JPS61270258A - Polycrystal diamond sintered body and manufacture - Google Patents

Polycrystal diamond sintered body and manufacture

Info

Publication number
JPS61270258A
JPS61270258A JP60110131A JP11013185A JPS61270258A JP S61270258 A JPS61270258 A JP S61270258A JP 60110131 A JP60110131 A JP 60110131A JP 11013185 A JP11013185 A JP 11013185A JP S61270258 A JPS61270258 A JP S61270258A
Authority
JP
Japan
Prior art keywords
carbide
sintered body
metal
diamond sintered
polycrystalline diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60110131A
Other languages
Japanese (ja)
Other versions
JPH0232229B2 (en
Inventor
中 重治
秀章 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP60110131A priority Critical patent/JPS61270258A/en
Publication of JPS61270258A publication Critical patent/JPS61270258A/en
Publication of JPH0232229B2 publication Critical patent/JPH0232229B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は多結晶ダイアモンド焼結体及びその製造法、特
に溶媒−触媒法による多結晶ダイアモンド焼結体及びそ
の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a polycrystalline diamond sintered body and a method for producing the same, particularly a polycrystalline diamond sintered body and a method for producing the same by a solvent-catalyst method.

(従来の技術) ダイアモンドは炭素の同素体で、炭素原子が共有結合し
た正四面体を基本としており、その強固な共有結合によ
り現存の物質中最大の硬度を有し、また純粋なものは常
温において銅の約5倍の熱伝導率を持ち、電気抵抗率は
1016Ω・cm以上の絶縁体である。現在、その硬度
を生かして例えばバイト等の工具として種々の分野で使
用されているが、天然のものは非常に高価であるため工
業的に合成する方法が各方面で開発されている。
(Prior art) Diamond is an allotrope of carbon, and is basically a regular tetrahedron in which carbon atoms are covalently bonded.Diamond has the highest hardness among existing materials due to its strong covalent bonds, and is hard at room temperature when pure. It is an insulator with a thermal conductivity approximately five times that of copper and an electrical resistivity of 1016 Ω·cm or more. Currently, it is used in various fields as tools such as bits due to its hardness, but since natural materials are very expensive, industrial synthesis methods are being developed in various fields.

従来、工業的な多結晶ダイアモンド焼結体の合成方法と
しては、超高温高圧下で黒鉛を直接多結晶ダイアモンド
に転換する直接転換法と、高温高圧下で溶融金属溶媒と
触媒を用い黒鉛から多結晶ダイアモンドを得る溶媒−触
媒法が知られている。
Conventionally, industrial methods for synthesizing polycrystalline diamond sintered bodies include the direct conversion method, in which graphite is directly converted into polycrystalline diamond under extremely high temperature and pressure, and the method in which graphite is directly converted into polycrystalline diamond using a molten metal solvent and catalyst under high temperature and high pressure. Solvent-catalyst methods for obtaining crystalline diamonds are known.

〈発明が解決しようとする問題点) 上述した方法のうち、直接転換法では11Qpa。<Problem that the invention seeks to solve) Among the above-mentioned methods, the direct conversion method yields 11 Qpa.

3300にという非常に過酷な条件が必要な欠点があり
、現在工業的には用いられていない。
3300, which has the disadvantage of requiring very harsh conditions, and is not currently used industrially.

これに対して溶媒−触媒法は、黒鉛と適当な溶媒−触媒
とを接触させて溶媒−触媒から融体を生成し、溶媒−触
媒作用を呈する温度が熱力学的にダイアモンドが安定に
なるように加圧、加熱処理を行なってダイアモンドを得
ているため、直接転換法に比べて比較的低い条件下でダ
イアモンド合成が可能であり、現在工業的に用いられて
いる。
On the other hand, in the solvent-catalyst method, graphite is brought into contact with a suitable solvent-catalyst to generate a melt from the solvent-catalyst, and the temperature at which the solvent-catalytic action occurs is set such that the diamond is thermodynamically stable. Since diamonds are obtained by subjecting them to pressure and heat treatment, it is possible to synthesize diamonds under relatively low conditions compared to the direct conversion method, which is currently used industrially.

このときの溶媒−触媒としては、3d遷移金属のニッケ
ル、コバルト、鉄、マンガンが知られている。
As the solvent-catalyst at this time, 3d transition metals such as nickel, cobalt, iron, and manganese are known.

