JPS61260152A - Humidity sensor - Google Patents

Humidity sensor

Info

Publication number
JPS61260152A
JPS61260152A JP60101546A JP10154685A JPS61260152A JP S61260152 A JPS61260152 A JP S61260152A JP 60101546 A JP60101546 A JP 60101546A JP 10154685 A JP10154685 A JP 10154685A JP S61260152 A JPS61260152 A JP S61260152A
Authority
JP
Japan
Prior art keywords
oxide semiconductor
type oxide
sintered body
sintered
humidity sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60101546A
Other languages
Japanese (ja)
Other versions
JPH0643979B2 (en
Inventor
Hiroaki Yanagida
柳田 博明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP60101546A priority Critical patent/JPH0643979B2/en
Publication of JPS61260152A publication Critical patent/JPS61260152A/en
Publication of JPH0643979B2 publication Critical patent/JPH0643979B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the deterioration in the performance of a humidity sensor and to permit the easy regeneration thereof by roughening the joint surfaces between a p-type oxide semiconductor sintered body and n-type oxide semiconductor sintered body and joining said surfaces in such a manner that the spacing of a specified size exists therebetween. CONSTITUTION:The p-type oxide semiconductor powder, for example, copper oxide powder is sintered under the pressure by which the p-type oxide semiconductor sintered body is obtd. The n-type oxide semiconductor powder, for example, zinc oxide powder is sintered under the pressure by which the n-type oxide semiconductor sintered body is obtd. Electrodes 31, 21 are attached to the respective one surfaces of the bodies 1, 2. The surfaces of the bodies 1, 2 to which the electrodes 31, 32 are not attached are polished with silicon carbide paper and are thereby roughened. The roughened surfaces are mechanically press- welded. At least 10mum spacing is made to exist between the joint surfaces thereof. The p-type and n-type oxide semiconductor sintered bodies are joined in a manner as to have the slight spacing between the joint surfaces thereof and therefore the deterioration in the performance of the humidity sensor is eliminated for a long period of time and the regeneration thereof is made easy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、湿度センサーに関し、詳しくは、空気または
ガス中の水分、あるいは液体中の水分の存在を鋭敏に検
知しうる湿度センサーに関し、さらに詳しくは、水漏れ
の検出に使用しうる湿度センサーに関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a humidity sensor, and more particularly, to a humidity sensor that can sensitively detect the presence of moisture in air or gas, or moisture in a liquid. Specifically, the present invention relates to a humidity sensor that can be used to detect water leakage.

〔技術の背景および従来技術の説明〕[Technical background and explanation of conventional technology]

空気またはガス中の水分の存在によってS気抵抗が変動
する物質があり、これによって空気またはガス中に存在
する水分を検知するためにいくつかの感rJji票子が
知られている。たとえば、Mg Cr204− TiO
□系の多孔質のセラミックからなる感湿素子(特開昭5
9−116536号公報)、ZnOの薄膜にくしの歯状
に電極を焼き付けた感湿素子(特開昭59−14740
1号公報ンま号公報孔質の水酸アパタイトに電極を設け
たm湿素子(特開昭58−166249号公報)がこれ
までに知られている。
There are substances whose S air resistance changes depending on the presence of moisture in air or gas, and several sensors are known for detecting moisture present in air or gas. For example, MgCr204-TiO
□Moisture sensing element made of porous ceramic
9-116536), a moisture-sensitive element in which electrodes are baked into a thin ZnO film in the form of comb teeth (Japanese Patent Application Laid-Open No. 14740/1983).
A wet element (Japanese Patent Application Laid-Open No. 166249/1983) in which electrodes are provided on porous hydroxyapatite has been known.

多孔質の感湿素子は、その孔径の制御が難しく、また実
用化に当って、長期間の使用においてその孔に汚染物が
詰まって性能が低下し易い点で使用し難い傾向があり、
またくしの歯状の電極の焼付けの作業が困難であるとい
うこともある。
Porous moisture-sensitive elements tend to be difficult to use because it is difficult to control their pore diameter, and their performance tends to deteriorate due to the pores becoming clogged with contaminants during long-term use.
Furthermore, it may be difficult to bake the comb-shaped electrodes.

