JPH0945581A - Laminated capacitor - Google Patents

Laminated capacitor

Info

Publication number
JPH0945581A
JPH0945581A JP7195214A JP19521495A JPH0945581A JP H0945581 A JPH0945581 A JP H0945581A JP 7195214 A JP7195214 A JP 7195214A JP 19521495 A JP19521495 A JP 19521495A JP H0945581 A JPH0945581 A JP H0945581A
Authority
JP
Japan
Prior art keywords
dielectric
parts
barium titanate
mol
internal electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7195214A
Other languages
Japanese (ja)
Other versions
JP3287980B2 (en
Inventor
Shinichi Osawa
真一 大沢
Akihiro Kaneuchi
明宏 金内
Takashi Maeda
隆 前田
Nobuyoshi Fujikawa
信儀 藤川
Yoshihiro Fujioka
芳博 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16337368&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0945581(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP19521495A priority Critical patent/JP3287980B2/en
Publication of JPH0945581A publication Critical patent/JPH0945581A/en
Application granted granted Critical
Publication of JP3287980B2 publication Critical patent/JP3287980B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve thermal shock property of a laminated capacitor comprising alternately laminated dielectric layers, formed from barium titanate added with a specific amount of manganese, and internal electrode layers formed from a base metal by achieving a specific value of oxygen void compensation amount. SOLUTION: This capacitor comprises alternately laminated dielectric ceramic layers, whose main component is barium titanate and containing 0.04-0.5mol parts of manganese to 100mol parts of this barium titanate and having a thickness of 3-10μm, and internal electrode layers consisting of a base metal. Further, in this laminated condenser, oxygen void compensation amount ΔV0 , obtained from the weight change between before and after the heat treatment of this dielectric porcelain is made 0.005-0.5mol%. Thus, even if the dielectric layers are thin, life in high temperature and high voltage circumstances and thermal shock property can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、チタン酸バリウム
を主成分とし、マンガンを含有する誘電体磁器層と、ニ
ッケル等の卑金属からなる内部電極を有する積層型コン
デンサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated capacitor having a dielectric ceramic layer containing barium titanate as a main component and containing manganese, and an internal electrode made of a base metal such as nickel.

【0002】[0002]

【従来技術】従来、積層型コンデンサ等の積層型電子部
品を得るにあたっては、内部電極を構成する電極材料と
誘電体セラミックスとを一体焼成して得られた焼結体が
用いられている。ところで積層コンデンサを製作する場
合、従来のBaTiO3 を主成分とする誘電体材料で
は、1300〜1500℃で焼成するため、内部電極材
料としては、このような温度で溶融しないPt,Pd等
の貴金属が使用されていた。
2. Description of the Related Art Conventionally, in obtaining a multilayer electronic component such as a multilayer capacitor, a sintered body obtained by integrally firing an electrode material forming an internal electrode and a dielectric ceramics has been used. When a multilayer capacitor is manufactured, a conventional dielectric material containing BaTiO 3 as a main component is fired at 1300 to 1500 ° C., so that noble metal such as Pt or Pd which does not melt at such a temperature is used as an internal electrode material. Was used.

【0003】しかしながら、これらの貴金属は高価であ
るという問題があり、高容量化を図るために内部電極数
を増加させた場合にはコストが著しく高くなる。そこ
で、安価なニッケル等の卑金属を内部電極材料として用
いることが試みられている。
However, these noble metals have a problem that they are expensive, and the cost becomes significantly high when the number of internal electrodes is increased in order to increase the capacity. Therefore, it has been attempted to use an inexpensive base metal such as nickel as an internal electrode material.