しかしながら上述した溶媒−触媒として3d遷移金屈の
みを使用する溶媒−触媒法では、未だ転換率が良好で密
度および硬度の高い良質な多結晶ダイアモンドを得るこ
とができない欠点があった。
However, the above-mentioned solvent-catalyst method using only 3D transition metal as a solvent-catalyst has the disadvantage that it is still not possible to obtain high-quality polycrystalline diamond with a good conversion rate and high density and hardness.

本発明の目的は上述した不具合を解消して、従来品に比
べて密度および硬度が高く良質であるとともに安価な多
結晶ダイアモンド及びその製造法を提供しようとするも
のである。
An object of the present invention is to eliminate the above-mentioned problems and provide a polycrystalline diamond that has higher density and hardness than conventional products, is of good quality, and is inexpensive, as well as a method for producing the same.

(問題点を解決するための手段) 本発明の多結晶ダイアモンドは、ダイアモンドと、第1
の炭化物としてFe 、 Co 、 Ni 、 Mnの
中から選ばれた少なくとも1種以上の金属の炭化物、及
び第2の炭化物として金属と炭素との化合物として不定
比化合物を合成する金属の炭化物より構成されることを
特徴とするものである。
(Means for solving the problem) The polycrystalline diamond of the present invention includes a diamond and a first
The second carbide is a carbide of at least one metal selected from Fe, Co, Ni, and Mn, and the second carbide is a metal carbide that synthesizes a non-stoichiometric compound as a compound of metal and carbon. It is characterized by:

さらに、本発明の多結晶ダイアモンドの製造法は、高純
度黒鉛または高純度黒鉛とダイアモンドに、第1の金属
としてFe、co、Ni、Mnから選ばれた少な(とも
1種以上の金屑及び第2の金属として不定比炭化物を合
成する金屑の少な(とも1種以上を混合し、該混合物を
予備処理した後、圧力(iQpa以上、温度1600〜
1800℃の高温高圧処理することを特徴とするもので
ある。
Furthermore, the method for producing a polycrystalline diamond of the present invention includes high-purity graphite or high-purity graphite and diamond, and a first metal selected from Fe, Co, Ni, and Mn (all of which include one or more types of gold scraps and Mix one or more types of gold scraps to synthesize non-stoichiometric carbide as the second metal, and after pre-treating the mixture, press
It is characterized by high temperature and high pressure treatment at 1800°C.

なお、ここで不定比化合物とは化学量論組成からはずれ
た化合物のことをいう。また、混合物の予備処理とはi
o’ torr程度の真空脱気処理又は、真空脱気した
後、さらにAr雰囲気中400℃以上で加熱処理のいず
れかをいう。
Note that the non-stoichiometric compound here refers to a compound that deviates from the stoichiometric composition. Also, what is the pretreatment of the mixture?i
It refers to either vacuum degassing treatment at about o' torr or heat treatment at 400° C. or higher in an Ar atmosphere after vacuum degassing.

(作 用) 本発明は、従来溶媒−触媒法で使用される溶媒−触媒で
ある3d遷移金属の伯に、第2の炭化物として金属と炭
素との化合物として不定比化合物を合成する金属2例え
ばY、Ti 、Zr 、H(。
(Function) The present invention provides a method for synthesizing a non-stoichiometric compound as a compound of a metal and carbon as a second carbide on a 3d transition metal which is a solvent-catalyst conventionally used in a solvent-catalyst method. Y, Ti, Zr, H(.

Ta、Nb、V、Wの中から選ばれた少なくとも1種以
上の炭化物を加えることにより、品質の良好な多結晶ダ
イアモンドを得ることができることを新規に見出したこ
とによる。
This is due to the new discovery that polycrystalline diamonds of good quality can be obtained by adding at least one carbide selected from Ta, Nb, V, and W.

なお、第1の炭化物は溶媒−触媒作用を生起させるため
の物質で、第2の炭化物は粒成長抑制効果をもたせ直接
結合を助長することによって、多結晶ダイアモンドの各
結晶の結晶粒を小さくして硬度をより高めるための物質
である。
Note that the first carbide is a substance that causes solvent-catalytic action, and the second carbide has a grain growth suppressing effect and promotes direct bonding, thereby reducing the size of each crystal grain of the polycrystalline diamond. This substance is used to further increase hardness.

