JPH01177327A - Free cutting copper-based alloy showing silver-white - Google Patents

Free cutting copper-based alloy showing silver-white

Info

Publication number
JPH01177327A
JPH01177327A JP110388A JP110388A JPH01177327A JP H01177327 A JPH01177327 A JP H01177327A JP 110388 A JP110388 A JP 110388A JP 110388 A JP110388 A JP 110388A JP H01177327 A JPH01177327 A JP H01177327A
Authority
JP
Japan
Prior art keywords
weight
copper
hot
nickel
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP110388A
Other languages
Japanese (ja)
Other versions
JPH0469218B2 (en
Inventor
Yasuaki Ozaki
尾崎 泰章
Keiichiro Oishi
恵一郎 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANPO SHINDO KOGYO KK
Original Assignee
SANPO SHINDO KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANPO SHINDO KOGYO KK filed Critical SANPO SHINDO KOGYO KK
Priority to JP110388A priority Critical patent/JPH01177327A/en
Publication of JPH01177327A publication Critical patent/JPH01177327A/en
Publication of JPH0469218B2 publication Critical patent/JPH0469218B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Adornments (AREA)

Abstract

PURPOSE:To provide the title alloy with the luster of silver-white similar to that of German silver and to improve the machinability, hot and cold workability and mechanical characteristics by specifying the contents of Ni, Mn, Pb and Zn in a copper alloy. CONSTITUTION:The copper-based alloy is constituted of, by weight, 6-15% Ni, 3-8% Mn, 0.1-2.5% Pb and 31-47% Zn and the balance consisting of Cu with inevitable impurities. By this compsn., its silver-whiteness, machinability, hot and cold workability, corrosion resistance and mechanical characteristics are improved. When one or more kinds among 0.1-3% Fe, 0.03-2% Co, 0.005-0.2% B, 0.01-1.0% Si and 0.005-0.1% P are incorporated to the alloy, the crystal grains of the ingot can be made fine and the coarseness of the crystal grains at the time of cake heating before hot rolling can be suppressed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、銀白色を呈する銅基合金であって、被削性、
熱間加工性、冷間加工性、耐食性9機械的性質に優れた
快削性銅基合金に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a copper-based alloy exhibiting a silvery white color, which has excellent machinability,
This relates to a free-cutting copper-based alloy with excellent hot workability, cold workability, and corrosion resistance 9 mechanical properties.

〔従来の技術〕[Conventional technology]

銀白色を呈する銅基合金としては、貨幣用白銅(75C
u−25Ni )や洋白(JIS C7351,JIS
 C7451,JISC7521,JIS C7541
等)が知られている。
As a copper-based alloy exhibiting a silvery white color, coin cupronickel (75C
u-25Ni) and nickel silver (JIS C7351, JIS
C7451, JIS C7521, JIS C7541
etc.) are known.

特に、洋白は機械的強度、展延性、耐食性に優れている
ことから、装飾・建築用材や各種機械部品等に広く使用
されている。
In particular, nickel silver has excellent mechanical strength, malleability, and corrosion resistance, so it is widely used for decorative and architectural materials and various mechanical parts.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、洋白は、一般に、熱間加工性に乏しいため、製
造・加工コストが高くなり、経済性に劣るといった欠点
がある。
However, nickel silver generally has poor hot workability, resulting in high manufacturing and processing costs and poor economic efficiency.

また、洋白は、黄銅の如き一般の銅合金に比して被削性
に劣り、切削加工や研磨処理を必要とする装飾品等の材
料として使用した場合、加工面の表面状態が悪いといっ
た欠点がある。
In addition, nickel silver has inferior machinability compared to general copper alloys such as brass, and when used as a material for decorative items that require cutting or polishing, the surface condition of the machined surface may be poor. There are drawbacks.

しかも、JIS C7451のようなニッケル含有量の
少ない洋白では、色彩が若干黄味、赤味を帯び、良好な
銀白色を呈しないし、JIS C7351やJIS C
7521のようなニッケル含有量の多い洋白(以下「高
ニッケル含有洋白」という)では、ニッケルが高価なも
のであることから、原料・製造コストが極めて高くなる
Moreover, nickel silver with low nickel content, such as JIS C7451, has a slightly yellowish or reddish color and does not exhibit a good silvery white color, and JIS C7351 and JIS C
Nickel silver with a high nickel content (hereinafter referred to as "high nickel content nickel silver") such as 7521 has extremely high raw material and manufacturing costs because nickel is expensive.

ところで、上記した洋白以外にも、CDA C7630
G(Cu−18Ni−19Zn−IPb )及びCDA
 C79620(Cu−1ONi−42Zn−IPb 
)といった快削性洋白が公知である。これらは、我国で
はあまり使用されていないが、外国では比較的広く使用
されている。
By the way, in addition to the above-mentioned nickel silver, CDA C7630
G (Cu-18Ni-19Zn-IPb) and CDA
C79620 (Cu-1ONi-42Zn-IPb
) is known as a free-cutting nickel silver. Although these are not used much in Japan, they are relatively widely used in foreign countries.

しかし、CDA C76300はニッケルの含有量が多
く、熱間圧延が実質上不可能であり、原料・製造コスト
が極めて高い。また、CDA C79620は、色彩が
若干黄味を帯びたものであり、熱間・冷間延性に乏しい
。したがって、上記洋白同様の欠点を有するものである
However, CDA C76300 has a high nickel content, making hot rolling virtually impossible, and the raw material and manufacturing costs are extremely high. Furthermore, CDA C79620 has a slightly yellowish color and is poor in hot and cold ductility. Therefore, it has the same drawbacks as the nickel silver described above.

なお、洋白製品と同様の外観を呈するものに、鍵等の如
く黄銅部材にニッケルメッキ、クロムメツキを施したも
のがある。かかるメツキ製品は、洋白製品に比して安価
なものではあるが、洋白製品のように長期使用に耐え得
るものでない、すなわち、使用中にメツキ層が剥離し易
く、黄銅素地が露出して外観が損なわれる。しかも、黄
銅は洋白に比して耐食性に乏しいものであることから。
In addition, there are products that have a similar appearance to nickel silver products, such as keys, in which brass members are plated with nickel or chrome. Although such plating products are cheaper than nickel silver products, they cannot withstand long-term use like nickel silver products; in other words, the plating layer tends to peel off during use, and the brass base is exposed. The appearance will be damaged. Moreover, brass has poorer corrosion resistance than nickel silver.