【0004】しかしながらニッケル等の卑金属からなる
内部電極を用いた場合には、内部電極材料が酸化しやす
いため還元雰囲気中で焼成しなければならず、そのよう
な雰囲気下で焼成すると、セラミックスが還元され絶縁
性を失ってしまうという問題があった。このような問題
を解決するものとして、例えばBaTiO3 にMgOや
MnOを添加したり(特開昭57−71866号公報参
照)、さらにこの系にCaZrO3 を添加したり(特開
昭62−157603号公報参照)することが提案され
ていた。
However, when an internal electrode made of a base metal such as nickel is used, the internal electrode material is likely to be oxidized, so that it must be fired in a reducing atmosphere. If firing is performed in such an atmosphere, the ceramic is reduced. There was a problem that the insulation was lost. In order to solve such a problem, for example, MgO or MnO may be added to BaTiO 3 (see JP-A-57-71866), or CaZrO 3 may be added to this system (JP-A-62-157603). (See Japanese Patent Publication).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
ような従来の組成を用いた積層型コンデンサでは、高
温,高電圧の環境で用いられる場合には製品寿命が短い
という問題があった。その原因は、高温,高電圧の環境
においては、誘電体磁器自体の電気伝導性が高くなって
誘電体としての機能を果たさなくなり、即ち、高温,高
電圧環境においては誘電体としての寿命が短くなり、そ
の実用化に際して障害となっていた。特に、高容量化の
ために誘電体層を薄層化する傾向にあるが、従来のグリ
ーンシートを用いた方法では薄層化に限界があった。ま
た、誘電体層が薄くなる程、高温,高電圧環境において
は電気伝導性が高くなり易いという問題があった。
However, the multilayer capacitor using the conventional composition as described above has a problem that the product life is short when used in a high temperature and high voltage environment. The cause is that in high temperature and high voltage environments, the electric conductivity of the dielectric ceramic itself becomes high, and it no longer functions as a dielectric. That is, in high temperature and high voltage environments, the life as a dielectric becomes short. It was an obstacle to its practical application. In particular, there is a tendency to thin the dielectric layer in order to increase the capacity, but the conventional method using a green sheet has a limitation in thinning. There is also a problem that the thinner the dielectric layer, the higher the electric conductivity in a high temperature and high voltage environment.

【0006】また、上記のような従来の組成を用いた積
層型コンデンサでは、高温と低温が交互に生じるような
環境で使用される場合、内部電極層と誘電体層との接合
強度が低下して境界部分にクラック等が生じ易くなり、
熱衝撃性が低いという問題があった。
Further, in the multilayer capacitor using the conventional composition as described above, when it is used in an environment where high temperature and low temperature alternate, the bonding strength between the internal electrode layer and the dielectric layer decreases. Easily cracks at the boundary,
There was a problem of low thermal shock resistance.

【0007】[0007]

【発明の目的】本発明は、誘電体磁器層の厚みが3〜1
0μmと薄い場合でも、高温,高電圧の環境下における
寿命を向上することができるとともに、熱衝撃性を向上
することができる積層型コンデンサを提供することを目
的とする。
SUMMARY OF THE INVENTION The present invention has a dielectric porcelain layer having a thickness of 3 to 1
An object of the present invention is to provide a multilayer capacitor which can improve the life under a high temperature and high voltage environment and can improve the thermal shock resistance even when the thickness is as thin as 0 μm.

【0008】[0008]

【課題を解決するための手段】本発明者等は、上記問題
点に関して鋭意検討した結果、BaTiO3 100モル
部に対してマンガンを0.04〜0.5モル部含有する
厚み3〜10μmの誘電体磁器層と、卑金属からなる内
部電極層とを交互に積層してなり、誘電体磁器層の熱処
理前後の重量変化から求められる酸素空孔補償量ΔVo
が0.005〜0.5モル%である場合には、誘電体層
が薄層であっても高温,高電圧の環境下における寿命を
向上することができるとともに、熱衝撃性を向上するこ
とができることを見い出し、本発明に至った。
Means for Solving the Problems As a result of earnest studies on the above problems, the inventors of the present invention have found that the content of manganese is 0.04 to 0.5 parts by mol with respect to 100 parts by mol of BaTiO 3 , and the thickness is 3 to 10 μm. Oxygen vacancy compensation amount ΔV o, which is obtained by alternately stacking dielectric ceramic layers and internal electrode layers made of base metal, and is obtained from the weight change of the dielectric ceramic layers before and after heat treatment.
Is 0.005 to 0.5 mol%, it is possible to improve the thermal shock resistance as well as the life under high temperature and high voltage environment even if the dielectric layer is a thin layer. The inventors have found that the above can be achieved and have reached the present invention.

