with hexane and toluene. Note that the n@polyacetylene had a film thickness of 20 μm in a dry state and a specific resistance of 10′Ω·α.

この膨潤したIl型ポリアセチレン膜を前記電極に析出
した状態のp型ポリピロール膜上に被覆するように接触
させ、その後n型ポリアセチレン膜を30°Cで120
分間乾燥させて、ヘキサンとトルエンを除去した。これ
によりnmポリアセチレン膜とP型ポリピロール膜とが
密着してなる光電変換素子を製造した。
This swollen Il-type polyacetylene film was brought into contact with the p-type polypyrrole film deposited on the electrode so as to cover it, and then the n-type polyacetylene film was heated at 30°C for 120°C.
The hexane and toluene were removed by drying for a minute. In this way, a photoelectric conversion element was manufactured in which the nm polyacetylene film and the P-type polypyrrole film were in close contact with each other.

該光電変換素子1は、第1図及び第2図に示すように、
n型ポリアセチレン膜2とP′型ポリピロール膜5とが
接合されてなるものでおり、該pmポリピロール膜3t
it解重合時の正電極として快用した導電性ネサガヲス
41表面に析出させた状態で接合されてなる。
The photoelectric conversion element 1, as shown in FIGS. 1 and 2,
It is formed by joining an n-type polyacetylene film 2 and a P'-type polypyrrole film 5, and the pm polypyrrole film 3t
It is bonded in a deposited state on the surface of conductive Nesagawasu 41, which was commonly used as a positive electrode during IT depolymerization.

この光電変換素子1のn型ポリアセチレン2の上部に銀
ペースト42を取り付は電極とし、2mポリピロール3
ifiの4イ性ネサガヲス41をその対電極とした。史
に上記両電極に鋼線46をそれぞれ取り付けた。なおg
411L性ネサガラス41には銀ペースト44を介して
銅線46を取り付けた。
A silver paste 42 is attached to the top of the n-type polyacetylene 2 of this photoelectric conversion element 1 as an electrode, and a 2m polypyrrole 3
Ifi 4-type Nesagawosu 41 was used as the counter electrode. A steel wire 46 was attached to each of the above electrodes. Nao g
A copper wire 46 was attached to the 411L Nesa glass 41 via a silver paste 44.

この両wt極を電圧計及び電流計(図示せず)に接続し
、光電変換素子のp型ポリピロール膜面より白色光(s
oow)を入射し、その時の開放電圧と短絡電流を測定
した。
Both wt poles are connected to a voltmeter and an ammeter (not shown), and white light (s) is applied from the p-type polypyrrole film surface of the photoelectric conversion element.
oow), and the open circuit voltage and short circuit current at that time were measured.

その結果、開放電圧4 +nV 、短絡電流5 ×10
’μAでめった。
As a result, open circuit voltage 4 + nV, short circuit current 5 × 10
'It was rare with μA.

また比較のため、P型ポリビロー/1/膜と!電型ポリ
アセチレン膜とを圧着により接合した比較用光電変換素
子を製造した。なお、p型ポリピロール膜Jtllポリ
アセチVン膜とも上記と同様に形成しll1mポリアセ
チレン膜はPaポリピロール膜との接合前に乾燥しであ
る。またp型と!l型の半導体の振盆は電解重什時の正
を極の表面土に析出させた状態のp型ポリピロール腺と
n型ポリアセチレン膜とを接触するように配置し、2K
q//−11の圧力でP型とn型との高分子半導体全圧
省して行なった。
Also, for comparison, with P-type polybillow/1/membrane! A comparison photoelectric conversion element was manufactured by bonding an electro-type polyacetylene film by pressure bonding. The p-type polypyrrole film and the Jtll polyacetylene film were formed in the same manner as described above, and the ll1m polyacetylene film was dried before being bonded to the Pa polypyrrole film. With p-type again! The L-type semiconductor shaking tray is arranged so that the p-type polypyrrole gland in which the positive energy during electrolysis is deposited on the surface soil of the electrode is in contact with the n-type polyacetylene film, and the 2K
The test was carried out at a pressure of q//-11 while omitting the total pressure of the P-type and n-type polymer semiconductors.

この比較用光電変換素子について、上記と同様にして開
放電圧と短絡電流を測定した。
Regarding this comparative photoelectric conversion element, the open circuit voltage and short circuit current were measured in the same manner as above.

その結果、開放電圧はα3 sn’V 、短絡電流は1
.7×10″1μAでおった。
As a result, the open circuit voltage is α3 sn'V and the short circuit current is 1
.. 7×10″ and 1 μA.

このことにより1本発明によれば光電変換効率の良好な
充電変換素子を製造できることがわかる。
This shows that according to the present invention, a charge conversion element with good photoelectric conversion efficiency can be manufactured.

実施例2 本実施例では、 El型高分子半導体の基材であるポリ
アセチレンとp型高分子半導体とを接触させた後にポリ
アセチレンをIf型にS態化させた例を示す。
Example 2 This example shows an example in which polyacetylene, which is a base material of an El-type polymer semiconductor, is brought into contact with a p-type polymer semiconductor, and then the polyacetylene is converted into an If-type S state.

チーグラ型触媒を用いて合成し、ヘキサンで触媒を収り
除き精製した膨潤ポリアセチレン膜を11型に機能化さ
せずに実施例1と同様にして、膨潤ポリアセチレン膜(
乾燥時の膜厚20μ皇口)とp型ポリピロール膜(電解
重合時の!極上に析出させた状態のもので、膜厚α05
μm)とを接触させた。その後膨潤ポリアセチレン膜を
乾燥させて。
A swollen polyacetylene membrane synthesized using a Ziegler type catalyst and purified by removing the catalyst with hexane was prepared in the same manner as in Example 1 without functionalizing it to type 11.
The film thickness when dry is 20 μm) and the p-type polypyrrole film (during electrolytic polymerization! The film thickness is α05).
μm) were brought into contact with each other. Then dry the swollen polyacetylene membrane.

ヘキサンを蒸発除去した。そして、2−アミンエチルア
ミノメチルトリメチルシランとリチウムアミドとをトル
エンに入れた溶液を50分間加熱還流し、該溶液に上記
接合体を浸漬した。これによりポリアセチレン膜をn型
に機能化させ、その後接合体を乾燥させ、トルエンを除
去してlnmポリアセチレン膜とp型ポリピロール膜と
が接合してなる光電変換素子を形成した。
Hexane was removed by evaporation. Then, a solution of 2-amineethylaminomethyltrimethylsilane and lithium amide in toluene was heated under reflux for 50 minutes, and the above bonded body was immersed in the solution. This functionalized the polyacetylene film into n-type, and then dried the bonded body and removed toluene to form a photoelectric conversion element in which the lnm polyacetylene film and the p-type polypyrrole film were bonded.

この光電変換素子について、実施例1と同様にして白色
光を入射し、電圧と電流を測定した。その結果、電圧は
3 mV 、電流は5 X 10=μAであった。
White light was applied to this photoelectric conversion element in the same manner as in Example 1, and the voltage and current were measured. As a result, the voltage was 3 mV and the current was 5×10=μA.

実施例五 本実施例では、実施例1におけるp型ポリビロー〜に代
えてP型ポリチェニレンを使用した例を示す。
Example 5 This example shows an example in which p-type polythenylene was used in place of the p-type polybillow in Example 1.

P5ポリチェニレンの合成は、チェニレン単量体とドー
ピング剤としての過塩素酸テトラエチルアンモニウムと
を溶解したニトロベンゼン溶液ヲ使用して、正電極単位
面積当り 5 n1IA/dの直流−流を約10秒間流
し、それ以外は実施例1と同様な条件で電解重合を行な
った。欠に実施例1と同様にしこの正電極上に析出させ
た状態のp型ポリチェ: V 7膜(膜L’s (,1
pm 、長さ20HX幅20書、比抵抗1Ω・crll
)と膨潤!l型ポリアセチレン膜と接触させ、該It型
ポリアセチレン膜を乾燥して、光電変換素子を製造した
P5 polythenylene was synthesized by using a nitrobenzene solution in which theningylene monomer and tetraethylammonium perchlorate as a doping agent were dissolved, and flowing a direct current of 5 nlIA/d per unit area of the positive electrode for about 10 seconds. Electrolytic polymerization was carried out under the same conditions as in Example 1 except for the above. The p-type polycheon film deposited on the positive electrode as in Example 1: V7 film (film L's (,1
pm, length 20H x width 20 lines, specific resistance 1Ω・crll
) and swelling! It was brought into contact with an I-type polyacetylene film, and the It-type polyacetylene film was dried to produce a photoelectric conversion element.

この光電変換素子について、実施例1と同様にして白色
光を入射し、電圧と電流を測定した。その結果、電圧は
4mV、電流は4 X 10’μAであった。
White light was applied to this photoelectric conversion element in the same manner as in Example 1, and the voltage and current were measured. As a result, the voltage was 4 mV and the current was 4 x 10'μA.

実施例4゜ 実施例5と同様なP型ポリチェニレン膜を使用した以外
は、5j!施例2と同様にしてp型ポリチェニレン膜と
n型ポリアセチレン膜とが接合してなる光電変換素子を
製造した。
Example 4゜5j! except that the same P-type polythenylene film as in Example 5 was used. A photoelectric conversion element in which a p-type polythenylene film and an n-type polyacetylene film were bonded was manufactured in the same manner as in Example 2.

この光電変換素子について、実施例1と同様にして白色
光を入射し、を圧と電流を測定した。その結果、電圧は
4 rnV + 電流は4 X 104μAでめった。
White light was applied to this photoelectric conversion element in the same manner as in Example 1, and the pressure and current were measured. As a result, the voltage was 4 rnV + and the current was 4 x 104 μA.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1における本発明にがかる光電変換素子
の斜視図、第2図は第1図のIt−IIに沿う断面図で
ある。
1 is a perspective view of a photoelectric conversion element according to the present invention in Example 1, and FIG. 2 is a sectional view taken along It-II in FIG. 1.

Claims (3)

【特許請求の範囲】[Claims] (1)P型高分子半導体とポリアセチレンから成るn型
高分子半導体とのp−n接合の光電変換素子を製造する
方法であって、n型高分子半導体の基材を有機溶媒で膨
潤させると共にp型高分子半導体と接触させて、しかる
後該基材を乾燥することによりp型高分子半導体と上記
基材とを接合させることを特徴とする光電変換素子の製
造方法。
(1) A method for manufacturing a p-n junction photoelectric conversion element between a P-type polymer semiconductor and an n-type polymer semiconductor made of polyacetylene, the method comprising: swelling the base material of the n-type polymer semiconductor with an organic solvent; A method for manufacturing a photoelectric conversion element, which comprises bonding the p-type polymer semiconductor and the base material by bringing the base material into contact with the p-type polymer semiconductor and then drying the base material.
(2)上記p型高分子半導体は、ポリピロール系化合物
、ポリチェニレン系化合物、ポリフラン系化合物、ポリ
アニリン系化合物、ポリアズレン系化合物のうちの1種
または2種以上からなる特許請求の範囲第(1)項記載
の光電変換素子の製造方法。
(2) The p-type polymer semiconductor comprises one or more of polypyrrole-based compounds, polythenylene-based compounds, polyfuran-based compounds, polyaniline-based compounds, and polyazulene-based compounds, as claimed in claim (1). A method for manufacturing the photoelectric conversion element described above.
(3)上記有機溶媒は、ペンタン、ヘキサン、ベンゼン
、トルエン、アセトン、アセトニトリル、ジメチルホル
ムアミドのうちの1種または2種以上である特許請求の
範囲第(1)項記載の光電変換素子の製造方法。
(3) The method for producing a photoelectric conversion element according to claim (1), wherein the organic solvent is one or more of pentane, hexane, benzene, toluene, acetone, acetonitrile, and dimethylformamide. .
JP60120196A 1985-06-03 1985-06-03 Manufacture of photoelectric conversion device Pending JPS61278174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60120196A JPS61278174A (en) 1985-06-03 1985-06-03 Manufacture of photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60120196A JPS61278174A (en) 1985-06-03 1985-06-03 Manufacture of photoelectric conversion device

Publications (1)

Publication Number Publication Date
JPS61278174A true JPS61278174A (en) 1986-12-09

Family

ID=14780285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60120196A Pending JPS61278174A (en) 1985-06-03 1985-06-03 Manufacture of photoelectric conversion device

Country Status (1)

Country Link
JP (1) JPS61278174A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011029651A (en) * 2001-10-10 2011-02-10 Merck Patent Gmbh Combined etching and doping substance
JP2011096914A (en) * 2009-10-30 2011-05-12 Mitsubishi Chemicals Corp Solar cell and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011029651A (en) * 2001-10-10 2011-02-10 Merck Patent Gmbh Combined etching and doping substance
JP2011096914A (en) * 2009-10-30 2011-05-12 Mitsubishi Chemicals Corp Solar cell and method of manufacturing the same

Similar Documents

Publication Publication Date Title
Saito et al. Application of poly (3, 4-ethylenedioxythiophene) to counter electrode in dye-sensitized solar cells
JP4043135B2 (en) Functional element and multi-component multi-phase polymer molding
Killian et al. Polypyrrole composite electrodes in an all‐polymer battery system
Saito et al. Solid state dye sensitized solar cells using in situ polymerized PEDOTs as hole conductor
US6300015B1 (en) Proton conductive polymer battery and method of forming the same
KR100882503B1 (en) Highly Efficient Counter Electrodes for Dye-sensitized Solar Cells and Method for Manufacturing Thereof
US7248461B2 (en) Conducting polymer composite and solid electrolytic capacitor using the same
KR19990067043A (en) Electrochemical cell with symmetrical inorganic electrode
Chakraborty et al. Co-assembled conductive hydrogel of N-fluorenylmethoxycarbonyl phenylalanine with polyaniline
US6482299B1 (en) Polymer gel electrode
WO1998026463A1 (en) Polymer electrolyte and an electrochemical cell containing the electrolyte
IMOTO et al. Activated carbon counter electrode for dye-sensitized solar cell
Li et al. Dual conductivity of ionic polyacetylene by the metathesis cyclopolymerization of dendronized triazolium-functionalized 1, 6-heptadiyne
KR102413065B1 (en) Dye-sensitized solar cell comprising hydrogel electrolyte and method for manufacturing the same
JPS61278174A (en) Manufacture of photoelectric conversion device
Kim et al. Liquid crystals embedded in polymeric electrolytes for quasi‐solid state dye‐sensitized solar cell applications
CN110534345B (en) Counter electrode of dye-sensitized solar cell and preparation method and application thereof
JPH0378978A (en) Manufacture of photo-electrochemical cell
GB2571770A (en) Battery, electrode and method
Kim et al. Impedance spectroscopy on dye-sensitized solar cells with a poly (ethylenedioxythiophene): poly (styrenesulfonate) counter electrolyte
JPS618854A (en) Cell and its manufacturing method
JPS61125090A (en) Photoelectric conversion element
JPS618855A (en) Cell and its manufacture
US20200411847A1 (en) Polymer battery formed from freestanding electrode films
JPS63205063A (en) Manufacture of battery