JPS61243141A - Corrosion resistant copper alloy - Google Patents

Corrosion resistant copper alloy

Info

Publication number
JPS61243141A
JPS61243141A JP8192585A JP8192585A JPS61243141A JP S61243141 A JPS61243141 A JP S61243141A JP 8192585 A JP8192585 A JP 8192585A JP 8192585 A JP8192585 A JP 8192585A JP S61243141 A JPS61243141 A JP S61243141A
Authority
JP
Japan
Prior art keywords
copper
copper alloy
alloy
manganese
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8192585A
Other languages
Japanese (ja)
Inventor
Tsuneaki Mikawa
三川 恒昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON RIKO KK
Original Assignee
NIPPON RIKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON RIKO KK filed Critical NIPPON RIKO KK
Priority to JP8192585A priority Critical patent/JPS61243141A/en
Publication of JPS61243141A publication Critical patent/JPS61243141A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To obtain a Cu alloy having high corrosion resistance and mechanical strength by blending Cu as a base with specified amounts of Zn, Ni, Sn, Fe, B and Mn or Si. CONSTITUTION:A Cu alloy is composed of, by weight, 1-25% Zn, 0.1-5% Ni, 0.1-5% Sn, 0.1-5% Fe, 0.001-1% B and the balance Cu, and 0.1-5wt% Mn or Si is added to the alloy so as to improve the hardness.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は優れた耐蝕性と良好な機械的強度を有する耐蝕
性特殊銅合金に関し、単なる装飾工芸分野に限らず1機
械部品など工業分野にも広く応用できるようにしたもの
である。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a corrosion-resistant special copper alloy that has excellent corrosion resistance and good mechanical strength, and is applicable not only to the field of decorative crafts but also to the industrial field such as single machine parts. It is also designed to be widely applicable.

〔従来の技術〕[Conventional technology]

銅は一般に金属材料としてしばしば用いられており、特
に電気及び熱の伝導性が大であって、塑性加工も容易な
特性を有する。しかし、耐蝕性が悪く、炭酸ガス雰囲気
下に於いては緑色に変化し。
Copper is generally often used as a metal material, and has particularly high electrical and thermal conductivity, and is easily plastically worked. However, it has poor corrosion resistance and turns green in a carbon dioxide atmosphere.

酸類の水溶液及びアンモニア塩類にも冒され易い。It is also susceptible to aqueous solutions of acids and ammonia salts.

そこで、かかる腐蝕性を改善した従来の銅合金として・
銅に亜鉛、二・7ケル、錫、鉄および硼素を含み、更に
マンガン又はシリコン等を添加したものが公知である。
Therefore, as a conventional copper alloy with improved corrosion resistance,
Copper containing zinc, 2.7 Kel, tin, iron, and boron, and further containing manganese, silicon, etc., is known.

これによるときは機械的強度も銅より優れたものが得ら
れる。
When this is used, mechanical strength superior to that of copper can be obtained.

ここにおいて、亜鉛は銅合金に添加すると加工性をより
61強さを増し、鋳込時の渦流れを良好にする。ニッケ
ルは銅の耐蝕性を改善し1合金の耐熱性を良好にする。
Here, when zinc is added to the copper alloy, it increases workability and strength, and improves swirl flow during casting. Nickel improves the corrosion resistance of copper and improves the heat resistance of the alloy.

錫は耐蝕性を改善して銅合金の加工性を改善すると共に
、耐熱性に寄与する。
Tin improves corrosion resistance and improves the workability of copper alloys, and also contributes to heat resistance.

硼素は合金中の不純物による害を中和し、銅に対して脱
酸的に作用し、耐熱、耐蝕性に寄与する。
Boron neutralizes the harm caused by impurities in the alloy, acts as a deoxidizer for copper, and contributes to heat resistance and corrosion resistance.

ことが知られている。It is known.