【0009】即ち、本発明の積層型コンデンサは、チタ
ン酸バリウムを主成分とし、このチタン酸バリウム10
0モル部に対してマンガンを0.04〜0.5モル部含
有する厚み3〜10μmの誘電体磁器層と、卑金属から
なる内部電極層とを交互に積層してなる積層型コンデン
サであって、前記誘電体磁器層の熱処理前後の重量変化
から求められる酸素空孔補償量ΔVo が0.005〜
0.5モル%のものである。
That is, the multilayer capacitor of the present invention contains barium titanate as a main component, and the barium titanate 10
A multilayer capacitor, comprising: a dielectric ceramic layer having a thickness of 3 to 10 μm and containing 0.04 to 0.5 parts by mole of manganese per 0 parts by mole; and an internal electrode layer made of a base metal, which are alternately laminated. The oxygen vacancy compensation amount ΔV o obtained from the weight change of the dielectric ceramic layer before and after the heat treatment is 0.005
0.5 mol%.

【0010】[0010]

【作用】本発明の積層型コンデンサでは、酸素空孔濃度
が雰囲気によって変化することが、製品寿命を長くする
ために必要であるが、還元焼成後に熱処理を行ったとし
ても、酸素空孔濃度の変化がなければ製品寿命は変化し
ない。本願発明では、熱処理を行うことと、マンガン添
加量を制御すること、および誘電磁器層用スリップを用
いて3〜10μmの誘電体磁器層を作製することによ
り、酸素空孔濃度を変化させ、酸素空孔補償量ΔVo
0.005〜0.5モル%とすることができるのであ
る。
In the multilayer capacitor of the present invention, it is necessary for the oxygen vacancy concentration to change depending on the atmosphere in order to prolong the product life, but even if heat treatment is performed after reduction firing, the oxygen vacancy concentration If there is no change, the product life will not change. In the present invention, the oxygen vacancy concentration is changed by performing heat treatment, controlling the amount of added manganese, and producing a dielectric ceramic layer having a thickness of 3 to 10 μm by using a slip for a dielectric ceramic layer. The void compensation amount ΔV o can be set to 0.005 to 0.5 mol%.

【0011】高温,高電圧の環境下における寿命は電子
濃度の変化によって決まることから、電子濃度が添加物
の価数変化によって補償されるならば寿命を長くするこ
とができる。添加物の価数変化は、同時に酸素空孔濃度
を変化させることから、酸素空孔濃度の変化する磁器は
添加物が価数変化することを示しており、寿命を長くす
る傾向に一致する。即ち、酸素空孔補償量の大きい組成
及びプロセスは、高温、高電圧の環境下における製品寿
命を長くすることができる。
Since the life under high temperature and high voltage environment is determined by the change in electron concentration, the life can be extended if the electron concentration is compensated by the change in valence of the additive. Since the valence change of the additive changes the oxygen vacancy concentration at the same time, the porcelain with the varying oxygen vacancy concentration indicates that the valence of the additive changes, which is in agreement with the tendency to prolong the life. That is, a composition and process with a large amount of oxygen vacancy compensation can prolong the product life under an environment of high temperature and high voltage.

【0012】また、本願発明の積層型コンデンサでは、
内部電極層と誘電体層との接合強度が向上し、高温と低
温が交互に生じるような環境での使用でも、熱衝撃性が
向上し、内部電極層と誘電体層との境界部分にクラック
等が生じることがない。
Further, in the multilayer capacitor of the present invention,
The joint strength between the internal electrode layer and the dielectric layer is improved, and the thermal shock resistance is improved even when used in an environment where high temperature and low temperature alternate, and cracks occur at the boundary between the internal electrode layer and the dielectric layer. Etc. will not occur.