本発明者は、セラミックスの製造、利用について永年研
究を続けているが、p型半導体の酸化銅の焼結体とn型
半導体の酸化亜鉛の焼結体を接合したときに、これらを
機械的に圧着して、その境界に隙間を生じるようにする
と、これに接触するガス、空気または液体中の水分の存
在によって、その電気抵抗が大きく変動することを見出
し、この知見に基づいて本発明に到達した。
The present inventor has been conducting research on the production and use of ceramics for many years, and discovered that when a sintered body of copper oxide, which is a p-type semiconductor, and a sintered body of zinc oxide, which is an n-type semiconductor, were joined together, they could be mechanically bonded. It was discovered that when the electrical resistance is crimped to create a gap at the boundary, the electrical resistance changes greatly depending on the presence of moisture in the gas, air, or liquid that comes into contact with it.Based on this knowledge, the present invention was developed. Reached.

〔発明の目的および発明の要約〕[Object of the invention and summary of the invention]

本発明の目的は、空気、ガスまたは液体中の水分の存在
を検知しうる湿度センサーを提供することにあり、詳し
くは、長期間の使用によっても性能の低下がなく、また
再生の容易な湿度センサーを提供することにある。
An object of the present invention is to provide a humidity sensor that can detect the presence of moisture in air, gas, or liquid. The purpose is to provide sensors.

本発明は、p型酸化物半導体粉末の成形体を焼結して得
たp型酸化物半導体粉末焼結体、n型酸化物半導体粉末
の成形体を焼結して得たn型酸化物半導体粉末焼結体お
よび電極からなる湿度を検出する素子において、p型酸
化物半導体粉末焼結体およびn型酸化物半導体粉末焼結
体が機械的圧着により接合されてしすることを特徴とす
る湿度センサーである。
The present invention provides a p-type oxide semiconductor powder sintered body obtained by sintering a p-type oxide semiconductor powder compact, and an n-type oxide semiconductor powder obtained by sintering a n-type oxide semiconductor powder compact. An element for detecting humidity comprising a semiconductor powder sintered body and an electrode, characterized in that the p-type oxide semiconductor powder sintered body and the n-type oxide semiconductor powder sintered body are joined by mechanical compression. It is a humidity sensor.

本発明の湿度センサーにおいて、p型酸化物半導体粉末
焼結体およびn型酸化物半導体粉末焼結体の接合面は、
少なくとも10ミクロンの間隙が点在する程度の粗面で
あり、この間隙の点在によって湿分の検出性能が向上し
ている。
In the humidity sensor of the present invention, the joining surface of the p-type oxide semiconductor powder sintered body and the n-type oxide semiconductor powder sintered body is
The surface is so rough that it is dotted with gaps of at least 10 microns, and the presence of these gaps improves the moisture detection performance.

〔発明の詳細な説明〕[Detailed description of the invention]

本発明の湿度センサーは以下に述べる方法によって製作
される。
The humidity sensor of the present invention is manufactured by the method described below.

p型酸化物半導体の粉末を成形型に入れ、加圧してペレ
ットまたはチップに成形する。このペレットまたはチッ
プを800℃以上の温度において少なくとも2時間焼結
して、p型酸化物半導体粉末焼結体とし、その表面を研
磨材または研磨紙によって研磨する。このp型酸化物半
導体粉末焼結体の一面にペースト状の金属または液体合
金を塗布して電極を形成する。
P-type oxide semiconductor powder is placed in a mold and pressurized to form pellets or chips. The pellets or chips are sintered at a temperature of 800° C. or higher for at least 2 hours to form a p-type oxide semiconductor powder sintered body, and the surface thereof is polished with an abrasive material or abrasive paper. A paste metal or liquid alloy is applied to one surface of this p-type oxide semiconductor powder sintered body to form an electrode.

これとは別にn型酸化物半導体の粉末を成形型に入れ、
加圧してペレットまたはチップに成形する。このペレッ
トまたはチップを1 、000℃以上の温度において少
なくとも2時間焼結して、n型酸化物半導体粉末焼結体
とし、その表面を研磨材または研磨紙によって研磨した
後、その−面にペースト状の金属または液体合金を塗布
して電極を形成する。
Separately, powder of n-type oxide semiconductor is put into a mold,
Press and form into pellets or chips. The pellets or chips are sintered at a temperature of 1,000°C or higher for at least 2 hours to form an n-type oxide semiconductor powder sintered body, the surface of which is polished with an abrasive material or abrasive paper, and then paste is applied to the other side. The electrodes are formed by applying a metal or liquid alloy.