(実施例) 以下、本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

まず、炭素源としては高純度化した天然黒鉛(285〜
325メツシユ)を使用した。この炭素源と後述する第
1表にそれぞれ記載された割合の第一の金属と第二の金
属を準備した後、これらの粉末を■型混合器を用いて混
合した。次に、後述する第1表に示ザように所定の真空
脱気とアルゴン処理を組み合わせた予備処理を行なって
、本発明品1〜10および比較例11〜15の出発原料
を得た。
First, as a carbon source, highly purified natural graphite (285 ~
325 mesh) was used. After preparing this carbon source and a first metal and a second metal in the proportions respectively listed in Table 1, which will be described later, these powders were mixed using a type mixer. Next, as shown in Table 1, which will be described later, a preliminary treatment combining predetermined vacuum degassing and argon treatment was performed to obtain starting materials for products 1 to 10 of the present invention and comparative examples 11 to 15.

このときアルゴン処理としては、1 x 1O−3to
rr。
At this time, as argon treatment, 1 x 1O-3to
rr.

のアルゴン雰囲気中で1000℃、1時間の処理を行な
った。その後、得られた出発原料を第1表に示す種々の
温度および圧力で約5〜30分間ガードル、型高圧装置
による高温高圧処理を行なって、多結晶ダイアモンド焼
結体を得た。
The treatment was carried out at 1000° C. for 1 hour in an argon atmosphere. Thereafter, the obtained starting materials were subjected to high temperature and high pressure treatment using a girdle and mold high pressure apparatus for about 5 to 30 minutes at various temperatures and pressures shown in Table 1 to obtain polycrystalline diamond sintered bodies.

第1図は本発明で使用するガードル型高圧装置の要部を
示す線図である。第1図において、円錐角90°のwc
−co系超合金製のアンビル1とシリンダー2を用い、
圧縮性ガスケットとしてパイロフィライ[−と鋼を積み
重ねた複合ガスケット3を使用した。また、圧力効率を
高め試Flfflを増加させるため、WC−Co系超合
金製ディスク4゜5を重ねて多段効果を利用した。圧力
室としては、パイロフィライト製のホルダー6内に、S
KH−9製デイスク7、加熱用の黒鉛プレート8および
黒鉛ヒータ9さらに絶縁性の焼成パイロフィライト10
.11を設け、その中に試料12を配置した。加熱は上
下のアンビル間に交流電流を通じ、黒鉛ヒータ9により
加熱する間接加熱法を用いた。
FIG. 1 is a diagram showing the main parts of a girdle-type high-pressure device used in the present invention. In Figure 1, wc with a cone angle of 90°
-Using an anvil 1 and cylinder 2 made of co-based superalloy,
As a compressible gasket, a composite gasket 3 in which pyrophila and steel were stacked was used. In addition, in order to improve the pressure efficiency and increase the sample Flffl, WC-Co superalloy discs were stacked 4°5 to take advantage of the multistage effect. As a pressure chamber, S is placed in a pyrophyllite holder 6.
KH-9 disk 7, heating graphite plate 8, graphite heater 9, and insulating calcined pyrophyllite 10
.. 11 was provided, and the sample 12 was placed therein. For heating, an indirect heating method was used in which alternating current was passed between the upper and lower anvils and heating was performed using a graphite heater 9.

上述したようにして作製した本発明品1〜10および比
較例11〜15の各々の多結晶ダイアモンド焼結体につ
いて、粒径を測定すると共に各焼結体をWC−10%C
O合金によって作製された規格のTNP332の刃先に
銀ロー付けして、下記の条件によって切削試験を行なっ
た。その結果を第1表に示す。
The grain size of each of the polycrystalline diamond sintered bodies of products 1 to 10 of the present invention and comparative examples 11 to 15 produced as described above was measured, and each sintered body was heated to WC-10%C.
The cutting edge of standard TNP332 made of O alloy was soldered with silver, and a cutting test was conducted under the following conditions. The results are shown in Table 1.

旋削による切削試験条件 被剛材  SKH3(HRc59〜62焼入れ鋼)切削
速度 50ffl/min 切込み量 0.3+nm 送り最0.1mm/ rev 切削時間 20  min 第1表における切削試験の結果は、試料の損傷状態、切
刃におけるチッピングの有無、その大きさにより評価し
て良好なものからそれぞれA、B。
Cutting test conditions by turning Rigid material SKH3 (HRc59-62 hardened steel) Cutting speed 50ffl/min Depth of cut 0.3+nm Maximum feed rate 0.1mm/rev Cutting time 20 min The results of the cutting test in Table 1 indicate damage to the sample. A and B are evaluated based on the condition, presence or absence of chipping on the cutting edge, and the size of the chips, respectively.