【0013】[0013]

【発明の実施の形態】本発明における積層型コンデンサ
の誘電体磁器層は、チタン酸バリウム(BaTiO3
を主成分とするもので、例えば、BaTiO3 100モ
ル部に対して、MgOを0.2〜2.0モル部、Y2
3 を0.5〜1.5モル部、MnCO3 を0.04〜
0.5モル部からなる成分100重量部に対して、Si
2 20〜70モル%、Li2 O0〜50モル%、Ba
O0〜40モル%、CaO0〜40モル%からなるガラ
ス成分を0〜3重量部添加して構成される。この場合
に、不純物としてZrO2 ,Al2 3 ,Fe2 3
混入する場合がある。
BEST MODE FOR CARRYING OUT THE INVENTION The dielectric ceramic layer of the multilayer capacitor according to the present invention is made of barium titanate (BaTiO 3 ).
Is used as a main component, for example, 0.2 to 2.0 parts by mole of MgO and Y 2 O with respect to 100 parts by mole of BaTiO 3.
3 to 0.5 to 1.5 parts by mole and MnCO 3 to 0.04 to
With respect to 100 parts by weight of the component consisting of 0.5 parts by mole, Si
O 2 20 to 70 mol%, Li 2 O 0 to 50 mol%, Ba
It is constituted by adding 0 to 3 parts by weight of a glass component consisting of O0 to 40 mol% and CaO to 40 mol%. In this case, ZrO 2 , Al 2 O 3 , and Fe 2 O 3 may be mixed as impurities.

【0014】特には、静電容量温度特性の平坦化という
ためには、BaTiO3 100モル部に対して、MgO
を0.5〜1.5モル部、Y2 3 を0.75〜1.2
5ル部、MnCO3 を0.1〜0.3モル部からなる成
分100重量部に対して、SiO2 40〜60モル%、
Li2 O10〜25モル%、BaO15〜40モル%、
CaO0〜25モル%からなるガラス成分を1〜2重量
部添加して構成される。
Particularly, in order to flatten the temperature characteristic of capacitance, 100 parts by mole of BaTiO 3 is used for MgO.
Is 0.5 to 1.5 parts by mole, and Y 2 O 3 is 0.75 to 1.2.
5 parts by weight, MnCO 3 with respect to 100 parts by weight of a component consisting of 0.1 to 0.3 parts by mole, SiO 2 40 to 60% by mole,
Li 2 O 10 to 25 mol%, BaO 15 to 40 mol%,
It is constituted by adding 1 to 2 parts by weight of a glass component composed of 0 to 25 mol% CaO.

【0015】誘電体磁器層の厚みを3〜10μmとした
のは、厚みを薄くし、高容量下を図るためである。厚み
が3μmよりも薄い場合には、ドクターブレード法によ
る成形が困難となり、10μmよりも厚い場合には、静
電容量が低くなるからである。誘電体磁器層の厚みは耐
電圧という点から5〜10μmが望ましい。
The reason why the thickness of the dielectric ceramic layer is set to 3 to 10 μm is to reduce the thickness and achieve a high capacity. This is because if the thickness is less than 3 μm, molding by the doctor blade method is difficult, and if it is thicker than 10 μm, the capacitance becomes low. The thickness of the dielectric ceramic layer is preferably 5 to 10 μm from the viewpoint of withstand voltage.

【0016】マンガンをBaTiO3 100モル部に対
して0.04〜0.5モル部含有させたのは、マンガン
添加により酸素空孔補償量ΔVo を増加することができ
るからであり、マンガンが0.04モル部よりも少ない
場合には必要なΔVo が得られなくなり、マンガンが
0.5モル部よりも多い場合には、エージング特性が悪
化し、高温,高電圧の環境下における寿命が短くなるか
らである。マンガンは0.1〜0.3モル部含有するこ
とが高温,高電圧の環境下における寿命の確保という点
から望ましい。
The manganese is contained in an amount of 0.04 to 0.5 parts by mol based on 100 parts by mol of BaTiO 3 because the amount of oxygen vacancy compensation ΔV o can be increased by adding manganese. When it is less than 0.04 part by mole, the required ΔV o cannot be obtained, and when manganese is more than 0.5 part by mole, the aging characteristics are deteriorated and the life under high temperature and high voltage environment is shortened. Because it will be shorter. It is desirable that manganese be contained in an amount of 0.1 to 0.3 part by mol from the viewpoint of ensuring the life under an environment of high temperature and high voltage.