メツキ剥離部分が容易に腐食される。したがって。The part where the plating has peeled off is easily corroded. therefore.

洋白製品の代替品たりうべきものでは到底ない。It is by no means a substitute for nickel silver products.

本発明は、このような点に鑑みてなされたもので、高ニ
ツケル含有洋白と同様の美しい銀白色光沢を呈するもの
でありながら、高ニツケル含有洋白に比して安価であり
、しかも洋白本来の優れた耐食性を担保しつつ、被削性
、熱間・冷間加工性。
The present invention was made in view of these points, and although it exhibits the same beautiful silvery luster as high-nickel content nickel silver, it is less expensive than high-nickel content nickel silver, and moreover, it is less expensive than nickel silver. While maintaining the excellent corrosion resistance inherent to white, it has machinability and hot/cold workability.

機械的性質に極めて優れた洋白系の快削性銅基合金を提
供することを目的とするものである。
The object of the present invention is to provide a nickel silver-based free-cutting copper-based alloy with extremely excellent mechanical properties.

〔課題を解決するための手段〕[Means to solve the problem]

この課題を解決した本発明の銀白色を呈する快削性銅基
合金は、ニッケル6〜15重量%、マンガン3〜8重量
%、鉛0.1〜2.5重量%、亜鉛31〜47重量%含
有し、残部が銅と不可避不純物とからなる組成のもので
ある。
The silver-white, free-cutting copper-based alloy of the present invention, which solves this problem, contains 6 to 15% by weight of nickel, 3 to 8% by weight of manganese, 0.1 to 2.5% by weight of lead, and 31 to 47% by weight of zinc. %, with the remainder consisting of copper and unavoidable impurities.

ニッケルは、銀白色を呈し且つ耐食性、伸び性。Nickel has a silvery white color and is corrosion resistant and stretchable.

高抗張力性を担保するため含有されるもので、かかる効
果を奏しうるには6重量%以上添加する必要がある。し
かし、15重量%を超えても、添加量に応じた顕著な効
果が現われる訳ではなく、却って原料・製造コストの面
で問題が生じる。このような理由から、ニッケルの含有
量は、6〜15重量%とした。
It is contained to ensure high tensile strength, and it is necessary to add 6% by weight or more to achieve this effect. However, even if the amount exceeds 15% by weight, no significant effect will be obtained depending on the amount added, and problems will arise in terms of raw materials and manufacturing costs. For these reasons, the nickel content was set to 6 to 15% by weight.

マンガンは、本発明者が研究・実験を行った結果、ニッ
ケルとの共添による相乗効果により、銀白色性、熱間・
冷間加工性9機械的強度、耐食性を向上させるものであ
ることが判明した。すなわち、マンガンを3重量%以上
添加させると、銀白色を呈することに関し、ニッケルを
同量若しくはそれ以上添加したと同様の効果を奏しうる
ちのである。しかも、マンガンの添加は、熱間での加工
性を大幅に向上させ、且つ冷間での加工性を損なわせな
い(ないしは向上させる)。しかし、8重量%を超えて
も、添加量に応じた顕著な効果が現われる訳ではなく、
却って熱間・冷間での加工性が悪くなる。ところで、マ
ンガン添加量が3〜8重世%の範囲では、銀白色性1機
械的強度に関し。
As a result of research and experiments conducted by the present inventor, manganese has a synergistic effect when co-added with nickel, which improves silvery whiteness and heat resistance.
It was found that cold workability 9 improves mechanical strength and corrosion resistance. That is, when manganese is added in an amount of 3% by weight or more, the same effect as when nickel is added in an amount equal to or more than nickel can be obtained in terms of silvery white color. Moreover, the addition of manganese significantly improves hot workability and does not impair (or improve) cold workability. However, even if the amount exceeds 8% by weight, no significant effect will appear depending on the amount added.
On the contrary, the workability in hot and cold conditions deteriorates. By the way, when the amount of manganese added is in the range of 3 to 8 times %, silver whiteness and mechanical strength are reduced.

1.0重量%の添加がニッケル1.0〜1.5g(fi
1%の添加による効果に相当することになる。したがっ
て、銀白色性2機械的強度に関しては、ニッケルに比し
て安価であり且つ資源的にも管寄なマンガンを代用する
ことによって、原料・製造コストを大幅に低減できる。
Addition of 1.0% by weight adds 1.0 to 1.5 g of nickel (fi
This corresponds to the effect of adding 1%. Therefore, in terms of silver whiteness and mechanical strength, by substituting manganese, which is cheaper and more resource-friendly than nickel, raw material and manufacturing costs can be significantly reduced.

このような理由から、マンガンの含有量は、3〜8重量
%とじた。
For these reasons, the manganese content was limited to 3 to 8% by weight.

釦は被削性を向上させるためのものであり、殆ど固溶し
ないことから、0.1重量%程度の添加で被削性の向上
が認められる。しかし、2.5重量%を超えても、添加
量に応じた顕著な効果が現われる訳ではなく、却って熱
間・冷間での加工性が悪くなると共に伸び値が低下する
。このような理由から、釦の含有量は、0.1〜2.5
重量%とした。
The button is used to improve machinability, and since it hardly forms a solid solution, it is recognized that machinability is improved by adding about 0.1% by weight. However, even if it exceeds 2.5% by weight, no remarkable effect will be produced depending on the amount added, and on the contrary, the workability in hot and cold conditions will worsen and the elongation value will decrease. For this reason, the content of the button should be 0.1 to 2.5.
It was expressed as weight%.

亜鉛は、銅と共に含有量が多く1機械的性質。Zinc has a high content along with copper and has 1 mechanical properties.

加工性等の改善に重要な役割を果たすものであるが、含
有量が31重量%未満では、熱間加工性が改善されず、
熱間圧延時における割れ発生の要因となる。また、47
重量%を超えると、冷間加工性が悪くなり、冷間圧延時
における割れ発生の要因となる。しかも、熱間圧延時に
割れが発生し易い。このような理由から、亜鉛の含有量
は、31〜47重景%と重量。
It plays an important role in improving workability, etc., but if the content is less than 31% by weight, hot workability will not be improved.
This causes cracks to occur during hot rolling. Also, 47
If it exceeds % by weight, cold workability deteriorates and becomes a cause of cracking during cold rolling. Moreover, cracks are likely to occur during hot rolling. For this reason, the zinc content is 31-47% by weight.