このようにして得られた電極付きのp型酸化物半導体粉
末焼結体および電極付きのn型酸化物半導体粉末焼結体
の電極の付いていない面を当接し、これを絶縁体のホル
ダーに挟んで、p型酸化笛半導体粉末焼結体およびn型
酸化物半導体粉末焼結体が機械的に圧着され、その接合
面に隙間が点在する湿度センサーが製作される。
The non-electrode surfaces of the thus obtained sintered p-type oxide semiconductor powder with electrodes and the sintered n-type oxide semiconductor powder with electrodes were brought into contact with each other, and these were placed in an insulator holder. A p-type oxide semiconductor powder sintered body and an n-type oxide semiconductor powder sintered body are sandwiched and mechanically pressed together to produce a humidity sensor in which gaps are scattered on the joint surface.

本発明の湿度センサーにおけるp型酸化物半導体は、p
型半導体として知られる酸化物であれば、いかなるもの
であっても、これを使用することができ、たとえば、鉄
、ニッケル、コバルトまたは銅の酸化物を使用すること
ができる。
The p-type oxide semiconductor in the humidity sensor of the present invention is p
Any oxide known as a type semiconductor can be used, for example oxides of iron, nickel, cobalt or copper.

またn型酸化物半導体は、n型半導体として知られる酸
化物であれば、いかなるものであっても、これを使用す
ることができ、たとえば、スズ、亜鉛またはチタンの酸
化物を使用することができる。
Further, as the n-type oxide semiconductor, any oxide known as an n-type semiconductor can be used. For example, oxides of tin, zinc, or titanium can be used. can.

p型酸化懐半導体−n型酸化物半導体の組合せとしては
、酸化銅(Cub)−酸化亜鉛(ZnO)または酸化ニ
ッケル(NtO) =酸化亜鉛(ZnO)の組合せであ
ることが好ましい。
The combination of p-type oxide semiconductor and n-type oxide semiconductor is preferably copper oxide (Cub)-zinc oxide (ZnO) or nickel oxide (NtO) = zinc oxide (ZnO).

本発明の湿度センサーが水分と接触すると、その電気抵
抗が大幅に低下し、それによって水分の存在を検知する
ことができる。この水分との接触による電気抵抗の変化
は、p型酸化物半導体粉末焼結体とn型酸化物半導体粉
末焼結体の接合面に点在する隙間を完全に取り去ると、
なくなってしまうから、本発明の湿度センサー°におけ
るp型酸化物半導体粉末焼結体とn型酸化物半導体粉末
焼結体の接合は機械的圧着によって行なうことを必要と
する。そしてその接合面は、少なくとも10ミクロンの
隙間が点在する程度の粗面であることを必要とする。
When the humidity sensor of the present invention comes into contact with moisture, its electrical resistance decreases significantly, thereby making it possible to detect the presence of moisture. This change in electrical resistance due to contact with moisture occurs when the gaps scattered at the joint surface of the p-type oxide semiconductor powder sintered body and the n-type oxide semiconductor powder sintered body are completely removed.
Therefore, it is necessary to join the p-type oxide semiconductor powder sintered body and the n-type oxide semiconductor powder sintered body in the humidity sensor of the present invention by mechanical pressure bonding. The bonding surface needs to be so rough that gaps of at least 10 microns are scattered therein.

p型酸化物半導体粉末およびn型酸化物半導体粉末のペ
レットまたはチップの成形において、少量のバインダー
、たとえばポリビニルアルコール水溶液またはメチルセ
ルロース水溶液を使用することができる。バインダーは
焼結過程において除去されるものであり、また焼結過程
においてp型酸化物半導体およびn型酸化物半導体に化
学的変化を与えるものであってはならない。
In forming pellets or chips of p-type oxide semiconductor powder and n-type oxide semiconductor powder, a small amount of a binder, such as an aqueous polyvinyl alcohol solution or an aqueous methylcellulose solution, can be used. The binder is removed during the sintering process, and must not chemically change the p-type oxide semiconductor and the n-type oxide semiconductor during the sintering process.