〔発明が解決しようとす葛問題点〕[The problems that the invention attempts to solve]

しかしながら、従来の銅合金は銅と比較して電気伝導性
、熱伝導性の点で劣り1機械的強度もそれ程高くない。
However, conventional copper alloys are inferior to copper in terms of electrical conductivity and thermal conductivity, and their mechanical strength is not so high.

従って、それらの用途は主として装飾的なものに限られ
る傾向にあり、良好な電気伝導性を要する電気機器や機
械的性質が格段に優れて耐摩耗性、耐久性を要する各種
の機械部品として広範囲の用途に供し切れない欠点があ
る。
Therefore, their uses tend to be mainly limited to decorative purposes, and are widely used in electrical equipment that requires good electrical conductivity and various mechanical parts that require excellent mechanical properties, wear resistance, and durability. It has a drawback that it cannot be used for many purposes.

〔発明の目的〕[Purpose of the invention]

本発明は、かかる観点から金色の外観を有し。 The present invention has a golden appearance from this point of view.

電気及び熱の伝導性、更に加工性に優れており。It has excellent electrical and thermal conductivity as well as processability.

耐蝕性も良好であって、金色のつやのある光沢を保持し
、かつ機械的性質が著しく高められて耐久性、耐摩耗性
を有し、析出硬化性を備えた新規な耐蝕性特殊銅合金を
得ることを目的とする。
A new corrosion-resistant special copper alloy that has good corrosion resistance, retains a golden luster, and has significantly improved mechanical properties, durability, wear resistance, and precipitation hardenability. The purpose is to obtain.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は銅に対して前述のごとく亜鉛、ニッケル、錫、
鉄、硼素を特定の割合で添加すると電気伝導性、熱伝導
性が銅に比べて何等遜色なく得られ、また機械的性質、
特に硬度1強度及び靭性が格段に向上した合金が得られ
ることを知見し1本発明を完成するに至ったものである
。本発明による銅合金は驚くべきことに析出硬化性であ
り、低温焼鈍しによって硬度を容易に向上させることが
できる。
The present invention uses zinc, nickel, tin,
When iron and boron are added in a specific proportion, electrical conductivity and thermal conductivity can be obtained comparable to that of copper, and mechanical properties and
In particular, it was discovered that an alloy with significantly improved hardness, strength, and toughness could be obtained, and this led to the completion of the present invention. The copper alloy according to the invention is surprisingly precipitation hardenable and its hardness can be easily improved by low temperature annealing.

本発明に係る耐蝕性銅合金は本質的に亜鉛l〜25i[
j量%、ニッケル0.1〜5重量%、錫O11〜5重量
%、鉄0.1〜5重量%、硼素0.001〜1重量%及
び残りは銅からなる。
The corrosion-resistant copper alloy according to the present invention essentially consists of zinc l~25i [
0.1 to 5% by weight of nickel, 11 to 5% by weight of tin O, 0.1 to 5% by weight of iron, 0.001 to 1% by weight of boron, and the remainder is copper.

かくして、上記組成にマンガンとシリコンのどちらかを
0.1〜5%加えて硬度を改善したものである。但し2
本明細書に於いて特に記載しない限り%は重量%である
Thus, the hardness is improved by adding 0.1 to 5% of either manganese or silicon to the above composition. However, 2
Unless otherwise specified herein, percentages are by weight.

本発明の合金に於いて、亜鉛は含有量が多くなると銅合
金の延性に悪い作用を及ぼす。また1%を下回ると個有
の性質が悪化する。従って亜鉛は1〜25%の範囲で使
用する。銅合金に望ましい色及び強度と延性を与えるた
めには10〜18%の範囲で亜鉛を用いる事が好ましい
In the alloy of the present invention, when the zinc content increases, it has a negative effect on the ductility of the copper alloy. Moreover, when it is less than 1%, the unique properties deteriorate. Therefore, zinc is used in a range of 1 to 25%. It is preferred to use zinc in the range of 10-18% to provide the copper alloy with desirable color, strength and ductility.