C,Dで示した。工具等に用いられるダイアモンド焼結
体としては、高硬度でかつ粒径が小さいほど望ましい。
Shown as C and D. As a diamond sintered body used for tools and the like, it is desirable that the diamond sintered body has a high hardness and a small particle size.

第1表から明らかなように、本発明の第一の金属と第二
の金属を含み予備処理の条件を満足すると共に、高温高
圧処理における温度および圧力の条件を満足する本発明
品1〜10のみが、粒径が小さく高密度で高硬度の良質
な多結晶ダイアモンド焼結体を得ることができた。
As is clear from Table 1, products 1 to 10 of the present invention contain the first metal and the second metal of the present invention and satisfy the conditions of pretreatment, as well as the conditions of temperature and pressure in high temperature and high pressure treatment. Only by this method was it possible to obtain a high-quality polycrystalline diamond sintered body with small grain size, high density, and high hardness.

また、各種の特性を測定すると共に、得られた多結晶ダ
イアモンド焼結体の各々について、沸騰王水中に1時間
浸漬した後SEM写真を撮影して比較した。第2図(a
)、(b)はそれぞれ、本発明のNO61および比較例
のNo、14の微構造組織を示すSEM写真である。第
2図から明らかなように、本発明の範囲であるN011
のSEM写真からは結晶粒径が小さく、ダイアモンド粒
の直接結合による強固な焼結体を観察できるのに対し、
比較例ではダイアモンドの粒成長が見られ粒間の結合も
充分でないことがわかった。
In addition to measuring various properties, each of the obtained polycrystalline diamond sintered bodies was immersed in boiling aqua regia for 1 hour, and then SEM photographs were taken and compared. Figure 2 (a
) and (b) are SEM photographs showing the microstructures of No. 61 of the present invention and No. 14 of the comparative example, respectively. As is clear from FIG. 2, N011 is within the scope of the present invention.
The SEM photograph shows that the crystal grain size is small and a strong sintered body due to the direct bonding of diamond grains can be observed.
In the comparative example, diamond grain growth was observed and it was found that the bond between the grains was not sufficient.

さらに、従来添加効果があると考えられていたBの添加
は、活性なり4Cの生成を導き、良好な性状の多結晶ダ
イアモンド焼結体を得ることができないことがわかった
Furthermore, it has been found that the addition of B, which was conventionally thought to have an additive effect, leads to activation and the formation of 4C, making it impossible to obtain a polycrystalline diamond sintered body with good properties.

本発明は上述した実施例にのみ限定されるものではなく
、幾多の変形、変更が可能である。例えば、上述した実
施例では炭素源として高純度天然黒鉛を用いたがもちろ
ん高純度でなくとも良いと共に、価格のことを考えなけ
れば黒鉛の中にダイアモンド粉末が混合されていても本
願の目的とするより良質な多結晶ダイアモンド焼結体を
得ることができる。
The present invention is not limited only to the embodiments described above, and numerous modifications and changes are possible. For example, in the above embodiment, high purity natural graphite was used as the carbon source, but of course it does not need to be of high purity, and even if diamond powder is mixed in graphite, it is not suitable for the purpose of this application if price is not considered. A better quality polycrystalline diamond sintered body can be obtained.

(発明の効果) 以上詳細に説明したところから明らかなように、本発明
の多結晶ダイアモンドおよびその製造法によれば、従来
品と比較して粒径が小さく密度および硬度が高く良質で
あると共に安価な多結晶ダイアモンドを得ることができ
る。
(Effects of the Invention) As is clear from the above detailed explanation, the polycrystalline diamond of the present invention and its manufacturing method have a smaller particle size, higher density and hardness, and are of better quality than conventional products. Cheap polycrystalline diamonds can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明で使用するガードル型高圧装置の要部を
示す線図、 第2図(a)、(b)はそれぞれ本発明品および比較例
の結晶の構造のSEM写真である。 1・・・アンビル     2・・・シリンダー3・・
・複合ガスケット 4.5・・・WC−Co製超合金製ディスク6・・・パ
イロフィライト製ホルダー 7・・・5KH−9製デイスク 8・・・黒鉛プレート   9・・・黒鉛ヒータ10、
11・・・焼成パイロフィライト12・・・試料
FIG. 1 is a diagram showing the main parts of the girdle-type high-pressure device used in the present invention, and FIGS. 2(a) and (b) are SEM photographs of the crystal structures of the inventive product and the comparative example, respectively. 1...Anvil 2...Cylinder 3...
- Composite gasket 4.5... WC-Co superalloy disc 6... Pyrophyllite holder 7... 5KH-9 disc 8... Graphite plate 9... Graphite heater 10,
11... Calcined pyrophyllite 12... Sample