ところで、亜鉛は、」−記した如く、大量に添加され且
つその添加量の範囲も他の含有物質にッケル、マンガン
、鉛)に比して広範であるから、かかる他の含有物質と
の配合比如何によっては。
By the way, as mentioned above, zinc is added in large quantities and the range of its addition amount is wider than that of other contained substances (nickel, manganese, lead), so it is difficult to mix it with other contained substances. Depending on how you compare it.

加工性等が更に改善されることが予測される。It is predicted that workability etc. will be further improved.

そこで、本発明者は、幾多の実験を繰り返すことによっ
て、亜鉛の含有量が(37+0.5Ni−1,2Mn−
0,5Pb)重量%未満であると熱間での加工性がさほ
ど向上しないこと、また亜鉛の含有量が(42+0.5
Ni−1,2Mn−0,5Pb )重量%を超えると冷
間での加工性がさほど向上しない(却って悪くなる)こ
とを知得した。
Therefore, by repeating many experiments, the present inventor determined that the zinc content was (37+0.5Ni-1,2Mn-
If the zinc content is less than (42+0.5 Pb), hot workability will not improve much.
It has been learned that when the amount exceeds Ni-1,2Mn-0,5Pb (Ni-1,2Mn-0,5Pb) by weight, the cold workability does not improve much (it gets worse).

したがって、亜鉛の含有量は、上記他の含有物質との関
係において37+0.5Ni−1,2Mn−0,5Pb
≦Zn≦42+0.5Ni−1,2Mn−0,5Pbと
なるように設定しておくことが好ましく、銅以外の含有
物質間の配合割合をこのような関係を担保する範囲内で
決定しておくことによって、銀白色性、被削性、熱間・
冷間加工性、耐食性及び機械強度が極めて効果的に改善
された銅基合金となしうる。
Therefore, the zinc content is 37+0.5Ni-1,2Mn-0,5Pb in relation to the other contained substances mentioned above.
It is preferable to set it so that ≦Zn≦42+0.5Ni-1,2Mn-0,5Pb, and the blending ratio of contained substances other than copper is determined within a range that ensures such a relationship. This improves silvery whiteness, machinability, hot
A copper-based alloy with extremely effectively improved cold workability, corrosion resistance, and mechanical strength can be obtained.

また、本発明の快削性銅基合金にあっては、鉄。Further, in the free-cutting copper-based alloy of the present invention, iron.

コバルト、硼素、珪素、燐を含有させておくことによっ
て、熱間加工性2機械的性質等を更に向上させることが
できる。
By containing cobalt, boron, silicon, and phosphorus, hot workability, mechanical properties, etc. can be further improved.

具体的には、上記した組成に加えて、更に鉄0゜1〜3
重量%、コバルト0.03〜2重量%、硼素0.005
〜0.2重量%、珪素0.01〜1.0重量%、燐0.
005〜0.1重量%を少なくとも一種含有させておく
のである。
Specifically, in addition to the above composition, iron 0°1~3
wt%, cobalt 0.03-2 wt%, boron 0.005
~0.2% by weight, 0.01-1.0% by weight of silicon, 0.0% by weight of phosphorus.
0.005 to 0.1% by weight of at least one type.

すなわち、かかる物質を少なくとも一種含有させること
により、鋳塊の結晶粒を可及的に微細化させることがで
きると共に、熱間圧延前のケーク加熱時における結晶粒
の粗大化を阻止することができ、熱間圧延等における熱
間加工性を効果的に向上させうる。しかし、その含有量
が、鉄では0゜1重量%未満、コバルトでは0.03重
量%未満、硼素では0.005重量%未満、珪素では0
.01重量%未満、燐では0.005重量%未満である
と、添加による効果が少なく、また、鉄では3重量%を
超えて、コバルトでは2重量%を超えて、硼素では0.
2重量%を超えて、珪素では1.0重量%を超えて、燐
では0.1重量%を超えて添加しても、熱間加工性の顕
著な改善効果は認められず、却って冷間加工性が悪くな
る。特に、コバルトについては、2重量%を超えて添加
すると、経済的にも問題がある。
That is, by containing at least one such substance, it is possible to make the crystal grains of the ingot as fine as possible, and it is also possible to prevent coarsening of the crystal grains during heating of the cake before hot rolling. , hot workability in hot rolling etc. can be effectively improved. However, the content is less than 0.1% by weight for iron, less than 0.03% by weight for cobalt, less than 0.005% by weight for boron, and 0% for silicon.
.. If it is less than 0.01% by weight for phosphorus, less than 0.005% by weight for phosphorus, the effect of addition will be small, and if it is more than 3% by weight for iron, more than 2% by weight for cobalt, and 0.00% for boron.
Even if the amount added exceeds 2% by weight, 1.0% by weight for silicon, and 0.1% by weight for phosphorus, no significant improvement effect on hot workability is observed, and on the contrary, it improves cold workability. Processability deteriorates. In particular, when cobalt is added in an amount exceeding 2% by weight, there is an economical problem.

ところで、このように鉄、コバルト、硼素、珪素、燐を
含有させる場合にあっても、亜鉛の含有量はニッケル、
マンガン、鉛に対して上記した如き関係(37+0.5
Ni−1,2Mn−0,5Pb≦Zn≦42+0.5N
i−1,2Mn−0,5Pb )が担保されるように設
定しておくことが好ましい。なお、鉄等はかかる関係を
設定する上で無視することができる。すなわち、硼素、
珪素、燐については亜鉛添加量に比して微量であるから
、亜鉛との関係において加工性等の改善に与える影響は
極めて少なく、また鉄、コバルトについては、硼素、珪
素、燐に比し添加量が多いが、3重量%以下の鉄又は2
重量%以下のコバルトを添加した程度では、亜鉛との関
係において加工性等の改善に殆ど影響しないからである
By the way, even when iron, cobalt, boron, silicon, and phosphorus are contained in this way, the zinc content is higher than nickel,
The above relationship for manganese and lead (37+0.5
Ni-1,2Mn-0,5Pb≦Zn≦42+0.5N
It is preferable to set it so that i-1,2Mn-0,5Pb) is guaranteed. Note that iron and the like can be ignored when setting such a relationship. That is, boron,
Since the amount of silicon and phosphorus added is very small compared to the amount of zinc added, their effect on improving workability etc. in relation to zinc is extremely small, and the amount of addition of iron and cobalt is smaller than that of boron, silicon, and phosphorus. Iron in large amounts but not more than 3% by weight or 2
This is because adding less than % by weight of cobalt has little effect on improving workability etc. in relation to zinc.