次に実験例によって本発明をさらに詳細に説明する。Next, the present invention will be explained in more detail using experimental examples.

実験例 (1)材料の調製 1−1)酸化鋼の焼結ペレットの調製 塩基性炭酸鋼(CuCOa −Cu  (OH)2− 
H2O、守随彦太部商店製、試薬特級〕を600℃にお
いて4時間仮焼成し、得られた酸化鋼粉末を、厚さ3鱈
および直径IQmのペレットに成形した。このペレット
を820°Cにおいて3時間焼成し、焼結度87%の酸
化鋼の焼結ペレット(10m(径)×3鴎(厚さ)〕を
得た。
Experimental example (1) Preparation of materials 1-1) Preparation of sintered pellets of oxidized steel Basic carbonated steel (CuCOa -Cu (OH)2-
H2O, manufactured by Shuzui Hikotabe Shoten, reagent special grade] was calcined at 600° C. for 4 hours, and the obtained oxidized steel powder was formed into pellets with a thickness of 3 mm and a diameter of IQm. The pellets were fired at 820° C. for 3 hours to obtain sintered pellets (10 m (diameter) x 3 mm (thickness)) of oxidized steel with a degree of sintering of 87%.

1−2)酸化亜鉛の焼結ペレットの調製酸化亜鉛(Zn
O)の粉末(200メツシユバス)を、厚さ3鵡および
直径10闘のペレットに成形し、得られたペレットを1
400℃において3時間焼成し、焼結度98%の酸化亜
鉛の焼結ペレット(10su+(径)X:Ju+(厚さ
)〕を得た。
1-2) Preparation of sintered zinc oxide pellets Zinc oxide (Zn
The powder of O) (200 mesh units) was molded into pellets with a thickness of 3 mm and a diameter of 10 mm, and the resulting pellets were
It was fired at 400°C for 3 hours to obtain sintered zinc oxide pellets (10su+(diameter)X:Ju+(thickness)) with a degree of sintering of 98%.

(2)湿度センサーの調製 2−1)試験試料の調製 酸化鋼の焼結ペレットの両面を1.5000炭化ケイ素
ペーパーで機械的に研磨し、アセトンおよび純水で順次
洗浄した後、乾燥した。
(2) Preparation of humidity sensor 2-1) Preparation of test sample Both sides of the sintered pellet of oxidized steel were mechanically polished with 1.5000 silicon carbide paper, sequentially washed with acetone and pure water, and then dried.

酸化亜鉛の焼結ペレットを、酸化鋼の焼結ペレットと同
様にして、研磨し、洗浄した後、乾燥した。
The zinc oxide sintered pellets were polished, cleaned, and dried in the same manner as the oxidized steel sintered pellets.

前記の酸化鋼の焼結ペレットの一面に銀ペーストを塗布
して電極を形成し、電極にリード線を取り付けた。
Silver paste was applied to one side of the sintered pellet of oxidized steel to form an electrode, and a lead wire was attached to the electrode.

前記の酸化亜鉛の焼結ペレットの一面にインジウム−ガ
リウム液体合金を塗布して電極を形成し、電極にリード
線を取り付けた。
An indium-gallium liquid alloy was applied to one side of the sintered zinc oxide pellet to form an electrode, and a lead wire was attached to the electrode.

電極を取り付けた酸化鋼の焼結ペレットと酸化亜鉛の焼
結ペレットの電極を取り付けていない面を当接し、これ
を、第1図に示すホルダーlに挟んで、ボルト6によっ
て酸化鋼の焼結ペレット2と酸化亜鉛の焼結ペレット3
を機械的に圧着するとともに、リード線22および32
を抵抗測定器7に結線した。
The surfaces of the sintered oxidized steel pellet with the electrode attached and the sintered zinc oxide pellet without the electrode attached are brought into contact with each other, and these are sandwiched between the holders l shown in Fig. 1, and the sintered oxidized steel pellets are tightened with the bolt 6. Pellets 2 and sintered zinc oxide pellets 3
while mechanically crimping the lead wires 22 and 32.
was connected to the resistance measuring device 7.

第1因において、lはホルダー、2は酸化鋼の焼結ペレ
ット、3は酸化亜鉛の焼結ペレット、21および31は
電極、22および32はリード線、4は絶縁板、5は絶
縁板4.4を固定するボルト、6はボルト、モして7は
抵抗測定器である。
In the first factor, l is a holder, 2 is a sintered pellet of oxidized steel, 3 is a sintered pellet of zinc oxide, 21 and 31 are electrodes, 22 and 32 are lead wires, 4 is an insulating plate, and 5 is an insulating plate 4 .4 is a fixing bolt, 6 is a bolt, and 7 is a resistance measuring device.

2−2)対照試料の調製 1−1)で得た酸化鋼の焼結ペレットの両面を前記と同
様に1,50(l炭化ケイ素ベーパーで機械的に研磨し
、アセトンおよび純水で順次洗浄した後、乾燥した。
2-2) Preparation of control sample Both sides of the sintered pellet of oxidized steel obtained in 1-1) were mechanically polished with 1,50 (l) silicon carbide vapor in the same manner as above, and washed sequentially with acetone and pure water. After that, it was dried.

この酸化鋼の焼結ペレットを、98%のアルゴンおよび
2%の酸素の混合ガス雰囲気に置き、950℃において
、30分間亜鉛蒸気と接触させ、酸化鋼の表面に酸化亜
鉛の被膜を形成し、ガス雰囲気を酸素ガスに置き換えて
、焼結ペレットを常温に放冷し、粉砕し、再成形した後
、9006Cにおいて3時間焼結した。
The sintered pellets of oxidized steel are placed in a mixed gas atmosphere of 98% argon and 2% oxygen and brought into contact with zinc vapor at 950° C. for 30 minutes to form a film of zinc oxide on the surface of the oxidized steel, The gas atmosphere was replaced with oxygen gas, and the sintered pellets were allowed to cool to room temperature, pulverized, remolded, and then sintered at 9006C for 3 hours.

この酸化銅焼結ペレットの研磨面に銀ペーストを塗布し
て、電極を形成するとともに、酸化亜鉛焼結ペレットの
研磨面にインジウム−ガリウム液体合金を塗布して、電
極を形成し、それぞれの電極にリード線を取り付け、こ
のリード線を抵抗測定器に結線した。
A silver paste is applied to the polished surface of the copper oxide sintered pellet to form an electrode, and an indium-gallium liquid alloy is applied to the polished surface of the zinc oxide sintered pellet to form an electrode. A lead wire was attached to the terminal, and this lead wire was connected to a resistance measuring device.

(3)実験方法 上記の試験試料および対照試料を、常温において、5%
、20%、40%、60%、80%および90%の相対
湿度の空気と接触させて、電気低損を測定した。
(3) Experimental method The above test samples and control samples were heated at 5%
, 20%, 40%, 60%, 80% and 90% relative humidity air to measure electrical loss.

(4)実験の結果 実験の結果は第2図に示すとおりであった。(4) Experiment results The results of the experiment were as shown in Figure 2.

第2図において、縦軸は試料の電気抵抗を示し、横軸は
試料と接触する空気の相対湿度を示し、そしてAは試験
試料の相対湿度−電気抵抗の関係を示し、またBは対照
試料の相対湿度−電気抵抗の関係を示す。
In Figure 2, the vertical axis shows the electrical resistance of the sample, the horizontal axis shows the relative humidity of the air in contact with the sample, and A shows the relative humidity-electrical resistance relationship of the test sample, and B shows the control sample. The relationship between relative humidity and electrical resistance is shown.

第2図によると、酸化銅の焼結ペレットを酸化亜鉛の焼
結ペレットを機械的に圧着した試験試料は、これと接触
する空気の相対湿度の変動とともに、その電気抵抗が大
きく変動するのに対して、酸化銅の焼結ペレットに酸化
亜鉛の被膜を蒸着した対照試料は、これと接触する空気
の相対湿度が変動しても、その電気抵抗はほとんど変動
しないことがわかる。
According to Figure 2, the electrical resistance of a test sample made by mechanically compressing a sintered copper oxide pellet with a sintered zinc oxide pellet changes greatly as the relative humidity of the air in contact with it changes. In contrast, the electrical resistance of the control sample, in which a zinc oxide coating was deposited on a sintered copper oxide pellet, hardly changes even if the relative humidity of the air in contact with the pellet changes.

酸化銅の焼結ペレットに酸化亜鉛の被膜を蒸着した対照
試料は、酸化銅と酸化亜鉛の被膜の間に全く隙間が存在
しないのに対して、酸化銅の焼結ペレットと酸化亜鉛の
焼結ペレットを機械的に圧着した試験試料は、その間に
隙間が存在するので、試験試料と接触する空気またはガ
ス中の水分の存在による電気抵抗の低下は、酸化銅の焼
結ペレットと酸化亜鉛の焼結ペレットの間の隙間による
と考えられる。
A control sample in which a coating of zinc oxide was deposited on a sintered pellet of copper oxide had no gap between the coatings of copper oxide and zinc oxide, whereas a sintered pellet of copper oxide and a coating of zinc oxide Since the test specimens made of mechanically crimped pellets have gaps between them, the decrease in electrical resistance due to the presence of moisture in the air or gas that comes into contact with the test specimens is due to the sintered copper oxide pellets and the zinc oxide sintered pellets. This is thought to be due to the gaps between the pellets.

第3図は、試験試料における酸化銅の焼結ペレットと酸
化亜鉛の焼結ペレットの境界面の電子顕微鏡写真であっ
て、その境界面に細い隙間のあることがわかる。
FIG. 3 is an electron micrograph of the interface between the sintered copper oxide pellet and the zinc oxide sintered pellet in the test sample, and it can be seen that there is a narrow gap at the interface.

〔発明の効果〕〔Effect of the invention〕

電気抵抗の急激な低下によって、接触するガスまたは空
気中の水分を検知することができる。この特性によって
、本発明のp型酸化物半導体の酸化銅とn型酸化物半導
体の酸化亜鉛の接合体は、感湿素子として使用すること
ができる。
Moisture in the gas or air it comes into contact with can be detected by a sudden drop in electrical resistance. Due to this property, the composite of copper oxide, which is a p-type oxide semiconductor, and zinc oxide, which is an n-type oxide semiconductor, according to the present invention can be used as a moisture-sensitive element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実験例における試験試料の側面図、faz図
は、実験例における試料の電気抵抗とこれに接触する空
気の相対湿度の関係を示す図表、そして113図は、実
験例における試験試料の酸化銅の焼結ベレットと酸化亜
鉛の焼結ペレットの接合面の状態を示す電子顕微鏡写真
である。 出−人柳1)溶明
Figure 1 is a side view of the test sample in the experimental example, the faz diagram is a chart showing the relationship between the electrical resistance of the sample in the experimental example and the relative humidity of the air in contact with it, and Figure 113 is the side view of the test sample in the experimental example. 1 is an electron micrograph showing the state of the joint surface of a sintered pellet of copper oxide and a sintered pellet of zinc oxide. De-Hitoryanagi 1) Rimei

Claims (4)

【特許請求の範囲】[Claims] (1)p型酸化物半導体粉末の成形体を焼結して得たp
型酸化物半導体粉末焼結体、n型酸化物半導体粉末の成
形体を焼結して得たn型酸化物半導体粉末焼結体および
電極からなる湿度を検出する素子において、p型酸化物
半導体粉末焼結体およびn型酸化物半導体粉末焼結体が
機械的圧着により接合されていることを特徴とする湿度
センサー。
(1) P obtained by sintering a compact of p-type oxide semiconductor powder
In an element for detecting humidity consisting of an n-type oxide semiconductor powder sintered body, an n-type oxide semiconductor powder sintered body obtained by sintering a molded body of n-type oxide semiconductor powder, and an electrode, the p-type oxide semiconductor A humidity sensor characterized in that a powder sintered body and an n-type oxide semiconductor powder sintered body are joined by mechanical compression.
(2)p型酸化物半導体粉末焼結体およびn型酸化物半
導体粉末焼結体の接合面が粗面であって、その接合面に
少なくとも10ミクロンの間隙が存在することを特徴と
する特許請求の範囲1項に記載の湿度センサー。
(2) A patent characterized in that the joint surface of the p-type oxide semiconductor powder sintered body and the n-type oxide semiconductor powder sintered body is a rough surface, and a gap of at least 10 microns exists in the joint surface. The humidity sensor according to claim 1.
(3)p型酸化物半導体が酸化銅であることを特徴とす
る特許請求の範囲第1項または第2項に記載の湿度セン
サー。
(3) The humidity sensor according to claim 1 or 2, wherein the p-type oxide semiconductor is copper oxide.
(4)n型酸化物半導体が酸化亜鉛であることを特徴と
する特許請求の範囲第1項または第2項に記載の湿度セ
ンサー。
(4) The humidity sensor according to claim 1 or 2, wherein the n-type oxide semiconductor is zinc oxide.
JP60101546A 1985-05-15 1985-05-15 Humidity sensor Expired - Lifetime JPH0643979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60101546A JPH0643979B2 (en) 1985-05-15 1985-05-15 Humidity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60101546A JPH0643979B2 (en) 1985-05-15 1985-05-15 Humidity sensor

Publications (2)

Publication Number Publication Date
JPS61260152A true JPS61260152A (en) 1986-11-18
JPH0643979B2 JPH0643979B2 (en) 1994-06-08

Family

ID=14303434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60101546A Expired - Lifetime JPH0643979B2 (en) 1985-05-15 1985-05-15 Humidity sensor

Country Status (1)

Country Link
JP (1) JPH0643979B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5459338A (en) * 1992-02-20 1995-10-17 Hitachi, Ltd. Gate turn-off thyristor and power convertor using the same
JP2008224498A (en) * 2007-03-14 2008-09-25 New Industry Research Organization Method for cleaning ceramic panel or inorganic heat-resisting substrate, element manufacturing method using the same, and element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55159148A (en) * 1979-05-30 1980-12-11 Matsushita Electric Ind Co Ltd Semiconductor detector
JPS5637547A (en) * 1979-09-04 1981-04-11 Kaaku:Kk Moisture sensor using single crystal of ge, si
JPS5830648A (en) * 1981-08-17 1983-02-23 Hitachi Ltd Semiconductor gas sensor
JPS58191962A (en) * 1982-05-07 1983-11-09 Hitachi Ltd Gas detector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55159148A (en) * 1979-05-30 1980-12-11 Matsushita Electric Ind Co Ltd Semiconductor detector
JPS5637547A (en) * 1979-09-04 1981-04-11 Kaaku:Kk Moisture sensor using single crystal of ge, si
JPS5830648A (en) * 1981-08-17 1983-02-23 Hitachi Ltd Semiconductor gas sensor
JPS58191962A (en) * 1982-05-07 1983-11-09 Hitachi Ltd Gas detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5459338A (en) * 1992-02-20 1995-10-17 Hitachi, Ltd. Gate turn-off thyristor and power convertor using the same
JP2008224498A (en) * 2007-03-14 2008-09-25 New Industry Research Organization Method for cleaning ceramic panel or inorganic heat-resisting substrate, element manufacturing method using the same, and element

Also Published As

Publication number Publication date
JPH0643979B2 (en) 1994-06-08

Similar Documents

Publication Publication Date Title
US4357426A (en) Humidity sensitive ceramics
JP3358851B2 (en) Moisture sensitive actuator
JPS61260605A (en) Ceramic humidity sensor
JPS61260152A (en) Humidity sensor
Debeda-Hickel et al. Influence of the densification parameters on screen-printed component properties
JP2830877B2 (en) Solid electrolyte material
US4647895A (en) Ceramic temperature sensor
JP3668050B2 (en) Heater integrated oxygen sensor and manufacturing method thereof
JP2860708B2 (en) Method for manufacturing carbon monoxide (CO) detection sensor
JP3018925B2 (en) Electrochemical element
JPH08186302A (en) Piezoelectric actuator responding to reducing gas
JPS628135B2 (en)
JPH0650297B2 (en) Method of manufacturing oxygen sensor element
JPS5947703A (en) Moisture sensitive element
JPH0795404B2 (en) Solid electrolyte membrane
JPH0945581A (en) Laminated capacitor
JP5141736B2 (en) Multilayer thermistor element
JPH09264866A (en) Carbon dioxide sensor and manufacture thereof
JPH11153564A (en) Carbon dioxide gas detection element
JP4802440B2 (en) A method for producing a proton conductive solid electrolyte.
JPS6212467B2 (en)
CN105675690B (en) A kind of nitrogen oxide sensor and preparation method thereof of reference electrode support
JP3256618B2 (en) Solid electrolyte type gas sensor element
JPS5849001B2 (en) moisture sensing element
Watanabe et al. HIP of ZnO