JPS618855A - Cell and its manufacture - Google Patents

Cell and its manufacture

Info

Publication number
JPS618855A
JPS618855A JP59128844A JP12884484A JPS618855A JP S618855 A JPS618855 A JP S618855A JP 59128844 A JP59128844 A JP 59128844A JP 12884484 A JP12884484 A JP 12884484A JP S618855 A JPS618855 A JP S618855A
Authority
JP
Japan
Prior art keywords
organic conductive
conductive film
charge carrier
film
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59128844A
Other languages
Japanese (ja)
Inventor
Hisao Tabei
田部井 久男
Fumihiro Ebisawa
文博 海老澤
Takashi Kurihara
隆 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59128844A priority Critical patent/JPS618855A/en
Publication of JPS618855A publication Critical patent/JPS618855A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To obtain a thin film solid cell easy and convenient for maintenance, by utilizing the difference of charge carrier holding ability caused by lamination of conductive films. CONSTITUTION:Electrode 1 and 5 interpose an organic conductive film between themselves, which is made of a laminate forming the density gradient of charge carrier by lamination of multiple organic conductive films 2 and 3 having different charge carrier density. Furthermore, a heterocyclic macromolecular organic conductive film is laminated on said organic conductive film by electrolytic oxidation and the charge carrier density gradient is formed by impressing backward voltage and thus, a cell is formed. Or, a polymer coating film is formed on said organic conductive film and furthermore, a heterocyclic macromolecular organic conductive film is laminated on this polymer coating film by electrolytic oxidation and the charge carrier density gradient is formed by impressing backward voltage and thus, a cell is formed. As said organic conductive film material, for example, pyrrole system polymer such as polypyrrole, n-methylpolypyrrole, etc., thiophene system polymer such as polythiophene or the like, and furan system polymer such as polyfuran or the like, and so on are used.

Description

【発明の詳細な説明】 〔発明の分野〕 本発明は、有機導電性フィルムを用いた充電可能な電池
において異なる導電性フィルムを積層した薄形の固体電
池およびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a thin solid-state battery in which different conductive films are laminated in a rechargeable battery using an organic conductive film, and a method for manufacturing the same.

〔発明の背景〕[Background of the invention]

従来のこの種の導電性高分子を用いた電池として、ポリ
アセチレンを用いたもの(J、C;S、Che’m、。
As a conventional battery using this type of conductive polymer, one using polyacetylene (J, C; S, Che'm, 2003).

594.1979.J、C,S、Chm、Commun
、、 317.1981) 、ポリチイフェンを用いた
もの(J、J、八pp1.Phys、22. L567
  (1983) )などが開発されている。このよう
な導電性高分子を用いた電池は、従来の鉛電池に比較し
てエネルギ密度および最大出力密度が大きいばかりでな
く、軽量であるなどの多くの優れた特性を示すことが分
かった。
594.1979. J, C, S, Chm, Commun
,, 317.1981), using polythiphene (J, J, 8pp1. Phys, 22. L567
(1983)) have been developed. It has been found that batteries using such conductive polymers not only have higher energy density and maximum output density than conventional lead batteries, but also exhibit many excellent properties such as being lightweight.

このように優れた特性を示すにもかかわらず、前述の電
池は電解液を用いた湿式の電池であるため完全に封止し
た構造にしなければならない、あるいは電「犠により金
属電極が腐食しやすいなどという欠点があり、このため
使用上および製造上程々の難点があった。
Despite these excellent characteristics, the aforementioned batteries are wet-type batteries that use an electrolyte, so they must have a completely sealed structure, or the metal electrodes are susceptible to corrosion due to electric shock. These drawbacks caused some difficulties in use and manufacturing.

〔発明の概要〕[Summary of the invention]

本発明は上述の欠点に鑑みなされたもので、ことなる導
電性フィルムの積層による電荷キャリアの保持性の差を
利用することにより、保守の簡便な薄膜状固体電池を提
供することおよび前述の薄膜状固体電池を容易に製造す
る方法を提供することを目的とするものである。
The present invention has been made in view of the above-mentioned drawbacks, and it is an object of the present invention to provide a thin-film solid state battery that is easy to maintain by utilizing the difference in charge carrier retention due to the lamination of different conductive films, and to provide a thin-film solid-state battery that is easy to maintain. The object of the present invention is to provide a method for easily manufacturing solid-state batteries.

るものである。It is something that

したがって、本発明による電池によれば、電極−間に有
機導電性フィルムを挟持した充電可能な電池において、
前記有機導電性フィルムは異なる電荷キャリア濃度の複
数の有機導電性フィルムを積層2し、電荷キャリアの濃
度勾配を形成した積層体であることを特徴とするもので
ある。
Therefore, according to the battery according to the present invention, in a rechargeable battery in which an organic conductive film is sandwiched between the electrodes,
The organic conductive film is characterized in that it is a laminate in which a plurality of organic conductive films having different charge carrier concentrations are laminated to form a charge carrier concentration gradient.

また本発明による電池の製造方法によれば、有機導電性
フィルム上に、電解酸化により複素環系高分子有機導電
性フィルムを積層し、逆電圧を印加して電荷キャリア濃
度勾配を形成したことを特徴とするものである。
Further, according to the method for manufacturing a battery according to the present invention, a heterocyclic polymeric organic conductive film is laminated on an organic conductive film by electrolytic oxidation, and a charge carrier concentration gradient is formed by applying a reverse voltage. This is a characteristic feature.

また本発明による電池の製造方法によれば、有機導電性
フィルム上にピンフォール高分子コーティング膜を形成
し、その高分子コーティング股上にさらに、電解酸化に
より複素環系高分子有機導電性フィルムを積層し、逆電
圧を印加して電荷キャリア濃度勾配を形成したことを特
徴とする特許本発明によれば、従来の有機導電性フィル
ムを用いた電池と異なった動作原理を有する、すなわ”
+′?.C7,.[=ft{’t:7 4 7L/”(
1)fifijj ’r + ’J To”68   
  〜力の差を利用した薄形、軽量、フレキシブルな電
       ψ池を提供可能であり、前記電池を容易
に製造可能であるという利点がある。
In addition, according to the method for manufacturing a battery according to the present invention, a pinfall polymer coating film is formed on an organic conductive film, and a heterocyclic polymer organic conductive film is further laminated on the polymer coating by electrolytic oxidation. According to the patent, which is characterized in that a charge carrier concentration gradient is formed by applying a reverse voltage, the invention has an operating principle different from that of conventional batteries using organic conductive films.
+′? .. C7,. [=ft{'t:7 4 7L/''(
1) fifijj 'r + 'J To”68
- It is possible to provide a thin, lightweight, and flexible battery that utilizes the difference in force, and there are advantages in that the battery can be easily manufactured.

〔発明の具体的説明〕[Specific description of the invention]

本発明をさらに詳しく説明する。 The present invention will be explained in more detail.

本発明による電池は、電極間に有機導電性フィルムを挟
持した電池であって、前記有機導電性フィルムは異なる
電荷キャリア濃度の有機導電性フィルムを積層した積層
体である。
The battery according to the present invention is a battery in which an organic conductive film is sandwiched between electrodes, and the organic conductive film is a laminate in which organic conductive films having different charge carrier concentrations are laminated.

本発明において用いられる有機導電性フィルムは導電性
があれば、基本的に限定されるものではない。たとえば
、ポリピロール、n−メチルポリピロールなどのピロー
ル系高分子、ポリチオフェンなどのチオフェン系高分子
、ポリフランなどのフラン系高分子、ポリアズレンなど
のアズレン系高分子、ポリインドールなどのインドール
系高分子、ポリセレノフェンなどのセレフェン系高分子
あるいはこれらの共重合体などの複素環系有機導電性フ
ィルムあるいはポリパラフェニレンスルフィド、ポリフ
ェニレン、ポリアセチレンなどの共役系高分子有機導電
性フィルムなどを用いることができる。
The organic conductive film used in the present invention is not fundamentally limited as long as it has conductivity. For example, pyrrole polymers such as polypyrrole and n-methylpolypyrrole, thiophene polymers such as polythiophene, furan polymers such as polyfuran, azulene polymers such as polyazulene, indole polymers such as polyindole, and polyseleno polymers. A heterocyclic organic conductive film such as a selephene polymer such as phene or a copolymer thereof, or a conjugated polymer organic conductive film such as polyparaphenylene sulfide, polyphenylene, polyacetylene, etc. can be used.

このような有機導電性フィルム上に積層される異なる電
荷キャリア濃度を有する有機導電性フィルムは電解酸化
により形成された複素環系有機導電性フィルムである。
The organic conductive film having different charge carrier concentrations that is laminated on such an organic conductive film is a heterocyclic organic conductive film formed by electrolytic oxidation.

このような複素環系有機導電性フィルムは、たとえば上
述のポリピロール、n−メチルポリピロールなどのピロ
ール系高分子、ポリチオフェンなどのチオフェン系高分
子、ポリフランなどのフラン系高分子、ポリアズレンな
どのアズレン系高分子、ポリインドールなどのインドー
ル系高分子、ポリセレノフェン般どのセレフエン系高分
子あるいはこれらの共重合体などを用いることができる
Such heterocyclic organic conductive films include, for example, pyrrole polymers such as the above-mentioned polypyrrole and n-methylpolypyrrole, thiophene polymers such as polythiophene, furan polymers such as polyfuran, and azulene polymers such as polyazulene. Molecules, indole polymers such as polyindole, serephene polymers such as polyselenophene, or copolymers thereof can be used.

本発明は前記有機導電性フィルムを少なくとも第1層次
いで第2層と二種類積層するものであるが、この第1層
としては前記有機導電性フィルム中に含有されるイオン
(ドーパント)を脱離しやすいフィルムを用い、第2層
として前記第1層と比較してドーパントを脱離しにくい
フィルムを順次積層する。
In the present invention, two types of organic conductive films are laminated, including at least a first layer and a second layer, and the first layer is formed by desorbing ions (dopants) contained in the organic conductive film. Using a film that is easy to release, a film that is less likely to release the dopant than the first layer is sequentially laminated as the second layer.

このような第1眉および第2層間にピンホール高分子コ
ーティング膜によるセパレークを形成してもよい。この
ようなセパレークはビンフォールのある絶縁材料であれ
ばいかなるものでもよい。
A separate lake may be formed between the first layer and the second layer using a pinhole polymer coating film. Such a separator may be made of any insulating material that has a binder.

たとえば環化ゴムレジストなどを用いることができる。For example, a cyclized rubber resist can be used.

次ぎに本発明による電池の製造方法について説明する。Next, a method for manufacturing a battery according to the present invention will be explained.

本発明による電池の製造方法によれば、まず基板上に有
機導電性フィルムを形成する。
According to the method for manufacturing a battery according to the present invention, an organic conductive film is first formed on a substrate.

このような有機導電性フィルムの形成方法は基本的に限
定されるものではなく、たとえばモノマーを含む電解液
中で電解酸化により基板上に形成してもよいし、有機高
分子粉末を基板上に加熱、加圧してフィルムとしてもよ
い。また蒸着などに−よって形成することができる。
The method of forming such an organic conductive film is basically not limited; for example, it may be formed on a substrate by electrolytic oxidation in an electrolytic solution containing monomers, or it may be formed on a substrate by applying organic polymer powder to the substrate. It may be made into a film by heating and pressurizing. Alternatively, it can be formed by vapor deposition or the like.

たとえば、上述の電解酸化法により有機導電性フィルム
を形成する場合、まず基板上に電解酸化l      
  により二種類の複素環系高分子半導体フィルムを積
層するものであるが、このような電解酸化は、重合すべ
きモノマーを含む電解液中において、電解を行い前記基
板上に複素理系高分子半導体フィルムを形成せしめるも
のである。
For example, when forming an organic conductive film by the electrolytic oxidation method described above, first electrolytic oxidation lactic acid is applied on the substrate.
In this electrolytic oxidation method, electrolysis is carried out in an electrolytic solution containing monomers to be polymerized, and a complex polymer semiconductor film is laminated on the substrate. It causes the formation of

このような電解液としては、形成される前記高分子半導
体フィルムにドーパントを取り込むようなものであれば
いかなるものでもよい。たとえば、テトラ−n−ブチル
アンモニウム・ヘキサフルオロポレート(nBu a 
N  −BF4) 、テトラ−n−ブチルアンモニウム
・過塩素酸硼素(n−BukN  −BC104)、テ
1−ラーn−ブチルアンモニウム・六フッ化砒素(n−
1)u4N  −F s As) 、テトラ−n−ブチ
ルアンモニウム・過塩素酸炭素(n−Bu4N−CC1
04)などの有機電解質あるいはAgBF4、AgC1
0,1などの無機電解質などの一種以上を用いることが
できる。
Any electrolytic solution may be used as long as it can incorporate the dopant into the polymer semiconductor film to be formed. For example, tetra-n-butylammonium hexafluoroporate (nBu a
N-BF4), tetra-n-butylammonium boron perchlorate (n-BukN-BC104), tetra-n-butylammonium boron perchlorate (n-BukN-BF4), tetra-n-butylammonium boron perchlorate (n-
1) u4N-F s As), tetra-n-butylammonium carbon perchlorate (n-Bu4N-CC1
Organic electrolytes such as 04) or AgBF4, AgC1
One or more types of inorganic electrolytes such as 0, 1, etc. can be used.

またこの電解液中に添加されるモノマーは、前述のよう
な複素環系高分子材料を形成するモノマーであればいか
なるものでもよい。
Further, the monomer added to this electrolytic solution may be any monomer as long as it forms the above-mentioned heterocyclic polymer material.

このように少なくとも二種の有機導電性フィル    
     1ムを積層したのち、逆電圧を印加し、脱ド
ープを行う。このような高分子半導体フィルムに電荷キ
ャリアの濃度勾配を形成させるためには、前記有機導電
性フィルム中にフィルムの厚さ方向にイオン分布を形成
することが必要であるが、本発明によればこのイオン分
布は、逆電圧を印加して脱ドープを行い形成させる。こ
のように脱ドープを行うことにより有機導電性フィルム
の電荷キャリア濃度が異なることになり電荷キャリア濃
度勾配が形成される。
In this way, at least two types of organic conductive films
After one layer is stacked, a reverse voltage is applied to perform dedoping. In order to form a concentration gradient of charge carriers in such a polymer semiconductor film, it is necessary to form an ion distribution in the thickness direction of the organic conductive film. This ion distribution is formed by dedoping by applying a reverse voltage. By performing dedoping in this manner, the charge carrier concentration of the organic conductive film differs, and a charge carrier concentration gradient is formed.

この逆電圧は好ましくはIOV以下であるのがよい。I
OVを超えると、脱イオンが激しくなり、有機導電性フ
ィルム自体に損傷を生じる虞があるからである。
This reverse voltage is preferably less than or equal to IOV. I
This is because if it exceeds OV, deionization becomes intense and there is a risk of damage to the organic conductive film itself.

本発明による第2の製造方法にあっては、第1層の有機
導電性フィルムを形成したのち、ビンフォール高分子コ
ーティング膜によるセパレークを形成し、このセパレー
タ上に上述のように説明した方法によって有機導電性フ
ィルムをさらに積層する。
In the second manufacturing method according to the present invention, after forming the first layer of organic conductive film, a separator lake of Vinfall polymer coating film is formed, and the above-described method is applied on the separator. An organic conductive film is further laminated.

このようなセパレータとしては、たとえば環化ゴムレジ
ストを第1層上に塗布し、光硬化させて形成したもので
あってよい。
Such a separator may be formed, for example, by applying a cyclized rubber resist onto the first layer and photocuring it.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

実施例1 厚さ100μm 、3 cmX5 cmのニッケル板を
陽極とし、対極として白金板を用いてグローブボックス
中で電解重合を行った。
Example 1 Electrolytic polymerization was carried out in a glove box using a 100 μm thick, 3 cm x 5 cm nickel plate as an anode and a platinum plate as a counter electrode.

電解液はアセトニトリル 80m1、チオフェノン3.
6ml、テトラ−n−ブチルアンモニウム・ヘキサフル
オロポレート(nBu 4 N  −BF4)  4.
5gをビーカー中で混合して作製した。このなかに電極
を差込み、4.I V 、100 mAの電流を10分
間電解重合を行い、ニッケル板上に黒色チオフェノン膜
ヲ作製した。これをアセトニトリルで洗浄し、ついでピ
ロール電解液(アセトニトリル80 ml、ビロール 
3.4g、テトラ−n−ブチルアンモニウム・ヘキサフ
ルオロポレート(nBu 4N  −BF4) 4.5
g)中で1.5v、100μ八で50分間電電解層重合
を行った。この積層体をアセトニトリルで洗浄後、膜上
部に白金極板を密着させ、アセトニトリル溶媒中に入れ
、積層基板のニッケル板を陰極、白金板を陽極として、
1.3 V 、10分間逆電圧を印加して脱ドープを行
った。この結果、ポリチオフェン膜層部分のみが主に脱
ドープされた。
The electrolyte is acetonitrile 80ml, thiophenone 3.
6 ml, tetra-n-butylammonium hexafluoroporate (nBu4N-BF4) 4.
5g were mixed in a beaker. Insert the electrode into this, 4. Electrolytic polymerization was performed at IV and a current of 100 mA for 10 minutes to produce a black thiophenone film on a nickel plate. This was washed with acetonitrile, and then pyrrole electrolyte solution (acetonitrile 80 ml, pyrrole
3.4 g, tetra-n-butylammonium hexafluoroporate (nBu 4N -BF4) 4.5
Electrolytic layer polymerization was carried out for 50 minutes at 1.5 V and 100 μm in (g). After cleaning this laminate with acetonitrile, a platinum electrode plate was placed in close contact with the top of the membrane, and placed in an acetonitrile solvent, with the nickel plate of the laminate substrate being used as a cathode and the platinum plate as an anode.
Dedoping was performed by applying a reverse voltage of 1.3 V for 10 minutes. As a result, only the polythiophene film layer portion was mainly dedoped.

アセトニトリルで洗浄後、乾燥し、真空蒸着してポリピ
ロール股上に金の電極を形成した。
After washing with acetonitrile, it was dried and vacuum evaporated to form a gold electrode on the polypyrrole crotch.

このような電池にニッケル板側を陽極、金電極側を陰極
としてアセトニトリル中で1.5 V 、 30分間電
圧を印加し、電圧印加状態のまま前記アセトニトリル液
中より引出し、風乾することにより充電を行った。
To such a battery, a voltage of 1.5 V was applied for 30 minutes in acetonitrile with the nickel plate side as the anode and the gold electrode side as the cathode, and the battery was pulled out from the acetonitrile solution while the voltage was being applied and was air-dried to charge it. went.

このようにして製造され、充電された電池の断面図(充
電状態)を第1図に示す。
A cross-sectional view (charged state) of a battery manufactured and charged in this manner is shown in FIG.

この第1図より明らかなように、この実施例2にける電
池は最外側にニッケル板1を有し、このニッケル板1に
充電により電荷キャリア4の濃度のC高くなったポリチ
オフェノンフィルム(有機導電性フィルム)2および電
荷キャリア4の濃度が小さくなったポリピロールフィル
ム3が積層され、さらにこのポリピロールフィルム3上
に金蒸着層5 (電極)が形成された構造を有している
As is clear from FIG. 1, the battery according to Example 2 has a nickel plate 1 on the outermost side, and this nickel plate 1 is covered with a polythiophenone film ( It has a structure in which an organic conductive film) 2 and a polypyrrole film 3 having a low concentration of charge carriers 4 are laminated, and a gold vapor deposited layer 5 (electrode) is further formed on the polypyrrole film 3.

このように充電した電池はセル電圧2.6シが得られ、
50μA/cutの放電電流で放電を行ったところ、理
論エネルギ密度61Wh/Kgが得られた。
The battery charged in this way has a cell voltage of 2.6,
When discharge was performed with a discharge current of 50 μA/cut, a theoretical energy density of 61 Wh/Kg was obtained.

また、充電操作をドライ状態で2.0■、3時間に亘っ
て行った場合も、前記と同様な特性が得られた。
Further, when the charging operation was carried out in a dry state for 2.0 hours and 3 hours, the same characteristics as described above were obtained.

このような本発明による電池は、導電性フィルム中のB
Faアニオンが前記導電性フィルムの電荷移動錯体のド
ーパントとして電気伝導度の向上とともに、電荷キャリ
アとしてポリチオフェノンフィルム中に高濃度に、ポリ
ピロール中に低濃度に分散し、不安定なポリチオフェノ
ンフィルムを脱出し、より安定な保持体であるポリピロ
ールフィルム方向に移動しようとする性質を利用したも
のであり、従来の有機導電性フィルムを応用した2次電
池とは動作原理が異なっている。          
   〜実施例2 実施例1において使用したポリチオフェンの作製工程に
おいてチオフェノンのかわりにフランを用いた。この場
合の電解液はアセトニトリル80m1、フラン3ml、
Bua N  ・BF44.5 g使用し、ポリフラン
導電性フィルム膜を形成した。その後、実施例1と同様
にしてポリピロールフィルム膜およびその後の処理を行
い、セル電圧 2.9V、エネルギ密度80Wh/Kg
の電池が得られた。
Such a battery according to the present invention has B in the conductive film.
The Fa anion improves the electrical conductivity as a dopant of the charge transfer complex of the conductive film, and is dispersed as a charge carrier at a high concentration in the polythiophenone film and at a low concentration in the polypyrrole, resulting in an unstable polythiophenone film. This utilizes the property of the battery to escape from the organic conductive film and move toward the polypyrrole film, which is a more stable support, and its operating principle is different from that of conventional secondary batteries that utilize organic conductive films.
~Example 2 Furan was used in place of thiophenone in the production process of polythiophene used in Example 1. The electrolyte in this case is 80ml of acetonitrile, 3ml of furan,
A polyfuran conductive film was formed using 44.5 g of Bua N.BF. Thereafter, a polypyrrole film film and subsequent treatments were performed in the same manner as in Example 1, and the cell voltage was 2.9V and the energy density was 80Wh/Kg.
batteries were obtained.

実施例3 厚さ100μm1)×1cmのニッケル板上にポリパラ
フェニレンスルフィド粉末を加熱加圧法により熔融プレ
ス成形し、膜厚50μm程度の積層体を得た。次いでこ
の積層体に真空ライン中で5フン化砒素をドーピングし
、導電性を付与した。
Example 3 Polyparaphenylene sulfide powder was melt press-molded on a 100 μm thick 1 cm x 1 cm nickel plate by heating and pressing to obtain a laminate with a film thickness of about 50 μm. Next, this laminate was doped with arsenic pentafluoride in a vacuum line to impart electrical conductivity.

この後、実施例1と同様にポリピロールフィルム膜を積
層し、実施例1と同様に脱ドープを行った後、金電極を
形成し、充電を行った。
Thereafter, polypyrrole film membranes were laminated in the same manner as in Example 1, and after dedoping was performed in the same manner as in Example 1, gold electrodes were formed and charging was performed.

これによりセル電圧1.9V、 20Wh/Kgのエネ
ルギ密度の電池が得られた。
As a result, a battery with a cell voltage of 1.9 V and an energy density of 20 Wh/Kg was obtained.

実施例4 実施例1と同様な操作においてニッケル板上にポリチオ
フェンフィルム膜を作製したのち、環化ゴムレジスト(
日本合成ゴム製)をスプレーし、乾燥し、光硬化した。
Example 4 After producing a polythiophene film on a nickel plate in the same manner as in Example 1, a cyclized rubber resist (
(manufactured by Japan Synthetic Rubber) was sprayed, dried, and photocured.

実施例1と同様な工程において、ポリピロールを積層重
合させ、電極を形成し、脱ドープを行い、充電した。
In the same steps as in Example 1, polypyrrole was laminated and polymerized to form an electrode, dedoped, and charged.

このように製造された電池のセル電圧は2.4vであり
、60Wh/KHのエネルギ密度であった。
The cell voltage of the battery manufactured in this manner was 2.4V, and the energy density was 60Wh/KH.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば異なる導電性フィ
ルムの電荷キャリアの保持能力の差を利用した薄形、軽
量、フレキシブルの固体二次電池を提供でき、かつ電解
重合法あるいは簡便なプレス法を用いることにより前記
電池を容易に製造できる利点がある。
As explained above, according to the present invention, it is possible to provide a thin, lightweight, and flexible solid state secondary battery that takes advantage of the difference in charge carrier retention ability of different conductive films, and which can be produced using an electrolytic polymerization method or a simple pressing method. There is an advantage that the battery can be manufactured easily by using the above.

このため移動パーソナル通信機の電源、電幸、時計など
の小型、軽量機器に使用する電源として最適な電源とし
て使用できる利点を生じる。
Therefore, it has the advantage that it can be used as an optimal power source for small and lightweight devices such as power sources for mobile personal communication devices, electric appliances, and watches.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による実施例1における電池の断面図で
ある。 ■ ・・・ニッケル板、2 ・・・ポリチオフェンフィ
ルム(有機導電性フィルム)、3 ・・・ポリピロール
フィルム(有機導電性フィルム)、4 ・・・電荷キャ
リア、5 ・・・金電極。
FIG. 1 is a sectional view of a battery in Example 1 according to the present invention. ■ Nickel plate, 2 Polythiophene film (organic conductive film), 3 Polypyrrole film (organic conductive film), 4 Charge carrier, 5 Gold electrode.

Claims (4)

【特許請求の範囲】[Claims] (1)電極間に有機導電性フィルムを挟持した充電可能
な電池において、前記有機導電性フィルムは異なる電荷
キャリア濃度の複数の有機導電性フィルムを積層し、電
荷キャリアの濃度勾配を形成した積層体であることを特
徴とする電池。
(1) In a rechargeable battery in which an organic conductive film is sandwiched between electrodes, the organic conductive film is a laminate in which a plurality of organic conductive films having different charge carrier concentrations are laminated to form a charge carrier concentration gradient. A battery characterized by:
(2)有機導電性フィルム上に、電解酸化により複素環
系高分子有機導電性フィルムを積層し、逆電圧を印加し
て電荷キャリア濃度勾配を形成したことを特徴とする電
池の製造方法。
(2) A method for manufacturing a battery, comprising laminating a heterocyclic polymer organic conductive film on an organic conductive film by electrolytic oxidation, and applying a reverse voltage to form a charge carrier concentration gradient.
(3)前記有機導電性フィルムは電解酸化により作製す
ることを特徴とする特許請求の範囲第2項記載の電池の
製造方法。
(3) The method for manufacturing a battery according to claim 2, wherein the organic conductive film is produced by electrolytic oxidation.
(4)有機導電性フィルム上にピンフォール高分子コー
ティング膜を形成し、その高分子コーティング膜上にさ
らに、電解酸化により複素環系高分子有機導電性フィル
ムを積層し、逆電圧を印加して電荷キャリア濃度勾配を
形成したことを特徴とする電池の製造方法。
(4) A pinfall polymer coating film is formed on the organic conductive film, a heterocyclic polymer organic conductive film is further laminated on the polymer coating film by electrolytic oxidation, and a reverse voltage is applied. A method for manufacturing a battery, characterized in that a charge carrier concentration gradient is formed.
JP59128844A 1984-06-22 1984-06-22 Cell and its manufacture Pending JPS618855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59128844A JPS618855A (en) 1984-06-22 1984-06-22 Cell and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59128844A JPS618855A (en) 1984-06-22 1984-06-22 Cell and its manufacture

Publications (1)

Publication Number Publication Date
JPS618855A true JPS618855A (en) 1986-01-16

Family

ID=14994779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59128844A Pending JPS618855A (en) 1984-06-22 1984-06-22 Cell and its manufacture

Country Status (1)

Country Link
JP (1) JPS618855A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816359A (en) * 1986-03-06 1989-03-28 Varta Batterie Aktiengesellschaft Electrochemical secondary element with at least one polymer electrode
WO1991003921A1 (en) * 1989-08-29 1991-03-21 At&E Corporation Watchband battery powered system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816359A (en) * 1986-03-06 1989-03-28 Varta Batterie Aktiengesellschaft Electrochemical secondary element with at least one polymer electrode
WO1991003921A1 (en) * 1989-08-29 1991-03-21 At&E Corporation Watchband battery powered system

Similar Documents

Publication Publication Date Title
Killian et al. Polypyrrole composite electrodes in an all‐polymer battery system
CN110176591B (en) Aqueous zinc ion secondary battery and preparation method of anode based on organic electrode material
Gao et al. A composite gel–polymer/glass–fiber electrolyte for sodium‐ion batteries
US5637421A (en) Completely polymeric charge storage device and method for producing same
JP3594895B2 (en) Proton conductive polymer secondary battery
EP2027588B1 (en) Highly electron conductive polymer and electrochemical energy storage device with high capacity and high power using the same
CN1372705A (en) Solid polymer elecrolytes
JPH11144732A (en) Battery composite electrode and its manufacture
US6482299B1 (en) Polymer gel electrode
JPH046072B2 (en)
JP3347439B2 (en) Polymer solid electrolyte lithium secondary battery and method of manufacturing the same
JPS618855A (en) Cell and its manufacture
JPS618854A (en) Cell and its manufacturing method
Jeon et al. A Rechargeable Battery Using Electrochemically-Doped Poly (3-vinylperylene) as an Electrode Material.
JPS63205063A (en) Manufacture of battery
JP3066426B2 (en) Electrochemical element and manufacturing method thereof
JPH043066B2 (en)
JPS63181273A (en) Manufacture of cell
JP4156495B2 (en) Gel electrolyte, its production method and its use
JP4054925B2 (en) Lithium battery
JPS62296376A (en) Manufacture of polymer solid electrolyte battery
JPH10116620A (en) Thin type lithium battery and its production
KR0146981B1 (en) Novel polyaniline/polystyrenesulfonate based composite cathod and rechargeable lithium battery composing same
JPH04539Y2 (en)
JPS63216267A (en) Nonaqueous electrolyte secondary cell