〔実施例〕〔Example〕

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

実施例として、第1表に示す組成の銅基合金Nα1〜N
n1Oを製造した。ここに、勲4〜Nα10はNa 1
〜Nα3の合金組成に更に鉄、コバルト、硼素。
As an example, copper-based alloys Nα1 to Nα1 having the compositions shown in Table 1
n1O was produced. Here, Isao 4 to Nα10 is Na 1
~Nα3 alloy composition plus iron, cobalt, and boron.

珪素、燐を少なくとも一種含有させた銅基合金である。It is a copper-based alloy containing at least one of silicon and phosphorus.

この実施例の合金N11l〜Nα10は、高ニッケル含
有洋白と同様に、美しい銀白色光沢を有するものであっ
た。
Alloys N111 to Nα10 of this example had a beautiful silvery white luster, similar to high nickel-containing nickel silver.

さらに、被削性、熱間・冷間加工性、耐食性。Furthermore, machinability, hot/cold workability, and corrosion resistance.

機械的性質(引張強さ、伸び、硬さ)について、第1表
に示す組成の銅基合金Na 11〜N+120を比較例
として比較試験したところ、第2表に示す如き結果が得
られた。なお、&11はJl、S C7521に。
Regarding mechanical properties (tensile strength, elongation, hardness), copper-based alloys Na 11 to N+120 having the compositions shown in Table 1 were tested as comparative examples, and the results shown in Table 2 were obtained. In addition, &11 is Jl, SC7521.

NdI3はJfS C7451に、翫13はCDA C
76300に、No14はCDA C79620に、N
QI5はJTS C3710に夫々相当する銅基合金で
ある。
NdI3 is JfS C7451, rod 13 is CDA C
76300, No. 14 is CDA C79620, N
QI5 is a copper-based alloy corresponding to JTS C3710.

〈第1表〉 〈第2表〉 被削性等についての各試験は、次のようにして行った。<Table 1> <Table 2> Each test regarding machinability etc. was conducted as follows.

すなわち、各銅基合金&1〜Nα20を電気炉により大
気中で溶解して、各々、厚さ40m+、幅80 nu 
、長さ250mの鋳塊を得た。次いで、各鋳塊の一部を
切り出して、厚さ25 m 、幅25m。
That is, each copper-based alloy &1 to Nα20 is melted in the air in an electric furnace, and each is made to have a thickness of 40 m+ and a width of 80 nu.
An ingot with a length of 250 m was obtained. Next, a part of each ingot was cut out to a thickness of 25 m and a width of 25 m.

長さ30冊の熱間加工性試験片を得た。また、前記各鋳
塊の表面を面削して、各々、厚さ35nnの鋳塊片に仕
上げ、各鋳塊片を820℃に加熱して、厚さが8mとな
るまで熱間圧延を行い、更にその表面を厚さが7.5m
mとなるよう薄削した上、その幅方向端部(約10m)
を切断除去して、幅を60rrnとし、更にこれを60
0℃、1時間の条件で空冷焼鈍し、完全に冷却した上で
酸洗して冷間加工性試験片(非削性2機械的性質、耐食
性試験用の試料としても使用する)を得た。なお、銅基
合金Nα11〜Nα14については、熱間圧延性に乏し
いことが自明なものであるところから、鋳塊片を熱間圧
延することなく、厚さが22mとなるまで冷間圧延し、
これを焼鈍しく600℃で1時間加熱後、空冷する)更
に酸洗した上で、厚さが13mmとなるまで冷間圧延し
た後、再び同一条件で焼鈍、酸洗した上で、厚さが7.
5nn+どなるよう冷間圧延して、上記同様の冷間加工
性試験片を得た。また、Nn16.Nα18.Nα19
については、上記鋳塊片の熱間圧延時において著しい割
れが生じ、冷間加工性試験片を得ることができなかった
A hot workability test piece having a length of 30 pieces was obtained. In addition, the surface of each of the ingots was faceted and finished into ingot pieces with a thickness of 35 nn, and each ingot piece was heated to 820°C and hot rolled until the thickness became 8 m. , furthermore, the thickness of the surface is 7.5m
Thinly sliced to a width of m, and the edge in the width direction (approximately 10 m)
Cut and remove it to make the width 60rrn, and then
Air-cooled annealing was performed at 0°C for 1 hour, and after cooling completely, pickling was performed to obtain cold workability test pieces (non-machinability 2 mechanical properties, also used as samples for corrosion resistance tests). . In addition, since it is obvious that the copper-based alloys Nα11 to Nα14 have poor hot rollability, the ingot pieces were cold rolled to a thickness of 22 m without hot rolling.
This is then annealed and heated at 600℃ for 1 hour, then air cooled). After pickling, it is cold rolled to a thickness of 13 mm, then annealed and pickled again under the same conditions, and then the thickness is reduced. 7.
Cold rolling was performed to 5 nn+ to obtain a cold workability test piece similar to the above. Also, Nn16. Nα18. Nα19
Regarding the above ingot, significant cracking occurred during hot rolling, and a cold workability test piece could not be obtained.

熱間加工性については、各熱間加工性試験片を780℃
に加熱した上、これをその長さ方向において圧下率30
%、50%、70%の条件で各1回自由鍛造し、鍛造後
における試験片周面の割れの有無で評価した。なお、1
回の自由鍛造によって、試験片の長さ(30m)は、圧
下率30%で21mw+に、圧下率50%で15mmに
、圧下率70%で9ffI11に夫々変化した。
Regarding hot workability, each hot workability test piece was heated to 780°C.
After heating it to
Free forging was performed once each under conditions of %, 50%, and 70%, and the presence or absence of cracks on the circumferential surface of the test piece after forging was evaluated. In addition, 1
Through free forging, the length of the test piece (30 m) changed to 21 mw+ at a rolling reduction of 30%, to 15 mm at a rolling reduction of 50%, and to 9ffI11 at a rolling reduction of 70%.

このような熱間加工性の評価方法は一般に行われている
ものであり、次のような経験的事実に基づくものである
This hot workability evaluation method is commonly used and is based on the following empirical facts.

すなわち、圧下率30%で割れが生じた場合、熱間圧延
は実際上不可能であり、圧下率:30%では割れが生じ
ないが、圧下率50%で割れが生じた場合は、熱間圧延
は可能であるものの、その圧延条件がかなり制限され、
且つ圧延時の歩留まりも頗る悪く、実用的な熱間圧延は
困難である。また、圧下率30%、50%では割れが生
じないが、圧下率70%で割れが生じた場合は、熱間圧
延時に耳割れ等の欠陥が多少生じるものの、実用的な熱
間圧延を行う」二で問題はない。さらに、圧下率70%
の条件でも割れが生じない場合は、極めて良好な熱間圧
延を行うことができ、実用上全く問題ない。
In other words, if cracks occur at a rolling reduction of 30%, hot rolling is practically impossible; no cracks occur at a rolling reduction of 30%, but if cracks occur at a rolling reduction of 50%, then hot rolling is impossible. Although rolling is possible, the rolling conditions are quite limited,
Furthermore, the yield during rolling is extremely poor, making practical hot rolling difficult. In addition, cracks do not occur at rolling reductions of 30% and 50%, but if cracks occur at a rolling reduction of 70%, practical hot rolling is carried out, although some defects such as edge cracks may occur during hot rolling. ” There is no problem with 2. Furthermore, the rolling reduction rate is 70%
If no cracking occurs even under these conditions, extremely good hot rolling can be performed and there is no practical problem.

かかる鍛造試験の結果は、第2表において、割れが全く
発生しなかったものをOで、圧下率70%で割れを生じ
たものをOで、圧下率50%で割れを生じたものをΔで
、圧下率30%で割れを生じたものを×で表示した。
The results of such forging tests are shown in Table 2. O indicates that no cracks occurred at all, O indicates that cracks occurred at a rolling reduction of 70%, and Δ indicates that cracks occurred at a rolling reduction of 50%. Those in which cracks occurred at a rolling reduction of 30% were marked with an x.

第2表から明らかなように、本発明に係る銅基合金Nα
1〜&10は、すべて熱間加工性に優れたものであるこ
とが確認された。
As is clear from Table 2, the copper-based alloy Nα according to the present invention
It was confirmed that all samples No. 1 to &10 had excellent hot workability.

冷間加工性については、各冷間加工性試験片を、1パス
圧下率約10%の条件で冷間圧延を繰返し、厚さが3+
m+どなったときにおける耳割れ状態で評価した。
Regarding cold workability, each cold workability test piece was repeatedly cold rolled at a one-pass rolling reduction of approximately 10%, and the thickness was 3+.
Evaluation was made based on the state of cracked ears when m+ yelled.

その結果は、第2表において、耳割れが全く発生しなか
ったものをOで、所々に僅かな割れ(長さ5nn以下)
が発生したものをQで、最終の圧延に至るまでに大きな
割れ(長さ20mm以上)が発生して、爾後の圧延を中
止したものをXで、また評価を○、×の何れとも判断し
得なかったものをΔで表示した。なお、Na16.N(
118,k19については、上記した如く冷間加工性試
験片を得ることができなかったため、冷間加工性試験を
行い得なかった。
As a result, in Table 2, O indicates that no ear cracks occurred at all, and O indicates that there are slight cracks in some places (less than 5 nn in length).
A grade of Q indicates that a crack occurred, and a grade of Those that were not obtained are indicated by Δ. In addition, Na16. N(
As for No. 118 and k19, a cold workability test could not be conducted because a cold workability test piece could not be obtained as described above.

第2表から明らかなように、本発明に係る銅基合金徹1
〜Nα10は、すべて冷間加工性に優れたものであるこ
とが確認された。
As is clear from Table 2, copper-based alloy steel 1 according to the present invention
-Nα10 were all confirmed to have excellent cold workability.

被削性については、所謂ドリルテスト値をもって評価し
た。このドリルテスト値は、次のようにして求めたもの
である。
The machinability was evaluated using the so-called drill test value. This drill test value was obtained as follows.

すなわち、上記した冷間加工性試験において。That is, in the cold workability test described above.

各冷間加工性試験片について2回目の冷間圧延により厚
さが約6.1m+どなったところで、冷間加工性試験片
の長さ方向端部を約30m切断して、その切断片を被剛
性試験片として採取したにのようにして得た被削性試験
片について、一定荷重(1,0kg)を負荷したドリル
(ドリル径3mm。
After each cold workability test piece was cold rolled for the second time to a thickness of approximately 6.1m, the lengthwise end of the cold workability test piece was cut by approximately 30m, and the cut piece was A machinability test piece obtained as described above was taken as a rigidity test piece, and a drill (drill diameter: 3 mm) was loaded with a constant load (1.0 kg).

回転数L OOOr、p、a+、 )で穿孔し、その穿
孔深さが5画となるまでに要した穿孔時間Tを測定した
Drilling was performed at a rotation speed LOOOr, p, a+, ), and the drilling time T required until the drilling depth reached five strokes was measured.

そして、所謂快削性黄銅(銅61.5重量%、鉛3.0
重量%を含有し、残部が亜鉛である組成の銅基合金)か
らなる基準試料について上記と同一条件で基準穿孔時間
−を測定し、この基準穿孔時ルテスト値が大きい程、被
剛性が優れていることになる。
Then, so-called free-cutting brass (copper 61.5% by weight, lead 3.0%
The standard drilling time was measured under the same conditions as above for a reference sample consisting of a copper-based alloy (copper-based alloy with a composition of There will be.

その結果は第2表に示す通りであり、本発明に係る銅基
合金隆1〜Nα10は、比較例合金に対し、最も優れた
合金& L 5 (JIS C3710)と略同等若し
くは優れた被削性を有するものであることが確認された
。なお、Na16.気18.Nα19については、上記
した如く冷間加工性試験片を得ることができず、被削性
試験片を採取できないため、被削性試験を行い得なかっ
た。
The results are shown in Table 2, and the copper-based alloys 1 to Nα10 according to the present invention showed approximately the same or superior machinability to the best alloy &L 5 (JIS C3710) compared to the comparative example alloy. It was confirmed that it has a sexual nature. In addition, Na16. Qi 18. Regarding Nα19, as described above, a cold workability test piece could not be obtained and a machinability test piece could not be collected, so a machinability test could not be conducted.

機械的性質については、厚さ3mの各冷間加工性試験片
を600℃、1時間の条件で空冷焼鈍し、酸洗後、厚さ
が1.5mとなるまで冷間圧延し、更にこれを同一条件
で焼鈍、酸洗した上で、厚さが1.2noとなるまで冷
間圧延し、その各圧延材について引張り強さ、伸び、硬
さを測定した。
Regarding mechanical properties, each cold workability test piece with a thickness of 3 m was air-cooled annealed at 600°C for 1 hour, pickled, and then cold rolled to a thickness of 1.5 m. were annealed and pickled under the same conditions, and then cold rolled to a thickness of 1.2no, and the tensile strength, elongation, and hardness of each rolled material were measured.

その結果は第2表に示す通りであり、本発明に係る銅基
合金Nα1〜&10は、機械的性質に優れたものである
ことが確認された。すなわち、引張り強さ及び硬さにつ
いては、比較例合金(合金覧2oを除く)より明らかに
優れており、伸びについては、比較例合金と同等若しく
はこれより優れている。なお、丸16.Nn18.Nα
19については前記した如く冷間加工性試験片を得るこ
とができなかったため、またNα17については4.5
mの厚さまで圧延した段階で大きな割れを生じたため、
上記した所定の圧延材を得ることができず、引張り強さ
等の測定を断念した。
The results are shown in Table 2, and it was confirmed that the copper-based alloys Nα1 to &10 according to the present invention had excellent mechanical properties. That is, the tensile strength and hardness are clearly superior to the comparative example alloys (excluding Alloy No. 2o), and the elongation is equal to or superior to the comparative example alloys. In addition, circle 16. Nn18. Nα
As mentioned above, it was not possible to obtain a cold workability test piece for Nα19, and for Nα17 it was 4.5.
A large crack occurred at the stage of rolling to a thickness of m.
It was not possible to obtain the above-mentioned predetermined rolled material, and the measurement of tensile strength, etc., was abandoned.

酎食性については、上記機械的性質試験におけると同一
の圧延材(厚さ1.2m)を用い、これを厚さ1.2m
、幅10m、長さ20nw*の板体とした上で、この板
体について脱亜鉛腐食試験を行い、腐食量を表す係数で
あるZ値を求めた。
Regarding the corrosion resistance, the same rolled material (1.2 m thick) as in the above mechanical property test was used;
A plate with a width of 10 m and a length of 20 nw* was subjected to a dezincification corrosion test, and the Z value, which is a coefficient representing the amount of corrosion, was determined.

かかる耐食性試験は、銅・亜鉛系の腐食に関しては全体
的な腐食減量よりも選択的な脱亜鉛腐食が現実的に重要
な問題とされていることから、−般に広く採用されてい
るものであり、具体的には、次のようにして行う。
Such corrosion resistance tests are generally widely adopted because selective dezincification corrosion is considered to be a more important problem than overall corrosion loss when it comes to copper/zinc corrosion. Yes, specifically, it is done as follows.

すなわち、ビー力に電解液(0,5規定の塩化すトリウ
ム水溶液500■Q)を収容して、電解液内に陰極とし
て白金網を、また陽極として板体状とした各耐食性試験
片を夫々浸漬する。次に、試験片をヒータにより87.
5℃に加熱し、そのまま2時間保温した後、5 tm 
A / dの電流密度で3時間電解を行う。電解後、試
験片の表面付着物を清浄水で電解液内に洗い流すと共に
、白金網に析出した銅等を硝酸で溶解して、その溶液を
電解液に加える。そして、この電解液中に含まれる亜鉛
と銅との重量比を測定する。さらに、この重量比を試験
67rの試験片中に含まれていた亜鉛と銅との重量比で
除した値を求め、これをもってZ値とする。
That is, an electrolytic solution (0.5 N thorium chloride aqueous solution 500 Q) was placed in a beaker, and each corrosion-resistant test piece was prepared with a platinum mesh as a cathode and a plate shape as an anode in the electrolyte. Soak. Next, the test piece was heated to 87.
After heating to 5℃ and keeping it warm for 2 hours, 5 tm
Perform electrolysis for 3 hours at a current density of A/d. After electrolysis, the surface deposits of the test piece are washed away into the electrolytic solution with clean water, copper etc. deposited on the platinum mesh are dissolved with nitric acid, and the solution is added to the electrolytic solution. Then, the weight ratio of zinc and copper contained in this electrolytic solution is measured. Furthermore, a value is obtained by dividing this weight ratio by the weight ratio of zinc and copper contained in the test piece of Test 67r, and this value is taken as the Z value.

したがって、Z値が1のときは脱亜鉛腐食はなく。Therefore, when the Z value is 1, there is no dezincification corrosion.

これが1より大となるに従って脱亜鉛腐食が著しいこと
になる。
As this becomes larger than 1, dezincification corrosion becomes more significant.

その結果は第2表に示す通りであり、本発明に係る銅基
合金Nα1〜kloは、洋白が本来的に有する優れた酎
食性を担保しうるものであることが確認された。なお、
魔16〜&19については冷間加工性試験片が得られず
、脱亜鉛腐食試験を行い得なかった。
The results are shown in Table 2, and it was confirmed that the copper-based alloys Nα1 to klo according to the present invention can ensure the excellent edibility inherent to nickel silver. In addition,
For samples Nos. 16 to 19, cold workability test pieces could not be obtained and dezincing corrosion tests could not be conducted.

〔発明の効果〕〔Effect of the invention〕

以上の説明から容易に理解されるように、本発明の快削
性銅基合金は、高ニッケル含有洋白と同様の美しい銀白
色を呈するものでありながら、高価なニッケルを多量に
含有せず、熱間・冷間加工性に優れているものである。
As can be easily understood from the above explanation, the free-cutting copper-based alloy of the present invention exhibits a beautiful silvery white color similar to high-nickel containing nickel silver, but does not contain large amounts of expensive nickel. It has excellent hot and cold workability.

したがって、原料・製造コストを大幅に低減できるもの
であり、装飾性に優れた製品を安価に提供できるもので
ある。
Therefore, raw material and manufacturing costs can be significantly reduced, and products with excellent decorative properties can be provided at low cost.

しかも、洋白本来の優れた耐食性を担保しつつ。Moreover, it maintains the excellent corrosion resistance inherent to nickel silver.

波切削性、熱間・冷間加工性2機械的性質のす入てに優
れたものであり、その実用的価値極めて大なるものであ
る。
It has excellent wave cutting properties, hot/cold workability, and mechanical properties, and its practical value is extremely high.

昭和63年2月17日February 17, 1986

Claims (2)

【特許請求の範囲】[Claims] (1)ニッケル6〜15重量%、マンガン3〜8重量%
、鉛0.1〜2.5重量%、亜鉛31〜47重量%含有
し、残部が銅及び不可避不純物からなることを特徴とす
る、銀白色を呈する快削性銅基合金。
(1) Nickel 6-15% by weight, manganese 3-8% by weight
, 0.1 to 2.5% by weight of lead, 31 to 47% by weight of zinc, and the remainder consisting of copper and unavoidable impurities.
(2)更に鉄0.1〜3重量%、コバルト0.03〜2
重量%、硼素0.005〜0.2重量%、珪素0.01
〜1.0重量%、燐0.005〜0.1重量%を少なく
とも一種含有することを特徴とする、請求項1記載の銀
白色を呈する快削性銅基合金。
(2) In addition, 0.1 to 3% by weight of iron and 0.03 to 2% of cobalt
wt%, boron 0.005-0.2 wt%, silicon 0.01
The free-cutting copper-based alloy exhibiting a silvery white color according to claim 1, characterized in that it contains at least one type of phosphorus in an amount of 0.005 to 0.1% by weight and 0.005 to 0.1% by weight of phosphorus.
JP110388A 1988-01-06 1988-01-06 Free cutting copper-based alloy showing silver-white Granted JPH01177327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP110388A JPH01177327A (en) 1988-01-06 1988-01-06 Free cutting copper-based alloy showing silver-white

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP110388A JPH01177327A (en) 1988-01-06 1988-01-06 Free cutting copper-based alloy showing silver-white

Publications (2)

Publication Number Publication Date
JPH01177327A true JPH01177327A (en) 1989-07-13
JPH0469218B2 JPH0469218B2 (en) 1992-11-05

Family

ID=11492147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP110388A Granted JPH01177327A (en) 1988-01-06 1988-01-06 Free cutting copper-based alloy showing silver-white

Country Status (1)

Country Link
JP (1) JPH01177327A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05271850A (en) * 1992-03-30 1993-10-19 Norinaga Shindoushiyo:Kk Free cutting white alloy
JPH0987793A (en) * 1995-09-21 1997-03-31 Kichiyou Shindoushiyo:Kk Improved excellently cuttable white alloy
WO2004083471A3 (en) * 2003-03-21 2004-11-18 Swissmetal Boillat Sa Copper-based alloy
KR100473366B1 (en) * 2002-10-30 2005-03-08 주식회사 풍산 Copper alloy for coin
KR100909245B1 (en) * 2008-12-29 2009-07-27 이세균 Metal alloy material composition and preparing method thereof
WO2009113489A1 (en) * 2008-03-09 2009-09-17 三菱伸銅株式会社 Silver-white copper alloy and process for producing the same
DE102009021336A1 (en) * 2009-05-14 2010-11-25 Wieland-Werke Ag Copper-nickel-zinc alloy and its use
JP2012041566A (en) * 2010-08-12 2012-03-01 Mitsubishi Materials Corp Copper alloy and casting
WO2012104426A3 (en) * 2011-02-04 2012-09-27 Swissmetal Industries Ltd Cu-ni-zn-mn alloy
KR101285833B1 (en) * 2011-01-14 2013-07-12 충남대학교산학협력단 Copper alloys and copper alloys coins manufactured from the same
WO2013111143A1 (en) * 2012-01-24 2013-08-01 G D Abdhool Rahim Alloy containing precious metals and its method of preparation by using herbal extracts
WO2013131604A2 (en) 2012-03-07 2013-09-12 Wieland-Werke Ag Copper-nickel-zinc alloy containing silicon
DE102015014856A1 (en) * 2015-11-17 2017-05-18 Wieland-Werke Ag Copper-nickel-zinc alloy and its use

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112239824A (en) * 2019-07-19 2021-01-19 启东市荣盛铜业有限公司 High-nickel lead-containing free-cutting material and grain structure densification production process thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136438A (en) * 1983-01-26 1984-08-06 Sanpo Shindo Kogyo Kk Copper base alloy
JPS59159957A (en) * 1983-02-28 1984-09-10 Mitsubishi Metal Corp High-strength cu alloy with superior resistance to corrosion due to sea water and superior hot workability

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136438A (en) * 1983-01-26 1984-08-06 Sanpo Shindo Kogyo Kk Copper base alloy
JPS59159957A (en) * 1983-02-28 1984-09-10 Mitsubishi Metal Corp High-strength cu alloy with superior resistance to corrosion due to sea water and superior hot workability

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05271850A (en) * 1992-03-30 1993-10-19 Norinaga Shindoushiyo:Kk Free cutting white alloy
JPH0987793A (en) * 1995-09-21 1997-03-31 Kichiyou Shindoushiyo:Kk Improved excellently cuttable white alloy
KR100473366B1 (en) * 2002-10-30 2005-03-08 주식회사 풍산 Copper alloy for coin
WO2004083471A3 (en) * 2003-03-21 2004-11-18 Swissmetal Boillat Sa Copper-based alloy
JP2006520850A (en) * 2003-03-21 2006-09-14 スイスメタル−ユエムエス・ユジン・メタルリュルジク・スイス・エスア Copper alloy
CN100439537C (en) * 2003-03-21 2008-12-03 瑞士金属-Ums瑞士金属加工有限公司 Copper-based alloy
US9080226B2 (en) 2003-03-21 2015-07-14 Swissmetal Ums Usines Metallurgiques Suisse Sa Copper-based alloy
JP4523999B2 (en) * 2008-03-09 2010-08-11 三菱伸銅株式会社 Silver-white copper alloy and method for producing the same
EP2278033A4 (en) * 2008-03-09 2014-06-25 Mitsubishi Shindo Kk Silver-white copper alloy and process for producing the same
EP2278033A1 (en) * 2008-03-09 2011-01-26 Mitsubishi Shindoh Co., Ltd. Silver-white copper alloy and process for producing the same
JPWO2009113489A1 (en) * 2008-03-09 2011-07-21 三菱伸銅株式会社 Silver-white copper alloy and method for producing the same
US8147751B2 (en) 2008-03-09 2012-04-03 Mitsubishi Shindoh Co., Ltd. Silver-white copper alloy and process for producing the same
WO2009113489A1 (en) * 2008-03-09 2009-09-17 三菱伸銅株式会社 Silver-white copper alloy and process for producing the same
KR100909245B1 (en) * 2008-12-29 2009-07-27 이세균 Metal alloy material composition and preparing method thereof
DE102009021336A1 (en) * 2009-05-14 2010-11-25 Wieland-Werke Ag Copper-nickel-zinc alloy and its use
DE102009021336B9 (en) 2009-05-14 2024-04-04 Wieland-Werke Ag Copper-nickel-zinc alloy and its use
DE102009021336B4 (en) 2009-05-14 2024-01-11 Wieland-Werke Ag Copper-nickel-zinc alloy and its use
JP2012041566A (en) * 2010-08-12 2012-03-01 Mitsubishi Materials Corp Copper alloy and casting
KR101285833B1 (en) * 2011-01-14 2013-07-12 충남대학교산학협력단 Copper alloys and copper alloys coins manufactured from the same
WO2012104426A3 (en) * 2011-02-04 2012-09-27 Swissmetal Industries Ltd Cu-ni-zn-mn alloy
CN103502488B (en) * 2011-02-04 2016-01-06 宝世达瑞士金属股份公司 Cu-Ni-Zn-Mn alloy
US20140294665A1 (en) * 2011-02-04 2014-10-02 Baoshida Swissmetal Ag Cu-Ni-Zn-Mn Alloy
CN103502488A (en) * 2011-02-04 2014-01-08 宝世达瑞士金属股份公司 Cu-Ni-Zn-Mn alloy
WO2013111143A1 (en) * 2012-01-24 2013-08-01 G D Abdhool Rahim Alloy containing precious metals and its method of preparation by using herbal extracts
US9617629B2 (en) 2012-03-07 2017-04-11 Wieland-Werke Ag Copper-nickel-zinc alloy containing silicon
DE102012004725A1 (en) 2012-03-07 2013-09-12 Wieland-Werke Ag Silicon-containing copper-nickel-zinc alloy
JP2015514863A (en) * 2012-03-07 2015-05-21 ヴィーラント ウェルケ アクチーエン ゲゼルシャフトWieland−Werke Aktiengesellschaft Copper-nickel-zinc alloy containing silicon
US9738961B2 (en) 2012-03-07 2017-08-22 Wieland-Werke Ag Copper-nickel-zinc alloy containing silicon
DE102012004725B4 (en) 2012-03-07 2018-07-19 Wieland-Werke Ag Silicon-containing copper-nickel-zinc alloy
WO2013131604A2 (en) 2012-03-07 2013-09-12 Wieland-Werke Ag Copper-nickel-zinc alloy containing silicon
WO2013131604A3 (en) * 2012-03-07 2014-07-10 Wieland-Werke Ag Copper-nickel-zinc alloy containing silicon
DE102015014856A1 (en) * 2015-11-17 2017-05-18 Wieland-Werke Ag Copper-nickel-zinc alloy and its use
CN108350552A (en) * 2015-11-17 2018-07-31 威兰德-沃克公开股份有限公司 Pack fong and its application
US10808303B2 (en) 2015-11-17 2020-10-20 Wieland-Werke Ag Copper-nickel-zinc alloy and use thereof

Also Published As

Publication number Publication date
JPH0469218B2 (en) 1992-11-05

Similar Documents

Publication Publication Date Title
JP3961529B2 (en) High strength copper alloy
JP2002180165A (en) Copper based alloy having excellent press blanking property and its production method
CN1327016C (en) Copper base alloy with improved punchin and impacting performance and its preparing method
JPWO2005093108A1 (en) Brass
JPH01177327A (en) Free cutting copper-based alloy showing silver-white
EP0911419A1 (en) Nickel-free copper alloy
JPH111735A (en) High strength cu alloy with excellent press blankability and corrosion resistance
CN111118336B (en) Corrosion-resistant high-elasticity copper alloy plug bush material and preparation method thereof
WO2011105686A2 (en) High-strength and highly conductive copper alloy, and method for manufacturing same
JPH07166279A (en) Copper-base alloy excellent in corrosion resistance, punchability, and machinability and production thereof
JPH02145737A (en) High strength and high conductivity copper-base alloy
US20050039827A1 (en) Copper alloy having excellent corrosion cracking resistance and dezincing resistance, and method for producing same
KR910009498B1 (en) Corrosion-resistant copper alloy
CN110791679B (en) Brass alloy and production method thereof
EP1508625A1 (en) Copper alloy having excellent corrosion cracking resistance and dezincing resistance, and method for producing same
JPH05311290A (en) Highly corrosion resistant copper-base alloy
US3627593A (en) Two phase nickel-zinc alloy
JPH05271850A (en) Free cutting white alloy
WO2023167230A1 (en) Copper alloy material and method for manufacturing copper alloy material
JPH0987793A (en) Improved excellently cuttable white alloy
KR19990048845A (en) Copper (Cu) -nickel (Ni) -manganese (Mn) -tin (Su) -aluminum (Al) alloy for high-strength wire and plate and its manufacturing method
KR940004899B1 (en) Copper alloy
JPH06264166A (en) Copper-base alloy excellent in corrosion resistance, machinability and workability
KR960005232B1 (en) Cu-al alloy composition
JPH04210438A (en) Continuous casting mold material made of high strength cu alloy

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees