JPS61258868A - Production of inorganic powder containing copper film of coating - Google Patents

Production of inorganic powder containing copper film of coating

Info

Publication number
JPS61258868A
JPS61258868A JP60100908A JP10090885A JPS61258868A JP S61258868 A JPS61258868 A JP S61258868A JP 60100908 A JP60100908 A JP 60100908A JP 10090885 A JP10090885 A JP 10090885A JP S61258868 A JPS61258868 A JP S61258868A
Authority
JP
Japan
Prior art keywords
copper
plating
inorganic powder
coating
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60100908A
Other languages
Japanese (ja)
Other versions
JPH0453949B2 (en
Inventor
Tokuzo Kanbe
神戸 徳蔵
Yaozo Kumagai
熊谷 八百三
Jiro Takahira
高平 二朗
Kunihiko Nozaki
野崎 邦彦
Tomoji Hatanaka
畑中 友治
Kazuyoshi Otani
大谷 一吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NISSO KINZOKU KAGAKU KK
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
NISSO KINZOKU KAGAKU KK
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NISSO KINZOKU KAGAKU KK, Agency of Industrial Science and Technology filed Critical NISSO KINZOKU KAGAKU KK
Priority to JP60100908A priority Critical patent/JPS61258868A/en
Publication of JPS61258868A publication Critical patent/JPS61258868A/en
Publication of JPH0453949B2 publication Critical patent/JPH0453949B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents

Abstract

PURPOSE:To obtain inorganic powder useful as a filler for electromagnetic wave shielding material, having a copper film of coating with improved adhesivity free from deposit unevenness, a filler for electrically-conductive coating compound filler, etc., keeping an initial copper plating rate low so that a fixed amount of copper is plated at low speed. CONSTITUTION:In plating chemically inorganic powder (e.g, muscovite mica, potassium titanate whisker, etc.) having captured preferably 3X10<-3>-3X10<-4> noble metal such as Pd, Pt, etc., with copper, an initial copper plate rate from the starting of the chemical plate to at least five minutes in kept at <=0.5mg/ cm<2>.hr and the plating is carried out preferably for 10-15min.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は銅被覆を有する無機粉体の製造方法に係り無電
解めっきによる無機粉体に対して均一な、しかも密着性
のある導電性にすぐれた銅被覆を有する粉体の製造方法
に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing an inorganic powder coated with copper, and relates to a method for producing an inorganic powder coated with copper, which provides uniform and adhesive conductivity to the inorganic powder by electroless plating. The present invention relates to a method for producing powder having an excellent copper coating.

本発明の方法で製造される銅被覆を有する無機粉体は電
磁波シールド材用フィラー、導電性塗料用フィラー、導
電性ペースト用フィラー、粉末冶金用フィラー等に用い
ることができる。
The inorganic powder having a copper coating produced by the method of the present invention can be used as a filler for electromagnetic shielding materials, a filler for conductive paints, a filler for conductive pastes, a filler for powder metallurgy, and the like.

〔従来の技術〕[Conventional technology]

めっき浴中の金属イオンを、還元剤の作用によって還元
析出させる無電解めっきは、ニッケル、コバルト、銅等
あるいはこれらの合金のめっきに広く採用されており、
非金属基質上にもめっきできることから、無機粉体への
めっきにも適している。例えば、「実務表面技術J 1
980年9月号8〜12頁には、このような無機粉体へ
の適用例が概説されている。しかしながら、粉体の一粒
一粒に、めっきむらが少なく又密着性の優れためっきを
施すことは、該文献に概説されるような化学めっき法を
もってしても容易なことではな(、特に銅めっきの場合
には困難である。
Electroless plating, in which metal ions in a plating bath are reduced and precipitated by the action of a reducing agent, is widely used for plating nickel, cobalt, copper, etc. or their alloys.
Since it can be plated on non-metallic substrates, it is also suitable for plating on inorganic powders. For example, "Practical Surface Technology J 1
Examples of application to such inorganic powders are outlined on pages 8 to 12 of the September 1998 issue. However, it is not easy to plate each particle of powder with less unevenness and excellent adhesion, even with the chemical plating method outlined in this document (in particular, This is difficult in the case of copper plating.

無機粉体の銅めっきに付きむらがある場合、銅めっき量
が多い割合には、それを使用した導電性塗料および電磁
波シールド材の導電性及び電磁波シールド性が悪く、又
樹脂成分との混練の際、剥離する等の不都合がある。無
機粉体へ銅を化学めっきする方法として、特公昭58−
17825号公報に無機粉体を第1錫塩の酸性溶液に浸
漬し、ついで、パラジウム塩の酸性溶液に浸漬して(い
わゆるセンシタイジングーアクチベーションプロセス)
触媒化処理を行った後、無電解銅めっき液(ロッシェル
塩浴、EDTA塩浴)に浸漬、攪拌してめっきを行うこ
とにより、銅被覆を有する無機粉体を得る方法が記載さ
れている。しかしながら、これらの通常の化学めっき法
では、無機粉体を実質的に完全に被覆しうるような均一
なめっき層を形成させることは困難である上に、無機粉
体とめっき層との結合力即ち密着性が不充分である。
If the copper plating of the inorganic powder is uneven, a large amount of copper plating will result in poor conductivity and electromagnetic shielding properties of the conductive paint and electromagnetic shielding material that use it, as well as poor kneading with the resin component. However, there are some inconveniences such as peeling. As a method of chemically plating copper on inorganic powder,
No. 17825 discloses that an inorganic powder is immersed in an acidic solution of a stannous salt, and then immersed in an acidic solution of a palladium salt (so-called sensitizing-activation process).
A method is described for obtaining an inorganic powder coated with copper by performing catalytic treatment and plating by dipping and stirring in an electroless copper plating solution (Rochelle salt bath, EDTA salt bath). However, with these ordinary chemical plating methods, it is difficult to form a uniform plating layer that can substantially completely cover the inorganic powder, and the bonding strength between the inorganic powder and the plating layer is low. That is, the adhesion is insufficient.

また、特開昭59−157268号公報には、粉体を化
学めっ、き浴中に浸漬し、その表面に金属を被覆する化
学めっき法において、粉体の90%以上の個数の粒子の
移動速度が5cm/秒以下となるような浴の流動状態下
で一定時間、初期めっき処理を続ける方法が記載されて
いる。しかし、この方法においても“付きむら”は防止
し得ても密着性についての改良はなされていない。
Furthermore, Japanese Patent Application Laid-Open No. 59-157268 discloses that in a chemical plating method in which powder is immersed in a chemical plating bath and the surface thereof is coated with metal, more than 90% of the particles of the powder are coated with a metal. A method is described in which the initial plating process is continued for a certain period of time under a fluidized bath condition such that the moving speed is 5 cm/sec or less. However, although this method can prevent "uneven adhesion", it does not improve adhesion.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者らは“付きむら”がなく、且つ、密着性の優れ
た銅被覆を有する無機粉体の製造方法を提供することを
、その目的とする。
It is an object of the present inventors to provide a method for producing an inorganic powder having a copper coating with no "unevenness" and excellent adhesion.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は表面に貴金属を捕捉した無機粉体に銅を化学め
っきするに当たり、化学めっきの開始から少なくとも5
分間の初期銅めっき速度を、0.5■/ co!−hr
以下に保持することを特徴とする銅被覆を有する無機粉
体の製造方法である。
In chemically plating copper on an inorganic powder that captures precious metals on the surface, the present invention provides at least 5
The initial copper plating speed per minute is 0.5■/co! -hr
This is a method for producing an inorganic powder having a copper coating, which is characterized in that the following conditions are maintained.

本発明において、銅被覆の対象とする表面に貴金属を捕
捉した無機粉体は、公知の種々の方法に従って作ること
ができる。例えば、塩化第1錫の酸性溶液に浸漬した後
、貴金属の酸性溶液に浸漬する方法、塩化第1錫及び貴
金属の混合酸性溶液に浸漬処理した後、塩酸溶液で処理
する方法、貴金属捕捉性表面処理剤を用いて表面処理し
た粉体を貴金属を含む溶液で処理する方法等が知られて
おり、これらの何れの方法をも採用できる。
In the present invention, the inorganic powder in which precious metals are captured on the surface to be coated with copper can be produced according to various known methods. For example, a method in which the surface is immersed in an acidic solution of stannous chloride and then in an acidic solution of a precious metal, a method in which the surface is immersed in a mixed acidic solution of stannous chloride and a precious metal and then treated with a hydrochloric acid solution, and a surface that captures precious metals. A method is known in which powder whose surface has been treated with a treatment agent is treated with a solution containing a noble metal, and any of these methods can be employed.

表面に貴金属を捕捉した無機粉体として、パラジウム、
白金、ロジウム、金などの貴金属が、無機粉体100重
量部に対して、3X10−’〜3 X 10− ’重量
部捕捉されたものが好ましい。
Palladium, as an inorganic powder with precious metals captured on its surface
Preferably, 3 x 10-' to 3 x 10-' parts by weight of noble metals such as platinum, rhodium, gold, etc. are captured per 100 parts by weight of the inorganic powder.

無機粉体としては、銅化学めっきに対して、安定性の良
いものであれば制限はなく、マスコバイトマイカ、フロ
ゴパイトマイカ、合成のフッ素系マイカなどの板状マイ
カ、チタン酸カリウムウィスカー、ウオラストナイト、
アスベスト、セピオライトなどの針状鉱物、シリカ、ア
ルミナ、タルク、シラスバルーン、グラファイト、ガラ
スフレーク、ガラスファイバー、カーボンファイバー、
シリコンファイバー、窒化珪素、炭化珪素等が例示でき
る。特に、形状については制限がなく、板状、針状、繊
維状、粒状、など種々の形状のものが使用できる。
There are no restrictions on the inorganic powder as long as it is stable for copper chemical plating, such as plate-shaped mica such as muscovite mica, phlogopite mica, synthetic fluorine-based mica, potassium titanate whiskers, Wolastonite,
Acicular minerals such as asbestos and sepiolite, silica, alumina, talc, shirasu balloons, graphite, glass flakes, glass fiber, carbon fiber,
Examples include silicon fiber, silicon nitride, and silicon carbide. In particular, the shape is not limited, and various shapes such as plate, needle, fiber, and granule can be used.

銅化学めっき液としては、通常の化学銅めっき液を用い
ることができる。即、銅源としては、硫酸銅、塩化銅、
硝酸銅等の塩類、又銅イオンの錯化剤としては、BDT
A塩、ロッシェル塩類等、還元剤としては、ホルマリン
、パラホルムアルデヒド等およびpHtJl整剤として
は、水酸化ナトリウム、炭酸ナトリウムの水溶液を用い
る。更に液の安定剤として、界面活性剤、シアン塩類等
を微量添加することができる。具体的には、硫酸銅3゜
6%、EDTA塩7.3%、ホルマリン2.6%、苛性
ソーダ0.3%の液が使用できる。
As the copper chemical plating solution, a normal chemical copper plating solution can be used. Therefore, copper sources include copper sulfate, copper chloride,
Salts such as copper nitrate, and as a complexing agent for copper ions, BDT
A salt, Rochelle's salts, etc. are used as the reducing agent, such as formalin, paraformaldehyde, etc., and as the pHtJl adjuster, an aqueous solution of sodium hydroxide or sodium carbonate is used. Furthermore, a small amount of a surfactant, cyanide salts, etc. can be added as a liquid stabilizer. Specifically, a solution containing 3.6% copper sulfate, 7.3% EDTA salt, 2.6% formalin, and 0.3% caustic soda can be used.

銅めっき速度を、0.5■/cj−hr以下に保持する
ためには種々の方法があるが、銅めっき速度は、各イオ
ン濃度、還元剤濃度、温度およびpHに依存するのでイ
オン濃度および還元剤濃度を一定に設定し、温度及びP
Hをコントロールすることにより、銅めっき速度をコン
トロールすることができる。即、pHを下げることによ
り、また温度を低くすることによりめっき速度を小さく
することができる。通常は、温度を一定に設定してpH
をコントロールする方法が、容易に行いうる方法である
There are various methods to keep the copper plating rate below 0.5■/cj-hr, but since the copper plating rate depends on each ion concentration, reducing agent concentration, temperature and pH, the ion concentration and The reducing agent concentration is set constant, and the temperature and P
By controlling H, the copper plating speed can be controlled. That is, the plating rate can be reduced by lowering the pH or by lowering the temperature. Normally, the temperature is set constant and the pH is
The easiest method is to control the

本発明において、めっき開始後のpHを、開始期のpH
より低く保持することにより、めっき反応の開始から少
なくとも5分間の初期銅めっき速度を、0.5m1r/
−・hr以下に保持することができる。しかしながら、
余り低くすることは反応が実質的に停止してしまうので
実際的でない。めっき速度は、0.1■/ci・hr以
下では実際的でなく、0.6■/cffl−hrを越え
ると泡の発生が激しくなり、付きむら”を生じ、密着性
が低下する。
In the present invention, the pH after the start of plating is
By keeping the initial copper plating rate lower than 0.5 ml/r/min for at least 5 minutes from the start of the plating reaction,
-・hr or less. however,
Setting it too low is not practical because the reaction will substantially stop. If the plating rate is less than 0.1 .mu./ci.hr, it is not practical, and if it exceeds 0.6 .mu./cffl-hr, the generation of bubbles will become more intense, resulting in uneven plating and poor adhesion.

この銅めっき速度でのめっきを、少なくとも5分間保持
することがめっきの“付きむら”の防止及び密着性に必
要である。これは粉体の表面に均一に実質的に第1層の
銅皮膜が形成されるのに相当する。
It is necessary to maintain plating at this copper plating speed for at least 5 minutes to prevent "unevenness" of plating and to ensure good adhesion. This corresponds to substantially uniformly forming a first layer of copper film on the surface of the powder.

具体的な実施方法として、化学めっき液をあらかじめ所
定の温度に上げ、NaOH溶液でその温度に最適な初期
pH値に調整する。この初期pH値は、その化学めっき
液でめっきが開始する下限値(粉体を投入して数秒〜数
十秒以内にめっきが開始するpH値)とする。貴金属を
捕捉した無機粉体を、この化学めっき液に投入すると、
反応が開始しpo値は急速に低下するが、NaOH溶液
を添加する等の手段により、銅めっき速度を0.5w/
ad・hr以下で一定に保持することができる。この状
態でのめっきを、5〜20分、好ましくは10〜15分
行う。その後のめっきは、任意のめっき速度で所望のめ
っき量に達するまで行うことができる。
As a specific implementation method, the chemical plating solution is raised to a predetermined temperature in advance, and the initial pH value is adjusted to the optimum value for that temperature using a NaOH solution. This initial pH value is the lower limit value at which plating starts with the chemical plating solution (pH value at which plating starts within several seconds to several tens of seconds after the powder is introduced). When inorganic powder that captures precious metals is added to this chemical plating solution,
The reaction starts and the po value decreases rapidly, but the copper plating rate can be reduced to 0.5w/by adding NaOH solution or other means.
It can be kept constant below ad.hr. Plating in this state is performed for 5 to 20 minutes, preferably 10 to 15 minutes. Subsequent plating can be performed at any plating speed until a desired plating amount is reached.

例えば、pi(を10〜9程度に調整してめっきを開始
し、5〜10分間そのpHに保持して、初期めっき速度
を調整した後、p)lを11程度に上昇させ、比較的高
速でめっきを終了させることにより、 付きむら”がな
い、かつ、密着性の良好な銅被覆を有する無機粉体が得
られる。また、pHを10〜9程度に保持して、比較的
低速でめっきを終了させることも可能である。
For example, start plating by adjusting pi() to around 10 to 9, hold it at that pH for 5 to 10 minutes, adjust the initial plating speed, then increase p)l to around 11, and then start plating at a relatively high speed. By finishing the plating with , it is possible to obtain an inorganic powder with a copper coating that is free of uneven adhesion and has good adhesion.In addition, the pH is maintained at about 10 to 9 and plating is performed at a relatively low speed. It is also possible to terminate the

〔作 用〕[For production]

本発明者らは、化学めっきによる無機粉体の銅被覆の 
付きむら”および密着性に関し鋭意研究した結果、初期
銅めっき速度が大きく影響することを見出し、本発明を
完成した。
The present inventors have developed a method for coating copper on inorganic powder by chemical plating.
As a result of intensive research into "unevenness" and adhesion, it was discovered that the initial copper plating speed has a large effect, and the present invention was completed.

無機粉体に対する化学銅めっきの場合、粉体の比表面積
が0,1rrr/g以上と大きいため、一旦めっきが開
始されると、めっき速度が加速度的に速くなり、H2ガ
スが急速に発生して、細かい粉末はH2ガスと共に浮上
してしまうとか、又銅が粉体の上に析出せず、単独に析
出する現象が現れ、“付きむら”が発生し、また、密着
性が低下する。
In the case of chemical copper plating on inorganic powder, the specific surface area of the powder is as large as 0.1 rrr/g or more, so once plating starts, the plating speed accelerates and H2 gas is rapidly generated. As a result, the fine powder floats up together with the H2 gas, or the copper does not precipitate on the powder, but instead precipitates alone, resulting in "uneven adhesion" and reduced adhesion.

本発明において、初期めっき速度を低く保持し、一定量
の銅を低速でめっきすることにより・その後のめっき速
度にかかわりなく、H2ガスの急激な発生を防止でき、
粉末がH2ガスに包含されて表面に浮上することが防止
されると同時に、銅めっきの“付きむら”が防止され、
緻密で均一な密着性の強い銅被覆が無機粉体の表面に形
成させる。
In the present invention, by keeping the initial plating speed low and plating a certain amount of copper at a low speed, it is possible to prevent rapid generation of H2 gas regardless of the subsequent plating speed.
Powder is prevented from being included in H2 gas and floating to the surface, and at the same time, "unevenness" of copper plating is prevented.
A dense, uniform, and highly adhesive copper coating is formed on the surface of the inorganic powder.

〔実施例〕〔Example〕

本発明を実施例により、さらに詳細に説明する。 The present invention will be explained in more detail with reference to Examples.

ただし本発明の範囲は、下記実施例により同等限定され
るものではない。
However, the scope of the present invention is not limited to the same extent by the following examples.

実施例1 平均粒径150meshのフロゴパイトマイカ(比表面
積; 0.2 rrf/g) 750gを、エポキシ樹
脂(エポキシ4g 、ポリアミド4g )を溶解したエ
タノール−アセトン混合溶液中に30分間浸漬し、次い
で濾過し、溶媒を揮散させた後、100℃で1時間硬化
した。次にこのようにして表面処理されたマイカ750
gを、塩化パラジウムの塩酸酸性水溶液(PdC1z 
fa度lXl0−’g /ml)  1500mlに室
温で1時間浸漬したのち、濾過して下地処理を行い、表
面にパラジウムを捕捉したマイカを得た。
Example 1 750 g of phlogopite mica (specific surface area: 0.2 rrf/g) with an average particle size of 150 mesh was immersed for 30 minutes in an ethanol-acetone mixed solution in which an epoxy resin (4 g of epoxy, 4 g of polyamide) was dissolved. After filtering and volatilizing the solvent, the mixture was cured at 100° C. for 1 hour. Next, the mica 750 surface-treated in this way
g in an acidic aqueous solution of palladium chloride in hydrochloric acid (PdC1z
After being immersed in 1500 ml of fa degree lXl0-'g/ml) at room temperature for 1 hour, it was filtered and a surface treatment was performed to obtain mica with palladium captured on its surface.

次に、この表面にパラジウムを捕捉したマイカを、次の
組成を有する銅無電解めっき液30 Nに投入しめっき
反応を行った。反応温度65℃、初期pH11,5で反
応を開始し、その後、NaOH液を滴下してpHを9.
5に保持し、銅の析出速度0.36try / crA
−hrで反応を行った。反応時間は30分であった。
Next, the mica with palladium trapped on its surface was put into a 30 N copper electroless plating solution having the following composition to perform a plating reaction. The reaction was started at a reaction temperature of 65°C and an initial pH of 11.5, and then NaOH solution was added dropwise to adjust the pH to 9.5.
5, copper precipitation rate 0.36try/crA
The reaction was carried out for -hr. Reaction time was 30 minutes.

その結果、銅含有率27.1%、体積充填率(vf)1
8%における粉体の体積固有抵抗値3.0X10弓Ω・
crn、色調が輝銅色の銅被覆ををするマイカが得られ
た。又、得られた銅被覆を有するマイカは、均一なめっ
き被覆が得られていることが、走査型電子顕微鏡による
観察により確認された。
As a result, the copper content was 27.1% and the volume filling factor (vf) was 1.
Volume specific resistance value of powder at 8% 3.0 x 10 bow Ω・
crn, a copper-coated mica with bright copper color was obtained. Further, it was confirmed by observation using a scanning electron microscope that the obtained mica having a copper coating had a uniform plating coating.

銅無電解めっき液の組成 Cu5On ・5 Hzo    40 g / j!
EDTA  ・4 Na     80 g/It1(
CHO(35%)       73 ml実施例2 平均粒径325meshのフロゴバイトマイカ300 
gを、実施例1と同一の方法で表面処理を行い、更に塩
化パラジウム溶液で下地処理を行い、表面にパラジウム
を捕捉したマイカを得た。このマイカを、実施例1と同
一仕様の銅無電解めっき液301に投入し、めっき反応
を行った。反応温度は65℃、初期pH10,5で反応
を開始し、NaOH溶液を滴下してpHを9.0に保持
して、銅の析出速度を0.20 mg/ cn! ・h
rに調整し、10分間反応を行い、次いで、pttを1
0.0に調整して、銅の析出速度を0.52 tri;
z / c+A−hrとして、さらに10分間反応を継
続し全反応を終了した。
Composition of copper electroless plating solution Cu5On ・5 Hz 40 g/j!
EDTA ・4 Na 80 g/It1 (
CHO (35%) 73 ml Example 2 Phlogovite mica 300 with average particle size of 325 mesh
g was surface-treated in the same manner as in Example 1, and further treated with a palladium chloride solution to obtain mica with palladium trapped on its surface. This mica was put into a copper electroless plating solution 301 having the same specifications as in Example 1, and a plating reaction was performed. The reaction temperature was 65°C, the reaction was started at an initial pH of 10.5, and the pH was maintained at 9.0 by dropping NaOH solution to increase the copper precipitation rate to 0.20 mg/cn!・h
The reaction was carried out for 10 minutes, and then PTT was adjusted to 1
Adjust the copper precipitation rate to 0.52 tri;
The reaction was continued for an additional 10 minutes at z/c+A-hr to complete the entire reaction.

その結果、銅含有率48%、・体積充填率(vf)18
%における粉体の体積固有抵抗値2 X 10−3Ω・
cm、色調が銅色の銅被覆を有するマイカが得られた。
As a result, the copper content was 48%, and the volume filling factor (vf) was 18.
Volume resistivity value of powder in %2 x 10-3Ω・
cm, a mica with a copper coating of copper color was obtained.

実施例1の場合と同様に均一なめっき被覆が得られた。As in Example 1, a uniform plating coating was obtained.

実施例3 平均粒径150meshのガラスフレーク450gをT
−グリシドキシプロピルトリメトキシシランのアルコー
ル溶液で表面処理した後、実施例1と同一の方法でエポ
キシ樹脂(エポキシ+ポリアミド)による表面処理及び
塩化パラジウム溶液で下地処理を行い、表面にパラジウ
ムを捕捉したガラスフレークを得た。このガラスフレー
クを、実施例1と同一仕様の無電解めっき液30 βに
投入し、めっき反応を行った。反応温度70℃、初期p
H11゜0で反応を開始し、その後、NaOH溶液を滴
下してpi(を9.5に保持し、銅の析出速度0.42
■/c11!・hrで5分間反応を行い、引続きいてp
Hを9゜0に保持して、0.32■/−・hrの銅の析
出速度で全反応を終了した。反応時間は50分であった
Example 3 450g of glass flakes with an average particle size of 150mesh were
- After surface treatment with an alcoholic solution of glycidoxypropyltrimethoxysilane, surface treatment with epoxy resin (epoxy + polyamide) and base treatment with palladium chloride solution are performed in the same manner as in Example 1 to capture palladium on the surface. obtained glass flakes. This glass flake was placed in an electroless plating solution 30β having the same specifications as in Example 1, and a plating reaction was performed. Reaction temperature 70℃, initial p
The reaction was started at H11°0, and then NaOH solution was added dropwise to maintain pi at 9.5, and the copper precipitation rate was 0.42.
■/c11!・Run for 5 minutes at hr, followed by p
H was maintained at 9°0 and the entire reaction was completed at a copper deposition rate of 0.32 ./-.hr. The reaction time was 50 minutes.

その結果、銅含有率37%、体積充填率(vf)18%
における粉体の体積固有抵抗値3.5 X 10−3Ω
・cm、色調輝銅色の、均一な銅被覆を有するガラスフ
レークを得た。
As a result, the copper content was 37% and the volume filling factor (vf) was 18%.
Volume resistivity value of powder at 3.5 x 10-3Ω
.cm, glass flakes with a uniform copper coating of bright copper color were obtained.

応用例1 電磁波シールド材への応用 実施例1で得た平均粒径150meshの銅被覆マイカ
(Cu含有率27.1%、粉体の体積固有抵抗値(vf
 = 18%における)  3.0X10−3Ω・Cl
11)を、次の組成のニッケルめっき液を用いて、温度
45℃、陰極電流密度14/dmの条件で、内側に隔膜
を設けたバレル(190mmφX 250 mm )中
において電気めっきを行った。その結果、銅含有率20
゜5%、ニッケル含有率21.0%、金属化率41.5
%、粉体の体積固有抵抗値(vf = 18%における
)  7.5X10−3Ω’cm、真比重3.77のC
u −Ni2層コートマイカが得られた。この2層コー
トマイカを、ポリプロピレンに体積充填率12.5%に
なるようにニーグーを用いて混練し、圧縮成形して複合
材(60X 30 X 2 mm )を製造した。製造
した複合材の体積固有抵抗値は、6.5X10−’Ω・
口であった。また、矩形導波管を用いた4000MHz
における電磁波透過損失率は、装置の測定限界である4
0 dB以上であった。
Application example 1 Application to electromagnetic shielding material Copper-coated mica with an average particle size of 150 mesh obtained in Example 1 (Cu content 27.1%, powder volume resistivity (vf)
= at 18%) 3.0X10-3Ω・Cl
11) was electroplated using a nickel plating solution having the following composition at a temperature of 45° C. and a cathode current density of 14/dm in a barrel (190 mmφ×250 mm) provided with a diaphragm inside. As a result, the copper content was 20
゜5%, nickel content 21.0%, metallization rate 41.5
%, volume resistivity value of powder (at vf = 18%) 7.5X10-3 Ω'cm, true specific gravity 3.77 C
Mica coated with two u-Ni layers was obtained. This two-layer coated mica was kneaded in polypropylene using a Neegoo so that the volume filling rate was 12.5%, and the mixture was compression molded to produce a composite material (60 x 30 x 2 mm). The volume resistivity value of the manufactured composite material is 6.5X10-'Ω・
It was the mouth. In addition, 4000MHz using a rectangular waveguide
The electromagnetic wave transmission loss rate at 4 is the measurement limit of the device.
It was more than 0 dB.

ニッケルめっき液組成 NiSO4・ 6 H2O250g/ANiC1z・ 
6 )120     50 g/ ’83B03  
           50  g/ApH3,0 応用例2 電磁波シールド塗料への応用実施例2で得た
平均粒径325meshの銅被覆マイカ(Cu含有率4
8%、粉体の体積固有抵抗値(vf= 18%における
)  2.0X10−3Ω・cffI)を、酸化防止剤
(CBブライト 菱江化学株式会社製)10%水溶液に
5分間浸漬し、濾過した後100”Cで2時間乾燥し酸
化防止処理を行った。。この結果、体積固有抵抗値(v
f = 18%における)は、3.5X10−’Ω・c
mとなった。次に、樹脂バインダーとして、アクリル系
塗料のアクリツクIlh 2026Gクリヤー及びシン
ナーに、乾燥塗膜中の体積充填率が30%となる量のこ
のフィラーを混合し、塗料を作成した。次に、得られた
塗料をABS樹脂にスプレーで塗装し、厚さが50 μ
の塗膜を得た。乾燥後、塗膜の厚さ、表面抵抗および電
磁波シールド性能(電界シールド特性)を測定した。
Nickel plating solution composition NiSO4・6 H2O250g/ANiC1z・
6) 120 50 g/'83B03
50 g/ApH3,0 Application example 2 Application to electromagnetic shielding paint Copper-coated mica with an average particle size of 325 mesh obtained in Example 2 (Cu content: 4
8%, powder volume resistivity value (at vf = 18%) 2.0 x 10-3 Ω/cffI) was immersed in a 10% aqueous solution of antioxidant (CB Bright, manufactured by Ryoe Chemical Co., Ltd.) for 5 minutes and filtered. After that, it was dried at 100"C for 2 hours to perform oxidation prevention treatment. As a result, the volume resistivity value (v
) at f = 18% is 3.5X10-'Ω・c
It became m. Next, as a resin binder, this filler was mixed with the acrylic paint Acryk Ilh 2026G clear and thinner in an amount such that the volume filling rate in the dry coating film was 30% to prepare a paint. The resulting paint was then sprayed onto ABS resin to a thickness of 50 μm.
A coating film was obtained. After drying, the thickness, surface resistance, and electromagnetic shielding performance (electric field shielding properties) of the coating film were measured.

その結果は次表の通り。The results are shown in the table below.

〔発明の効果〕〔Effect of the invention〕

本発明の方法で製造した銅被覆を有する無機粉体は、実
施例及び応用例にも示したごとく、優れた体積固有抵抗
値を有し、また、該粉体を使用した電磁波シールド材(
塗膜)も、優れた電磁波シールド性能を示す。これらの
緒特性は、緻密で均一な、かつ、密着性に優れた銅被覆
を有する無機粉体であることを示している。
As shown in the Examples and Application Examples, the inorganic powder coated with copper produced by the method of the present invention has an excellent volume resistivity value, and an electromagnetic shielding material using the powder (
coating film) also exhibits excellent electromagnetic shielding performance. These properties indicate that the powder is dense, uniform, and has a copper coating with excellent adhesion.

本発明は、緻密で均一な、かつ、密着性に優れた銅被覆
を有する無機粉体の、工業的規模での生産を可能とする
製造方法を提供するものである。
The present invention provides a manufacturing method that enables production on an industrial scale of an inorganic powder having a copper coating that is dense, uniform, and has excellent adhesion.

Claims (1)

【特許請求の範囲】[Claims] 表面に貴金属を捕捉した無機粉体に銅を化学めっきする
に当たり、化学めっきの開始から少なくとも5分間の初
期銅めっき速度を、0.5mg/cm^2・hr以下に
保持することを特徴とする銅被覆を有する無機粉体の製
造方法
When chemically plating copper on inorganic powder with precious metals captured on its surface, the initial copper plating rate for at least 5 minutes from the start of chemical plating is maintained at 0.5 mg/cm^2・hr or less. Method for producing inorganic powder with copper coating
JP60100908A 1985-05-13 1985-05-13 Production of inorganic powder containing copper film of coating Granted JPS61258868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60100908A JPS61258868A (en) 1985-05-13 1985-05-13 Production of inorganic powder containing copper film of coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60100908A JPS61258868A (en) 1985-05-13 1985-05-13 Production of inorganic powder containing copper film of coating

Publications (2)

Publication Number Publication Date
JPS61258868A true JPS61258868A (en) 1986-11-17
JPH0453949B2 JPH0453949B2 (en) 1992-08-28

Family

ID=14286437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60100908A Granted JPS61258868A (en) 1985-05-13 1985-05-13 Production of inorganic powder containing copper film of coating

Country Status (1)

Country Link
JP (1) JPS61258868A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006219724A (en) * 2005-02-10 2006-08-24 Alps Electric Co Ltd Electroless plating process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006219724A (en) * 2005-02-10 2006-08-24 Alps Electric Co Ltd Electroless plating process

Also Published As

Publication number Publication date
JPH0453949B2 (en) 1992-08-28

Similar Documents

Publication Publication Date Title
US5945158A (en) Process for the production of silver coated particles
Schlesinger Electroless and electrodeposition of silver
JP2006225730A (en) Material with plating film containing nano-diamond particle deposited thereon, and its manufacturing method
CN109423637B (en) Preparation method of high-conductivity material
JPWO2008032839A1 (en) Metal layer-coated substrate and method for producing the same
JP2004502871A (en) Electroless silver plating
JPWO2009054371A1 (en) Metal film forming method and conductive particles
US7338686B2 (en) Method for producing conductive particles
JPH0262007A (en) Granular magnetic material and its manufacture
JP3536788B2 (en) Manufacturing method of metal coated powder
JPS61258868A (en) Production of inorganic powder containing copper film of coating
JPS60181294A (en) Production of inorganic powder having metallic film on surface
JPS5811518B2 (en) Metal-diamond composite plating method
JPS6318096A (en) Method for coating metal to hyperfine powder
JP2002266079A (en) Method for manufacturing silver coated conductive powder, silver coated conductive powder and electroless plating bath for coating conductive powder
JPS63165582A (en) Production of metal coated fiber
JPH09171714A (en) Conductive powder
JP2632007B2 (en) Manufacturing method of magnetic electroless plating powder
JPH05287543A (en) Electroless silver plating method
JPH02153076A (en) Production of copper-silver two-layer coated powder
JP2005047752A (en) Method for controlling film structure of zinc oxide film
JPH08176836A (en) Electrically conductive electroless plated powder
JPS5921948B2 (en) Indium plating method
JP3389959B2 (en) Manufacturing method of metal coated powder
JPS5818993B2 (en) Tin plating method