ニッケルは5%を超えて添加すると加工性が減退し、銅
の電気伝導性を損なう傾向があり、また0、1%を下回
ると本来の効果が出ない。したがって、加工性を減退さ
せず、電気伝導性を損なわず。
If nickel is added in an amount exceeding 5%, the workability tends to decrease and the electrical conductivity of copper is impaired, and if it is added below 0.1%, the original effect is not achieved. Therefore, it does not reduce workability or impair electrical conductivity.

耐蝕・耐熱性を向上させるためには0.1〜5%で用い
るのが好ましい。
In order to improve corrosion resistance and heat resistance, it is preferably used in an amount of 0.1 to 5%.

錫は耐蝕性及び加工性を改善すると共に低温焼鈍し処理
により硬度を増大させる。しかし、5%を超えて添加す
ると加工性に悪影響を与え、0.1%を下回る量では効
果がないので、0゜1〜5%の範囲内で1%程度が最も
好ましい。
Tin improves corrosion resistance and processability and increases hardness through low temperature annealing. However, if it is added in an amount exceeding 5%, it will adversely affect processability, and if it is added in an amount less than 0.1%, there will be no effect, so it is most preferably about 1% within the range of 0.1 to 5%.

鉄は凝固及び放冷の際に1粒子調整の作用を果たすとい
う利点もあるが、5%を超えた添加は合金の融点を高め
て、その加工性を悪くするばかりでなく1機械的性質も
退行する。0.1%以下では効果がない。総合的見地か
らは0.5〜1%の範囲内で用いるのが好ましい。
Iron has the advantage of controlling particles during solidification and cooling, but addition of more than 5% not only increases the melting point of the alloy and impairs its workability, but also impairs its mechanical properties. Regress. There is no effect at 0.1% or less. From a comprehensive standpoint, it is preferable to use it within a range of 0.5 to 1%.

硼素は前述のごとく耐熱、耐蝕性に寄与するが。As mentioned above, boron contributes to heat resistance and corrosion resistance.

マンガン又はシリコンと共働して合金の硬度及び強度を
増大させると共に低温焼鈍し処理により容易にその硬度
を増大せしめることができる。すなわち、析出硬化性を
付与することが判明した。しかし0.1%を超えて添加
すると合金の加工性に悪影響を与えるので、0.1%よ
り少ない量、好ましくは0.05%程度で用いる。O,
OO1%以下の微量では効果がない。
It works in conjunction with manganese or silicon to increase the hardness and strength of the alloy and can be easily increased by low temperature annealing. That is, it was found that precipitation hardenability was imparted. However, if it is added in an amount exceeding 0.1%, it will adversely affect the workability of the alloy, so it is used in an amount less than 0.1%, preferably around 0.05%. O,
A trace amount of OO1% or less has no effect.

マンガン又はシリコンは0.01〜5%の範囲内で用い
ると、銅合金の機械的性質とくに硬度及び靭性が向上す
る。このマンガン又はシリコンは銅の固有の電気伝導性
及び熱伝導性を全く損なわず。
When manganese or silicon is used within the range of 0.01 to 5%, the mechanical properties of the copper alloy, particularly the hardness and toughness, are improved. This manganese or silicon does not impair copper's inherent electrical and thermal conductivity.

マンガン又はシリコンの一部は銅の説酸作用も行う。マ
ンガン又はシリコンを含有しない以外は同じ組成にある
ような合金と比較すると粒子が細かく1組織が密になり
、加工性も良好であり、加工製品とした場合の外観のき
めが望ましい状態になる。マンガン又はシリコン含有量
が多い程合金を硬くすることが出来るが、加工性と硬さ
のバランスから0.1〜2%で用いることが好ましい。
Some of the manganese or silicon also acts as an oxidant for copper. Compared to alloys with the same composition except that they do not contain manganese or silicon, the particles are finer and the single structure is denser, the workability is also better, and the appearance of processed products is in a desirable state. The higher the manganese or silicon content, the harder the alloy can be, but from the viewpoint of the balance between workability and hardness, it is preferable to use 0.1 to 2%.

しかし、硬さが必要とされる場合は5%程度までは加工
性を著しく損なうことなく使用出来る。0.01%以下
では効果がない。
However, if hardness is required, up to about 5% can be used without significantly impairing workability. There is no effect at 0.01% or less.

本発明による銅合金は700〜850″Cで約30〜6
0分間焼鈍して、水に入れ柔らかくて加工する。この温
度で焼鈍し処理をすれば探しぼりも自由に行う事ができ
る。加工したのち更に400〜450°Cで低温焼鈍し
処理を行うと硬度が一層高められる。
The copper alloy according to the invention is about 30-6 at 700-850"C
Anneal for 0 minutes, then put in water to make it soft and processable. If annealing is performed at this temperature, searching can be performed freely. After processing, low-temperature annealing at 400 to 450°C can further increase the hardness.

かかる低温焼鈍による硬化性(析出硬化)は銅合金中に
マンガン又はシリコンが存在することによるものである
。因に、マンガン又はシリコンの代わりに他の類似の金
属9例えばインジウムあるいはチタンを使用し、それ以
外は上記と同じような組成の銅合金では、前述の現象は
全く得られないことが見い出されている。
The hardenability (precipitation hardening) caused by such low-temperature annealing is due to the presence of manganese or silicon in the copper alloy. Incidentally, it has been found that the above-mentioned phenomenon cannot be obtained at all with a copper alloy using other similar metals, such as indium or titanium, in place of manganese or silicon, and having the same composition as above. There is.

〔発明の効果〕〔Effect of the invention〕

以上のようにした本発明に係る銅合金によれば。 According to the copper alloy according to the present invention as described above.

銅、亜鉛、ニッケル、錫、鉄、硼素およびマンガン又は
シリコンの添加量を有効に数値限定し、そこでは加工性
を第一義にして組織が緻密で金色のつやのある光沢がで
る外観を呈するものとし、また耐蝕性を高め得たので炭
酸ガス雰囲気下にあっても色変化を生ぜず、各種の装飾
用として工芸の分野であたかも金と同種に使える。
The amount of copper, zinc, nickel, tin, iron, boron, manganese, or silicon added is effectively limited numerically, and the first priority is workability, so that the structure is dense and the appearance has a golden luster. In addition, because it has improved corrosion resistance, it does not change color even in a carbon dioxide atmosphere, and can be used for various decorative purposes in the field of crafts, just like gold.

しかも、とくに所定の混合割合を持つマンガン又はシリ
コンを含有させたことにより、これが銅合金の表面性状
を改善するだけでなく、硼素と共働して銅合金の硬度お
よび強度を加工性に悪影響を与えないで増大させると共
に析出硬化性を付与する。したがって、低温焼鈍し処理
により、探しぼりも可能ならしめるとともに1機械的性
質とくに硬度1強度および靭性を所望通り確保できるこ
とになり、また銅固有の良好な電気伝導性も維持し得て
機械部品とくに電気機器などの工業分野にも広く応用で
きる利点を有する。
Moreover, by including manganese or silicon in a particular mixing ratio, this not only improves the surface properties of the copper alloy, but also works together with boron to adversely affect the hardness and strength of the copper alloy and the workability. It increases the hardness without adding precipitation hardenability. Therefore, by low-temperature annealing treatment, it is possible to find the desired mechanical properties, especially hardness, strength, and toughness, and it is also possible to maintain the good electrical conductivity inherent to copper, which makes it possible to improve mechanical properties, especially mechanical parts. It has the advantage of being widely applicable to industrial fields such as electrical equipment.

〔実施例〕〔Example〕

次に最も好ましい実施例を説明すると1本発明の銅合金
は下記の組成からなる。
Next, to explain the most preferred embodiment, the copper alloy of the present invention has the following composition.

組成 亜鉛         18% 錫               1%ニッケル   
    0.5% 鉄             0.5%硼素     
  o、oos% マンガン又はシリコン 0.5% 銅            残り 製造に際しては、最初に上記組成の銅、ニッケル、鉄及
び硼素を溶解混合し、この熔解混合物にマンガン又はシ
リコンを加え2次に錫を加え、最後に亜鉛を添加し、よ
く混合して溶解せしめることにより得た。
Composition Zinc 18% Tin 1% Nickel
0.5% iron 0.5% boron
o, oos% Manganese or Silicon 0.5% Copper When producing the rest, first melt and mix copper, nickel, iron and boron of the above composition, add manganese or silicon to this melt mixture, and then add tin. Finally, zinc was added and mixed well to dissolve it.

かくして得られた銅合金の物理的性質は下記のようであ
った。
The physical properties of the copper alloy thus obtained were as follows.

比重       8.8 融解点      1.200”C 導電率      0.04Ωm1II2/m熱伝導率
     0.45cal/cm・秒・”c抗張力  
    50〜89 kg / w”延伸率     
 25〜50% 縦弾性係数    10000〜12000 kg/n
”ブリネル硬度   45〜200HB 化学的性質として硫酸、酢酸、苛性ソーダ、海水にはよ
く耐えるが硝酸、塩酸、濃アンモニア水に対しては耐蝕
性は弱いことが認められた。
Specific gravity 8.8 Melting point 1.200"C Electrical conductivity 0.04Ωm1II2/m Thermal conductivity 0.45 cal/cm・sec・"c Tensile strength
50-89 kg/w” stretching rate
25~50% Longitudinal elastic modulus 10000~12000 kg/n
``Brinell hardness: 45-200HB As for chemical properties, it was found that it has good resistance to sulfuric acid, acetic acid, caustic soda, and seawater, but has weak corrosion resistance to nitric acid, hydrochloric acid, and concentrated ammonia water.

Claims (1)

【特許請求の範囲】[Claims] 主成分としての銅と、亜鉛1〜25重量%、ニッケル0
.1〜5重量%、錫0.1〜5重量%、鉄0.1〜5重
量%および硼素0.001〜1重量%を本質的に含み、
マンガン又はシリコンのいづれかを0.01〜5重量%
含有する耐蝕性銅合金。
Copper as main component, zinc 1-25% by weight, nickel 0
.. 1-5% by weight, 0.1-5% by weight of tin, 0.1-5% by weight of iron and 0.001-1% by weight of boron;
0.01 to 5% by weight of either manganese or silicon
Contains corrosion-resistant copper alloy.
JP8192585A 1985-04-17 1985-04-17 Corrosion resistant copper alloy Pending JPS61243141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8192585A JPS61243141A (en) 1985-04-17 1985-04-17 Corrosion resistant copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8192585A JPS61243141A (en) 1985-04-17 1985-04-17 Corrosion resistant copper alloy

Publications (1)

Publication Number Publication Date
JPS61243141A true JPS61243141A (en) 1986-10-29

Family

ID=13760035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8192585A Pending JPS61243141A (en) 1985-04-17 1985-04-17 Corrosion resistant copper alloy

Country Status (1)

Country Link
JP (1) JPS61243141A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0266195A (en) * 1988-08-30 1990-03-06 Mitsubishi Electric Corp Tinned copper alloy
US5004581A (en) * 1989-07-31 1991-04-02 Toyota Jidosha Kabushiki Kaisha Dispersion strengthened copper-base alloy for overlay
JPH06240389A (en) * 1993-02-16 1994-08-30 Kiyomine Shindo Kk Special alloy series golden material
US5853505A (en) * 1997-04-18 1998-12-29 Olin Corporation Iron modified tin brass
WO1999067433A1 (en) * 1998-06-23 1999-12-29 Olin Corporation Iron modified tin brass
WO2000066803A1 (en) * 1999-05-04 2000-11-09 Olin Corporation Copper alloy with improved resistance to cracking
US6264764B1 (en) * 2000-05-09 2001-07-24 Outokumpu Oyj Copper alloy and process for making same
CN102864330A (en) * 2012-09-27 2013-01-09 杭州震达五金机械有限公司 Gold-bearing imitation-gold copper alloy and preparation method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0266195A (en) * 1988-08-30 1990-03-06 Mitsubishi Electric Corp Tinned copper alloy
US5004581A (en) * 1989-07-31 1991-04-02 Toyota Jidosha Kabushiki Kaisha Dispersion strengthened copper-base alloy for overlay
JPH06240389A (en) * 1993-02-16 1994-08-30 Kiyomine Shindo Kk Special alloy series golden material
US5853505A (en) * 1997-04-18 1998-12-29 Olin Corporation Iron modified tin brass
US6132528A (en) * 1997-04-18 2000-10-17 Olin Corporation Iron modified tin brass
WO1999067433A1 (en) * 1998-06-23 1999-12-29 Olin Corporation Iron modified tin brass
CN1099470C (en) * 1998-06-23 2003-01-22 奥林公司 Iron modified tin brass
WO2000066803A1 (en) * 1999-05-04 2000-11-09 Olin Corporation Copper alloy with improved resistance to cracking
US6251199B1 (en) * 1999-05-04 2001-06-26 Olin Corporation Copper alloy having improved resistance to cracking due to localized stress
KR100709908B1 (en) * 1999-05-04 2007-04-24 올린 코포레이션 Copper alloy with improved resistance to cracking and processes for making the same
US6264764B1 (en) * 2000-05-09 2001-07-24 Outokumpu Oyj Copper alloy and process for making same
CN102864330A (en) * 2012-09-27 2013-01-09 杭州震达五金机械有限公司 Gold-bearing imitation-gold copper alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
CN106399749B (en) A kind of high strength and high flexibility cupro-nickel Si system alloy material and preparation method thereof
US20060289094A1 (en) Lead-free free-cutting brass alloys
JP2014512452A (en) Cu-Ni-Zn-Mn alloy
JPS5853057B2 (en) Highly conductive copper-based alloy
JPH111735A (en) High strength cu alloy with excellent press blankability and corrosion resistance
JPS61243141A (en) Corrosion resistant copper alloy
JP2005290475A (en) Brass, its manufacturing method, and part using the same
US3901692A (en) Corrosion resistant copper alloy and the method of forming the alloy
JPH03115538A (en) Oxide dispersion strengthened special copper alloy
JPH01177327A (en) Free cutting copper-based alloy showing silver-white
CN108570586A (en) A kind of High-plasticity heat-resistant magnesium alloy and preparation method thereof
US9738961B2 (en) Copper-nickel-zinc alloy containing silicon
CN105821238B (en) A kind of Cu alloy material and preparation method thereof
US3764306A (en) Copper base alloy
JPH11279671A (en) Special copper alloy with corrosion resistance and high hardness
CN105779836B (en) A kind of corrosion resistant magnesium alloy and preparation method thereof
TWI440492B (en) Alloy for a golf club
JP2828418B2 (en) Improved free-cutting white alloy
JPH02263942A (en) Special spinodal copper alloy
JPS62185847A (en) High strength copper alloy for high thermal and electric conductivity use and its production
JPS6052542A (en) Copper alloy
KR20050004368A (en) Brass alloys which maintain a golden color and manufacturing method thereof
JPH10298678A (en) Precipitation hardening special copper alloy
JPH04221033A (en) Special copper alloy
JPH0551668A (en) Seacost high corrosion resistance weather resistant steel