Claims (1)

【特許請求の範囲】 1、ダイアモンドと、第1の炭化物としてFe、Co、
Ni、Mnの中から選ばれた少なくとも1種以上の金属
の炭化物、及び第2の炭化物として金属と炭素との化合
物として不定比化合物を合成する金属の炭化物より構成
されることを特徴とする多結晶ダイアモンド焼結体。 2、第1の炭化物として、Feの炭化物を用いたことを
特徴とする特許請求の範囲第1項記載の多結晶ダイアモ
ンド焼結体。 3、第2の炭化物として、Y、Ti、Zr、Hf、Ta
、Nb、V、Wの中から選ばれた少なくとも1種以上の
炭化物を含むことを特徴とする特許請求の範囲第1項ま
たは第2項記載の多結晶ダイアモンド焼結体。 4、高純度黒鉛または高純度黒鉛とダイアモンドに、第
1の金属としてFe、Co、Ni、Mnから選ばれた少
なくとも1種以上の金属及び第2の金属として不定比炭
化物を合成する金属の少なくとも1種以上を混合し、該
混合物を予備処理した後、圧力6GPa以上、温度16
00〜1800℃の高温高圧処理することを特徴とする
多結晶ダイアモンド焼結体の製造法。 5、予備処理として真空脱気することを特徴とする特許
請求の範囲第4項記載の多結晶ダイアモンド焼結体の製
造法。 6、予備処理として真空脱気した後、Ar雰囲気中で加
熱することを特徴とする特許請求の範囲第4項記載の多
結晶ダイアモンド焼結体の製造法。 7、第1の金属としてFeを用いたことを特徴とする特
許請求の範囲第4項ないし第6項のいずれかに記載の多
結晶ダイアモンド焼結体の製造法。 8、第2の金属として、Y、Ti、Zr、Hf、Ta、
Nb、V、Wの中から選ばれた少なくとも1種以上の炭
化物を用いたことを特徴とする特許請求の範囲第4項な
いし第7項のいずれかに記載の多結晶ダイアモンド焼結
体の製造法。
[Claims] 1. Diamond and Fe, Co, as the first carbide,
A polyurethane carbide characterized by being composed of a carbide of at least one metal selected from Ni and Mn, and a carbide of a metal that synthesizes a non-stoichiometric compound as a compound of metal and carbon as a second carbide. Crystalline diamond sintered body. 2. The polycrystalline diamond sintered body according to claim 1, wherein a carbide of Fe is used as the first carbide. 3. As the second carbide, Y, Ti, Zr, Hf, Ta
The polycrystalline diamond sintered body according to claim 1 or 2, characterized in that the polycrystalline diamond sintered body contains at least one kind of carbide selected from among , Nb, V, and W. 4. High-purity graphite or high-purity graphite and diamond, at least one metal selected from Fe, Co, Ni, and Mn as the first metal, and at least a metal that synthesizes a non-stoichiometric carbide as the second metal. After mixing one or more types and pre-treating the mixture, the pressure is 6 GPa or more and the temperature is 16
1. A method for producing a polycrystalline diamond sintered body, characterized by high temperature and high pressure treatment at 00 to 1800°C. 5. The method for producing a polycrystalline diamond sintered body according to claim 4, characterized in that vacuum degassing is performed as a preliminary treatment. 6. The method for producing a polycrystalline diamond sintered body according to claim 4, which comprises performing vacuum degassing as a preliminary treatment and then heating in an Ar atmosphere. 7. The method for producing a polycrystalline diamond sintered body according to any one of claims 4 to 6, characterized in that Fe is used as the first metal. 8. As the second metal, Y, Ti, Zr, Hf, Ta,
Production of a polycrystalline diamond sintered body according to any one of claims 4 to 7, characterized in that at least one carbide selected from Nb, V, and W is used. Law.
JP60110131A 1985-05-24 1985-05-24 Polycrystal diamond sintered body and manufacture Granted JPS61270258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60110131A JPS61270258A (en) 1985-05-24 1985-05-24 Polycrystal diamond sintered body and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60110131A JPS61270258A (en) 1985-05-24 1985-05-24 Polycrystal diamond sintered body and manufacture

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP1338665A Division JPH02192463A (en) 1989-12-28 1989-12-28 Polycrystalline diamond sintered material

Publications (2)

Publication Number Publication Date
JPS61270258A true JPS61270258A (en) 1986-11-29
JPH0232229B2 JPH0232229B2 (en) 1990-07-19

Family

ID=14527808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60110131A Granted JPS61270258A (en) 1985-05-24 1985-05-24 Polycrystal diamond sintered body and manufacture

Country Status (1)

Country Link
JP (1) JPS61270258A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63286548A (en) * 1987-05-18 1988-11-24 Ishizuka Kenkyusho:Kk Fine diamond grain-dispersed body and its production
WO2007013137A1 (en) * 2005-07-26 2007-02-01 Sumitomo Electric Industries, Ltd. High-strength and highly abrasion-resistant sintered diamond product and process for production thereof
KR100818572B1 (en) * 2006-06-13 2008-04-02 스미토모 덴키 고교 가부시키가이샤 High-strength and highly-wear-resistant sintered diamond object and manufacturing method of the same
JP2010517910A (en) * 2007-02-05 2010-05-27 エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド Polycrystalline diamond (PCD) material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001220236A (en) * 2000-02-14 2001-08-14 Hitachi Metals Ltd Carbon particle for diamond conversion, method for diamond conversion and diamond obtained by the method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63286548A (en) * 1987-05-18 1988-11-24 Ishizuka Kenkyusho:Kk Fine diamond grain-dispersed body and its production
WO2007013137A1 (en) * 2005-07-26 2007-02-01 Sumitomo Electric Industries, Ltd. High-strength and highly abrasion-resistant sintered diamond product and process for production thereof
US7553350B2 (en) 2005-07-26 2009-06-30 Sumitomo Electric Industries, Ltd. High-strength and highly-wear-resistant sintered diamond object and manufacturing method of the same
KR100818572B1 (en) * 2006-06-13 2008-04-02 스미토모 덴키 고교 가부시키가이샤 High-strength and highly-wear-resistant sintered diamond object and manufacturing method of the same
JP2010517910A (en) * 2007-02-05 2010-05-27 エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド Polycrystalline diamond (PCD) material

Also Published As

Publication number Publication date
JPH0232229B2 (en) 1990-07-19

Similar Documents

Publication Publication Date Title
US5271749A (en) Synthesis of polycrystalline cubic boron nitride
US5326380A (en) Synthesis of polycrystalline cubic boron nitride
EP0155066B1 (en) Hard diamond sintered body
JP2005514300A (en) Low oxygen cubic boron nitride and its products
JP2004506094A (en) Manufacturing method of polishing products containing cubic boron nitride
JPH06500601A (en) Method for producing metal carbide objects and composites containing metal carbides
JPS62274034A (en) Manufacture of polycrystalline diamond sintered compact by reaction sintering
JPS61270258A (en) Polycrystal diamond sintered body and manufacture
JPH08141385A (en) Method of synthesizing diamond
KR980009199A (en) Ceramic Bonded Cubic Boron Nitride Green Sheet
CN113528879B (en) Polycrystalline diamond combined by compounds generated by in-situ reaction and preparation method thereof
JPH02192463A (en) Polycrystalline diamond sintered material
JPS6213311B2 (en)
JPH02164433A (en) Manufacture of polycrystalline cubic boron nitride particles
JPH0215515B2 (en)
JPS6137221B2 (en)
JPS6146540B2 (en)
JPS6117405A (en) Production of cubic boron nitride
JP3733613B2 (en) Diamond sintered body and manufacturing method thereof
JPH11335175A (en) Cubic boron nitride sintered compact
JP2733269B2 (en) Method for producing single-crystal cubic boron nitride particles
JPS6077110A (en) Synthesis of cubic boron nitride
JPS62170401A (en) Microcrystalline alloy produced from solid phase reaction amorphous or disordered alloy powder
JPH04300300A (en) Unsupported sintered cubic integrally bonded boron nitride/diamond molding and method of manufacuring same
JPS6121971A (en) Hard diamond sintered body and manufacture