【0017】内部電極としてはNi,Cu等の卑金属か
らなるものである。
The internal electrodes are made of a base metal such as Ni or Cu.

【0018】酸素空孔補償量ΔVo とは、雰囲気の変化
に対する酸素空孔濃度変化のうち、特に、添加物の価数
変化に基づく変化分を示すものであり、この量が大きい
ほど、高温,高電圧の環境下における寿命が長くなる。
酸素空孔補償量ΔVo は、例えば温度1000℃、酸素
分圧10-4Paの雰囲気中での熱処理前後の重量変化か
ら求められる。
The oxygen vacancy compensation amount ΔV o is a change in oxygen vacancy concentration due to a change in atmosphere, which is particularly due to a change in valence of the additive. The larger the amount, the higher the temperature. , Longer life under high voltage environment.
The oxygen vacancy compensation amount ΔV o can be obtained from the weight change before and after the heat treatment in an atmosphere having a temperature of 1000 ° C. and an oxygen partial pressure of 10 −4 Pa, for example.

【0019】酸素空孔補償量ΔVo を0.005〜0.
5モル%としたのは、この範囲内であれば高温,高電圧
下での寿命を十分に長くできるからである。即ち、酸素
空孔補償量ΔVo が0.005モル%よりも少ない場合
や、0.5モル%よりも多い場合には、高温,高電圧下
での寿命が短くなるからである。酸素空孔補償量ΔVo
は寿命のバラツキを抑制するという点から0.01〜
0.3モル%含有することが望ましい。
The oxygen vacancy compensation amount ΔV o is 0.005 to 0.
The reason why it is set to 5 mol% is that the life under high temperature and high voltage can be sufficiently lengthened within this range. That is, when the oxygen vacancy compensation amount ΔV o is less than 0.005 mol% or more than 0.5 mol%, the life at high temperature and high voltage is shortened. Oxygen vacancy compensation amount ΔV o
0.01 to 0.01 from the viewpoint of suppressing variations in life.
It is desirable to contain 0.3 mol%.

【0020】本発明の積層型コンデンサは、先ず、例え
ば、上記したような組成からなる誘電体磁器層用スリッ
プを作製するとともに、上記したような組成からなる内
部電極層用スリップを作製する。
In the multilayer capacitor of the present invention, first, for example, a dielectric ceramic layer slip having the above-described composition is produced, and an internal electrode layer slip having the above-described composition is produced.

【0021】この後、台板に誘電体磁器層用スリップを
ドクターブレード法により複数回塗布し、厚みが5〜1
3μmの厚みの誘電体成形膜を形成し、この誘電体成形
膜の表面に電極層用スリップをスクリーン印刷して所定
形状の電極膜を形成する。この工程を所望の容量が得ら
れるまで繰り返す。この積層体を酸素分圧が3×10-5
〜3×10-3Paの非還元性雰囲気において1200〜
1300℃で1〜5時間一体焼成し、この後、誘電体磁
器中の酸素空孔補償量が増加する条件、即ち、酸素分圧
が1×10-2〜2 ×104 Paの雰囲気中において80
0〜1100℃で1〜5時間熱処理し、本発明の積層型
コンデンサを得る。
Thereafter, the base plate is coated with a slip for a dielectric ceramic layer a plurality of times by the doctor blade method, and the thickness is 5 to 1
A dielectric molded film having a thickness of 3 μm is formed, and an electrode layer slip is screen-printed on the surface of the dielectric molded film to form an electrode film having a predetermined shape. This process is repeated until the desired volume is obtained. This laminated body has an oxygen partial pressure of 3 × 10 −5.
~ 3 × 10 -3 Pa in a non-reducing atmosphere 1200-
It is integrally fired at 1300 ° C. for 1 to 5 hours, and after that, in the condition that the oxygen vacancy compensation amount in the dielectric ceramic increases, that is, in the atmosphere of oxygen partial pressure of 1 × 10 −2 to 2 × 10 4 Pa. 80
Heat treatment is performed at 0 to 1100 ° C. for 1 to 5 hours to obtain the multilayer capacitor of the present invention.

【0022】[0022]

【実施例】出発原料としてBaCO3 粉末,TiO2
末を用い、混合後1150℃にて固相反応させBaTi
3 を合成し、粒径0.5μmに微粉砕した。次にBa
TiO3 ,MgO,Y2 3 ,MnCO3 を、表1の組
成となるように調合し、さらに、この組成物100重量
部に対して、SiO2 50モル%、Li2 O20モル
%、BaO20モル%、CaO10モル%からなるガラ
ス成分を1.5重量部添加し、ZrO2 ボールにより混
合し、バインダー,可塑剤を加え、誘電体磁器層用スリ
ップを得た。また、Niとテルピネオールを添加し、A
2 3 ボールにより混合し、バインダー、可塑剤を加
え、電極層用スリップを得た。
EXAMPLES BaCO 3 powder and TiO 2 powder were used as starting materials, and after mixing, solid-phase reaction was carried out at 1150 ° C. to form BaTi.
O 3 was synthesized and finely pulverized to a particle size of 0.5 μm. Next, Ba
TiO 3 , MgO, Y 2 O 3 and MnCO 3 were blended so as to have the composition shown in Table 1. Further, with respect to 100 parts by weight of this composition, SiO 2 50 mol%, Li 2 O 20 mol%, BaO 20 1.5 parts by weight of a glass component consisting of mol% and CaO 10 mol% was added and mixed with a ZrO 2 ball, and a binder and a plasticizer were added to obtain a slip for a dielectric ceramic layer. Also, by adding Ni and terpineol, A
The mixture was mixed with l 2 O 3 balls, a binder and a plasticizer were added, and a slip for an electrode layer was obtained.

【0023】そして、誘電体磁器層用スリップを台板に
ドクターブレード法により塗布し、この誘電体成形膜の
上面に、Niを主成分とする電極層用スリップをクシ型
構造となるようにスクリーン印刷し、誘電体成形膜と電
極膜の成形工程を50回繰り返し、誘電体成形膜を50
層有する積層成形体を作製した。この積層成形体を熱圧
着後、酸素分圧が3×10-4Paの非還元性雰囲気にお
いて1250℃で2時間焼成した後、表1のような熱処
理を行った。
Then, the dielectric ceramic layer slip is applied to the base plate by the doctor blade method, and the electrode layer slip containing Ni as a main component is screened on the upper surface of the dielectric molded film so as to form a comb structure. Print and repeat the process of forming the dielectric film and electrode film 50 times to form the dielectric film 50 times.
A laminated molded body having layers was produced. After heat-pressing this laminated molded body, it was fired at 1250 ° C. for 2 hours in a non-reducing atmosphere having an oxygen partial pressure of 3 × 10 −4 Pa, and then heat treated as shown in Table 1.

【0024】[0024]

【表1】 [Table 1]

【0025】このようにして得られた積層型コンデンサ
に対して、誘電体層厚みを測定するとともに、熱衝撃特
性,容量,誘電体磁器中の酸素空孔補償量ΔVo を測定
し、さらに、信頼性試験を行った。
With respect to the multilayer capacitor thus obtained, the dielectric layer thickness was measured, and the thermal shock characteristics, the capacity, and the oxygen vacancy compensation amount ΔV o in the dielectric porcelain were measured. A reliability test was conducted.

【0026】誘電体層厚みは金属顕微鏡により測定し
た。熱衝撃特性は室温に保持した200個の試料を34
0℃の半田槽中に浸漬し、表面にクラックが生じた個数
で判断した。容量はLCRメータで測定し、誘電体一層
当たりの容量に換算した。
The thickness of the dielectric layer was measured with a metallurgical microscope. Thermal shock resistance was measured by using 200 samples kept at room temperature
It was immersed in a solder bath at 0 ° C. and judged by the number of cracks on the surface. The capacity was measured with an LCR meter and converted into the capacity per one dielectric layer.

【0027】また、誘電体磁器中の酸素空孔補償量ΔV
o は、上記表1の組成の誘電体磁器層用スリップをドク
ターブレード法により複数回塗布し、打ち抜き法により
直径20mm厚み1mmの誘電体成形体を作製し、上記
のような焼成条件で焼成した後、誘電体磁器の重量を測
定し、表1のような熱処理を行った後の誘電体磁器の重
量を測定し、熱処理前の重量に対する熱処理後の重量減
少分を酸素空孔量の変化によるものとみなし、酸素空孔
補償量を算出した。
Further, the oxygen vacancy compensation amount ΔV in the dielectric ceramics
For o , a dielectric ceramic layer slip having the composition shown in Table 1 above was applied multiple times by the doctor blade method, and a dielectric compact having a diameter of 20 mm and a thickness of 1 mm was prepared by a punching method and fired under the firing conditions as described above. After that, the weight of the dielectric porcelain is measured, and the weight of the dielectric porcelain after the heat treatment as shown in Table 1 is measured. The weight decrease after the heat treatment with respect to the weight before the heat treatment is determined by the change of the oxygen vacancy amount. Assuming that the oxygen vacancy was compensated, the oxygen vacancy compensation amount was calculated.

【0028】信頼性試験は、上記のように作製した積層
コンデンサの両端面にスパッタ法により金電極を形成
し、これを300℃の測定炉中で1000Vの電圧を印
加し、ショート故障に至るまでの時間を測定した。これ
らの結果を表2に示す。
In the reliability test, gold electrodes were formed on both end surfaces of the multilayer capacitor manufactured as described above by a sputtering method, and a voltage of 1000 V was applied to the gold electrodes in a measuring furnace at 300 ° C. until a short circuit failure occurred. Was measured. Table 2 shows the results.

【0029】[0029]

【表2】 [Table 2]

【0030】この表2より、本発明の積層型コンデンサ
では、高温,高電圧の環境下における寿命(信頼性)を
向上することができるとともに、熱衝撃性を向上するこ
とができる。
From Table 2, the multilayer capacitor of the present invention can have improved life (reliability) under a high temperature and high voltage environment and improved thermal shock resistance.

【0031】[0031]

【発明の効果】本発明の積層型コンデンサでは、誘電体
磁器層の厚みが1〜10μmと薄い場合でも、高温,高
電圧の環境下における寿命を向上することができるとと
もに、熱衝撃性を向上することができる。
According to the multilayer capacitor of the present invention, even when the thickness of the dielectric ceramic layer is as thin as 1 to 10 μm, the life under high temperature and high voltage environment can be improved and the thermal shock resistance can be improved. can do.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤川 信儀 鹿児島県国分市山下町1番1号 京セラ株 式会社鹿児島国分工場内 (72)発明者 藤岡 芳博 鹿児島県国分市山下町1番4号 京セラ株 式会社総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Nobuyoshi Fujikawa 1-1 Yamashita-cho, Kokubun-shi, Kagoshima Prefecture Kyocera Co., Ltd. Kagoshima Kokubun Plant (72) Yoshihiro Fujioka 1-4-4 Yamashita-cho, Kokubun-shi, Kagoshima Kyocera Incorporated Research Institute

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】チタン酸バリウムを主成分とし、このチタ
ン酸バリウム100モル部に対してマンガンを0.04
〜0.5モル部含有する厚み3〜10μmの誘電体磁器
層と、卑金属からなる内部電極層とを交互に積層してな
る積層型コンデンサであって、前記誘電体磁器層の熱処
理前後の重量変化から求められる酸素空孔補償量ΔVo
が0.005〜0.5モル%であることを特徴とする積
層型コンデンサ。
1. Barium titanate as a main component, and manganese of 0.04 is added to 100 parts by mole of barium titanate.
A multilayer capacitor, wherein a dielectric ceramic layer having a thickness of 3 to 10 μm and containing 0.5 to 0.5 parts by mole, and an internal electrode layer made of a base metal are alternately laminated, the weight of the dielectric ceramic layer before and after heat treatment. Oxygen vacancy compensation amount ΔV o calculated from change
Is 0.005 to 0.5 mol%, a multilayer capacitor.
JP19521495A 1995-07-31 1995-07-31 Multilayer capacitors Expired - Fee Related JP3287980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19521495A JP3287980B2 (en) 1995-07-31 1995-07-31 Multilayer capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19521495A JP3287980B2 (en) 1995-07-31 1995-07-31 Multilayer capacitors

Publications (2)

Publication Number Publication Date
JPH0945581A true JPH0945581A (en) 1997-02-14
JP3287980B2 JP3287980B2 (en) 2002-06-04

Family

ID=16337368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19521495A Expired - Fee Related JP3287980B2 (en) 1995-07-31 1995-07-31 Multilayer capacitors

Country Status (1)

Country Link
JP (1) JP3287980B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002265260A (en) * 2001-03-07 2002-09-18 Kyocera Corp Dielectric ceramic and lamination type electronic part
US7099141B1 (en) * 2005-06-06 2006-08-29 The United States Of America As Represented By The United States Department Of Energy Ceramic capacitor exhibiting graceful failure by self-clearing, method for fabricating self-clearing capacitor
JP2014165447A (en) * 2013-02-27 2014-09-08 Kyocera Corp Multilayer ceramic capacitor
WO2023120173A1 (en) * 2021-12-23 2023-06-29 京セラ株式会社 Multilayer ceramic electronic component

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5461774B2 (en) * 2005-06-24 2014-04-02 Tdk株式会社 Electronic component and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002265260A (en) * 2001-03-07 2002-09-18 Kyocera Corp Dielectric ceramic and lamination type electronic part
JP4663141B2 (en) * 2001-03-07 2011-03-30 京セラ株式会社 Dielectric porcelain and multilayer electronic components
US7099141B1 (en) * 2005-06-06 2006-08-29 The United States Of America As Represented By The United States Department Of Energy Ceramic capacitor exhibiting graceful failure by self-clearing, method for fabricating self-clearing capacitor
JP2014165447A (en) * 2013-02-27 2014-09-08 Kyocera Corp Multilayer ceramic capacitor
WO2023120173A1 (en) * 2021-12-23 2023-06-29 京セラ株式会社 Multilayer ceramic electronic component

Also Published As

Publication number Publication date
JP3287980B2 (en) 2002-06-04

Similar Documents

Publication Publication Date Title
KR100313232B1 (en) Dielectric Ceramic Composition and Laminated Ceramic Capacitor
KR100271726B1 (en) Ceramic composirion and multilayer ceramic capacitor made therefrom
EP0814486B1 (en) Dielectric ceramic composition and monolithic ceramic capacitor using same
JP4521387B2 (en) Reduction-resistant dielectric ceramic composition
JP3346293B2 (en) Non-reducing dielectric ceramic composition and multilayer ceramic capacitor using the same
EP0893419A1 (en) Dielectric ceramic composition and monolithic ceramic capacitor using same
EP0817216A2 (en) Dielectric ceramic composition and monolothic ceramic capacitor using same
JP3642282B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
KR100271101B1 (en) Monolithic ceramic capacitor
JP3924286B2 (en) Manufacturing method of multilayer ceramic electronic component
KR20050093799A (en) Dielectric porcelain composition, electronic device and methods for producing these
JP2004182582A (en) Low temperature-fired dielectric ceramic composition and multilayer ceramic capacitor using the same
JP2990494B2 (en) Multilayer ceramic capacitors
US4809131A (en) Low temperature sintered ceramic capacitor having a high resistivity and bending strength, and method of manufacture
US4809130A (en) Low temperature sintered ceramic capacitor having a high resistivity and bending strength, and method of manufacture
JP5151039B2 (en) Dielectric ceramic, manufacturing method thereof, and multilayer ceramic capacitor
JP3287980B2 (en) Multilayer capacitors
JP3363322B2 (en) Multilayer capacitors
JPH07122456A (en) Manufacture of multilayered ceramic capacitor
JPH0261434B2 (en)
JP3620314B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
JP4780512B2 (en) Ceramic capacitor
JP3233020B2 (en) Manufacturing method of multilayer ceramic capacitor
JPH11340075A (en) Dielectric cermic composition
JP2803320B2 (en) Dielectric porcelain composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090315

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090315

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100315

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110315

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110315

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120315

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120315

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130315

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130315

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140315

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees