JPS61239989A - Recording method - Google Patents

Recording method

Info

Publication number
JPS61239989A
JPS61239989A JP60080854A JP8085485A JPS61239989A JP S61239989 A JPS61239989 A JP S61239989A JP 60080854 A JP60080854 A JP 60080854A JP 8085485 A JP8085485 A JP 8085485A JP S61239989 A JPS61239989 A JP S61239989A
Authority
JP
Japan
Prior art keywords
film
recording
diacetylene
wavelength
monomolecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60080854A
Other languages
Japanese (ja)
Inventor
Hiroshi Matsuda
宏 松田
Kenji Saito
謙治 斉藤
Kunihiro Sakai
酒井 邦裕
Takeshi Eguchi
健 江口
Yukio Nishimura
征生 西村
Takashi Nakagiri
孝志 中桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60080854A priority Critical patent/JPS61239989A/en
Priority to US06/851,083 priority patent/US4917939A/en
Publication of JPS61239989A publication Critical patent/JPS61239989A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used

Abstract

PURPOSE:To enable high density and high resolving power recording, by irradiating a medium comprising a diacetylene derivative compound with laser beam having a wavelength in a definite range according to input information. CONSTITUTION:A recording medium A, to which a diacetylene monomolecular built-up film 14 obtained by building up diacetylene monomolecular film layers 6, 20, 40, 60 was formed, is irradiated with argon laser beam (its output ; 7mW, its wavelength ; 488 nm) 15 in a dark plate according to a pattern to change the color of the irradiated part to blue to perform the recording of information. Regeneration is performed by scanning the recording medium A by He-Ne laser beam (output ; 1mW, a wavelength ; 633 nm) 18 and detecting the transmitted beam thereof by a beam receiving element. Because the laser beam non- irradiated part 17 is transparent, beam with a wavelength of 633 nm is not almost absorbed and transmitted through said transparent part and transmissivity comes to 70% or more while the irradiated part absorbs the beam of 633 nm and, as the built-up number of monomolecular films increase, absorption is performed more well. Because the contrast between the irradiated part and the non-irradiated part is high, a regeneration signal having a high S/N ratio is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、記録方法に関し、とりわけ、ジアセチレン誘
導体化合物の単分子膜又は単分子累積膜の化学変化若し
くは物理変化を利用して記録を行うレーザー記録方法に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a recording method, and in particular, recording is performed using chemical or physical changes in a monomolecular film or a monomolecular cumulative film of a diacetylene derivative compound. Concerning a laser recording method.

〔従来の技術〕[Conventional technology]

従来、有機化合物を記録層とする記録媒体としては種々
のものが知られている。
Conventionally, various types of recording media having recording layers made of organic compounds are known.

例えば、有機化合物を薄膜にして記録層として用いる光
記録媒体については、特開昭56−16948号公報、
特開昭58−125246号公報にも開示されている。
For example, regarding an optical recording medium in which a thin film of an organic compound is used as a recording layer, Japanese Patent Application Laid-open No. 16948/1983,
It is also disclosed in Japanese Unexamined Patent Publication No. 58-125246.

いずれも有機色素を記録層とし、レーザービームにより
記録再生を行なうレーザー記録媒体に関するものである
All of them relate to laser recording media that have an organic dye as a recording layer and perform recording and reproduction using a laser beam.

特に、特開昭58−125246号公報KN示された媒
体は 一般式 で表わされるシアニン系色素の薄膜を記録層とするもの
である。(1)式で表わされるシアニン系色素溶液を回
転塗布機などを用いて、1000λ以下の厚さ、例えば
約300人の厚さにプラスチック基板上に塗布し薄膜を
形成する。膜内の分子分布配向がランダムであると、光
照射に伴って膜内で光の散乱が生じ、微視的にみた場合
各党照射の度に生ずる化学反応の度合が異ってくる。そ
こで記録媒体としては、膜内の分子分布、配向が一様に
なっていることが望ましく、またできる限り膜厚が薄い
ことが、記録の高密度化のために要請される。しかしな
がら、塗布法による場合、膜厚においては300人程度
が限界であり、膜内の分子分布、配向がランダムである
ことは解決しがたいことであった。
In particular, the medium disclosed in JP-A-58-125246 KN has a thin film of a cyanine dye represented by the general formula as a recording layer. A cyanine dye solution represented by the formula (1) is coated onto a plastic substrate using a spin coater or the like to a thickness of 1000λ or less, for example, about 300 mm thick, to form a thin film. If the molecular distribution and orientation within the film is random, light scattering occurs within the film upon light irradiation, and when viewed microscopically, the degree of chemical reaction that occurs each time the film is irradiated differs. Therefore, as a recording medium, it is desirable that the molecular distribution and orientation within the film be uniform, and the film thickness is required to be as thin as possible in order to achieve high density recording. However, when using the coating method, the film thickness is limited to about 300, and it is difficult to solve the problem that the molecular distribution and orientation within the film are random.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

そこで本発明は、従来の斯かる欠点を解決しようとする
ものである。
Therefore, the present invention attempts to solve these conventional drawbacks.

すなわち本発明の目的は、高密度、高解像度の記録を可
能とする記録方法を提供することにある。
That is, an object of the present invention is to provide a recording method that enables high-density, high-resolution recording.

[更に本発明の目的は、比較的広い波長範囲の光を用い
て記録を行う記録方法を提供することにある。
[A further object of the present invention is to provide a recording method that performs recording using light having a relatively wide wavelength range.

〔問題点を解決するための手段〕 上記の目的は、以下の本発明によって達成される。[Means for solving problems] The above object is achieved by the present invention as follows.

すなわち本発明は、ジアセチレン誘導体化合物からなる
媒体に450−750 n mの範囲内の波長をもつレ
ーザー光を入力情報に従って照射することにより記録を
行なうことを特徴とする記録方法である。
That is, the present invention is a recording method characterized in that recording is performed by irradiating a medium made of a diacetylene derivative compound with a laser beam having a wavelength within the range of 450-750 nm according to input information.

〔作 用〕[For production]

本発明に係る記録媒体の記録層を構成する物質は分子内
に親水性部位、疎水性部位、及びジアセチレン部位をそ
れぞれ少なくとも一箇所有する分子(以下ジアセチレン
誘導体化合物という)から成る。
The substance constituting the recording layer of the recording medium according to the present invention consists of molecules each having at least one hydrophilic site, one hydrophobic site, and at least one diacetylene site (hereinafter referred to as a diacetylene derivative compound).

一般式  R,−C:C−C=C−几、−XX    
 ;親水性部位 R1・R1;疎水性部位 CEC−C”:C;ジアセチレン部位 で表わされ、親水性部位としては例えば、水酸基、カル
ボキシル基、アミ7基、ニトリル基、チオアルコール基
、イミノ基、スルホン基、スルフィニル基等の極性基あ
るいはそれらの塩である。疎水性部位としては、R1と
R7の炭素原子数の和が10〜30の長鎖アルキル基が
好ましい。
General formula R, -C: C-C=C-几, -XX
; Hydrophilic site R1/R1; Hydrophobic site CEC-C'':C; Represented by a diacetylene site, examples of the hydrophilic site include hydroxyl group, carboxyl group, ami7 group, nitrile group, thioalcohol group, imino , a sulfone group, a sulfinyl group, or a salt thereof.As the hydrophobic moiety, a long-chain alkyl group in which the sum of the number of carbon atoms of R1 and R7 is 10 to 30 is preferable.

このようなジアセチレン誘導体化合物の単分子膜又は単
分子累積膜を作成する方法としては、例えばI−Lan
gmuirらの開発したラングミュア・ブレジェット法
(以下LB法)を用いる。
As a method for creating a monomolecular film or a monomolecular cumulative film of such a diacetylene derivative compound, for example, I-Lan
The Langmuir-Bregett method (hereinafter referred to as the LB method) developed by Gmuir et al. is used.

LB法は、例えば分子内に親水性部位と疎水性部位を有
する構造の分子において、両者のバランス(両親−媒性
のバランス)が適度に保たれている時、分子は水面上で
親水基を下に向けて単分子の層になることを利用して単
分子膜または単分子層の累積膜を作成する方法である。
In the LB method, for example, in a molecule with a structure that has a hydrophilic site and a hydrophobic site, when the balance between the two (amphiphilic balance) is maintained appropriately, the molecule has a hydrophilic group on the water surface. This is a method of creating a monomolecular film or a cumulative film of monomolecular layers by utilizing the fact that the monomolecular layer forms downward.

水面上の単分子層は二次元系の特徴をもつ。分子がまば
らに散開しているときは、一分子当り面積人と表面圧π
との間に二次元理想気体の式、πA=kT が成り立ち、′気体膜“となる。ここに、kはボルツマ
ン定数、Tは絶対温度である。人を充分小さくすれば分
子間相互作用が強まり、二次元固体の“凝縮膜(または
固体膜)″になる。
A monolayer on the water surface has the characteristics of a two-dimensional system. When the molecules are sparsely distributed, the area per molecule and the surface pressure π
The two-dimensional ideal gas equation, πA=kT, holds true between the two, resulting in a ``gas film.'' Here, k is Boltzmann's constant and T is the absolute temperature.If the human body is made small enough, the intermolecular interaction It strengthens and becomes a two-dimensional solid "condensed film (or solid film)."

凝縮膜はガラス基板などの種々の材質や形状を有する担
体の表面へ一層ずつ移すことができる。
The condensed film can be transferred layer by layer onto the surface of carriers having various materials and shapes, such as glass substrates.

この方法を用いて、本発明のジアセチレン誘導体化合物
の単分子膜、もしくは単分子層の累積膜の具体的な製法
としては、例えば以下に示す方法を挙げることができる
As a specific method for producing a monomolecular film or a cumulative film of monomolecular layers of the diacetylene derivative compound of the present invention using this method, for example, the following method can be mentioned.

目的とするジアセチレン誘導体化合物をクロロホルム等
の溶剤に溶解させる。次に、第2図(al 、 (b)
に示す装置を用いて、ジアセチレン誘導体化合物の溶液
を水相上10に展開させてジアセチレン誘導体化合物を
膜状に形成させる。
The desired diacetylene derivative compound is dissolved in a solvent such as chloroform. Next, Figure 2 (al, (b)
Using the apparatus shown in Figure 1, a solution of the diacetylene derivative compound is spread on the aqueous phase 10 to form the diacetylene derivative compound in the form of a film.

次にこの展開層が水相上を自由に拡散して広がりすぎな
いように仕切板(または浮子)3を設けて展開面積を制
限して膜物質の集合状態を制御しその集合状態に比例し
た表面圧πを得る。
Next, in order to prevent this spread layer from spreading freely on the water phase and spreading too much, a partition plate (or float) 3 is provided to limit the spread area and control the aggregation state of the membrane material. Obtain the surface pressure π.

この仕切板3を動かし展開面積を縮小して膜物質の集合
状態を側温し、表面圧を徐々に上昇させ、累積膜の製造
に適する表面圧πを設定することが出来る。この表面圧
を維持しながら静かに清浄な担体11を垂直に上下させ
ることによリジアセチレン銹導体化合物の単分子i(以
下ジアセチレン単分子膜)が担体11上に移しとられる
。ジアセチレン単分子膜は以上で製造されるが、前記の
操作を繰り返すことにより所望の累積数のジアセチレン
単分子累積膜が形成される。ジアセチレン単分子膜を担
体上に移すには、上述した垂直浸漬法の他、水平付着法
、回転円筒法などの方法による。水平付着法は担体を水
面に水平に接触させて移しとる方法で、回転円筒法は円
筒形の担体を水面上を回転させて担体表面に移しとる方
法である。前述した垂直浸漬法、では、表面が親水性で
ある担体を水面を横切る方向に水中から引き上げるとジ
アセチレン誘導体化合物の親水基が担体側に向いたジア
セチレン単分子膜が担体上に形成される。前述のように
担体を上下させると、各行程ごとに一枚ずつジアセチレ
ン単分子膜が積み重なっていく。製膜分子の向きが引上
行程と浸漬行程で逆になるので、この方法による各層間
はジアセチレン誘導体化合物の親木基と疎水基が向かい
あうY型膜が形成される。
The partition plate 3 is moved to reduce the developed area, thereby heating the aggregated state of the film material, gradually increasing the surface pressure, and setting the surface pressure π suitable for producing a cumulative film. By gently raising and lowering the clean carrier 11 vertically while maintaining this surface pressure, monomolecules i of the lydiacetylene conductor compound (hereinafter referred to as diacetylene monolayer) are transferred onto the carrier 11. A diacetylene monomolecular film is produced as described above, and by repeating the above operations, a desired cumulative number of diacetylene monomolecular cumulative films can be formed. In order to transfer the diacetylene monomolecular film onto the carrier, in addition to the above-mentioned vertical dipping method, a method such as a horizontal adhesion method or a rotating cylinder method can be used. The horizontal adhesion method is a method in which the carrier is brought into horizontal contact with the water surface and transferred, and the rotating cylinder method is a method in which a cylindrical carrier is rotated on the water surface and transferred onto the carrier surface. In the vertical immersion method described above, when a carrier with a hydrophilic surface is lifted out of water in a direction across the water surface, a diacetylene monomolecular film with the hydrophilic groups of the diacetylene derivative compound facing the carrier is formed on the carrier. . As the carrier is moved up and down as described above, the diacetylene monolayer is stacked one by one with each step. Since the direction of the film-forming molecules is reversed between the pulling process and the dipping process, a Y-shaped film is formed between each layer in which the parent wood group and the hydrophobic group of the diacetylene derivative compound face each other.

それに対し、水平付着法は、ジアセチレン誘導体化合物
の疎水基が担体側に向いたジアセチレン単分子膜が担体
上に形成される。この方法では、累積しても、製膜分子
の向きの交代はなく全ての層において、疎水基が担体側
に向いたX型膜が形成される。反対に全ての層において
親木基が担体側に向いた累積膜は2型膜と呼ばれる。
In contrast, in the horizontal deposition method, a diacetylene monomolecular film with the hydrophobic groups of the diacetylene derivative compound facing the carrier is formed on the carrier. In this method, there is no change in the orientation of the film-forming molecules even if they are accumulated, and an X-shaped film is formed in which the hydrophobic groups face the carrier side in all layers. On the other hand, a cumulative film in which parent wood groups in all layers face the carrier side is called a type 2 film.

単分子層を担体上に移す方法は、これらに限定されるわ
けではなく、大面積担体を用いる時には、担体ロールか
ら水相中に担体を押し出していく方法などもとり得る。
The method of transferring the monomolecular layer onto the carrier is not limited to these methods, and when a large-area carrier is used, a method of extruding the carrier from a carrier roll into an aqueous phase may also be used.

また、前述した親水基、疎水基の担体への向きは原則で
あり、担体の表面処理等によって変えることもできる。
Furthermore, the directions of the hydrophilic groups and hydrophobic groups described above toward the carrier are in principle, and can be changed by surface treatment of the carrier.

上述の方法によって担体上に形成されるジアセチレン単
分子膜およびジアセチレン単分子累積膜は高密度でしか
も高度の秩序性を有しており、これらの膜で記録層を構
成することによって、ジアセチレン誘導体化合物の機能
に応じて光記録、熱的記録等の可能な高密度で高解像度
の記録機能を有する記録媒体を得ることができる0 前述の如くして形成した記録媒体に情報を記録する方法
を以下に説明する。
The diacetylene monomolecular film and diacetylene monomolecular cumulative film formed on the carrier by the above-mentioned method have high density and a high degree of order. Depending on the function of the acetylene derivative compound, a recording medium having a high-density and high-resolution recording function capable of optical recording, thermal recording, etc. can be obtained0 Recording information on the recording medium formed as described above The method will be explained below.

熱又は溶剤    熱 初めは無色透明な膜に、入力情報に従ったレーザー光(
波長450−750nm)を照射すると青色に変化し、
最大吸収波長は620〜65Qnmとなる。この変化は
レーザー光を照射することによって起こり、熱や溶剤に
よっては起こらない。これはジアセチレン単分子累積膜
によって第2高調波が発生するためと考えられる。また
不可逆変化であるので、一度青色となった膜は無色透明
膜には戻らない。
Heat or solvent A laser beam (according to the input information) is applied to the initially colorless and transparent film.
When irradiated with light (wavelength 450-750 nm), it changes to blue,
The maximum absorption wavelength is 620 to 65 Qnm. This change is caused by irradiation with laser light and not by heat or solvents. This is considered to be because the second harmonic is generated by the diacetylene monomolecular cumulative film. Furthermore, since this is an irreversible change, once the film becomes blue, it will not return to a colorless and transparent film.

次に、この青色膜に更に読けてレーザー光を照射するか
、およそ60℃に加熱するか、もしくはア七トンやエタ
ノール等の溶剤で処理することにより赤色膜になり、最
大吸収波長はおよそ540 nmに変化する。この変化
も不可逆である。
Next, this blue film is further irradiated with laser light, heated to approximately 60°C, or treated with a solvent such as acetate or ethanol to become a red film, with a maximum absorption wavelength of approximately 540 nm. This change is also irreversible.

さらに、この赤色膜にレーザー光を照射するか、又はお
よそ300 ’Oに加熱すると、黄色膜が得られ、この
最大吸収波長はおよそ450 nmである。黄色膜は室
温にて、元の赤色膜に戻る。
Further, when this red film is irradiated with laser light or heated to approximately 300'O, a yellow film is obtained, the maximum absorption wavelength of which is approximately 450 nm. The yellow film returns to its original red color at room temperature.

以下、実施例に基づき本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail based on Examples.

記録媒体の製造例1 (2)式で示したジアセチレン誘導体化合物をクロロホ
ルムK 2.5 X 10’ mat/lの濃度に溶か
した後、pH6,9で塩化カドミウム濃度lXl0−”
rr’rol/lの水相10(第2図(b))上に展開
させた。溶媒のクロロホルムを蒸発除去後、表面圧を2
0 dyne/cmまで高めた。表面圧を一定に保ちな
がら、表面が十分清浄で親水性となっているガラス基板
を担体とし、水面を横切る方向に上下速度1.0 c 
m/m i nで静かに上下させ、ジアセチレン単分子
膜を担体11(第2図(a))上に移し取り、ジアセチ
レン単分子膜及び6゜20.40.60層に累積したジ
アセチレン単分子累積膜14を形成し、記録媒体(第1
図(a))を製造した。以下この記録媒体をAという。
Production example of recording medium 1 After dissolving the diacetylene derivative compound shown by formula (2) to a concentration of chloroform K2.5 X 10' mat/l, the cadmium chloride concentration was adjusted to pH 6.9 to 1 X l0-'
It was developed on an aqueous phase 10 (FIG. 2(b)) of rr'rol/l. After removing the solvent chloroform by evaporation, the surface pressure was reduced to 2
It was increased to 0 dyne/cm. While keeping the surface pressure constant, a glass substrate with a sufficiently clean and hydrophilic surface is used as a carrier, and the vertical speed is 1.0 c in the direction across the water surface.
The diacetylene monolayer was transferred onto the carrier 11 (FIG. 2(a)) by gently moving it up and down at m/min, and the diacetylene monolayer and the diacetylene accumulated on the 6°20.40.60 layer were removed. An acetylene monomolecular cumulative film 14 is formed, and a recording medium (first
Figure (a)) was produced. This recording medium will be referred to as A hereinafter.

C4H□CミC−CEC−CCHt>5COOH(2)
式この記録媒体Aに暗所下であるパターンに従ってアル
ゴンレーザー光(出カフ m W 、波長488nm)
15を照射した。この時のレーザーのスポット径は0.
5μmであり、照射時間は1〜2m5ecであった。
C4H□CmiC-CEC-CCHt>5COOH(2)
Argon laser light (output m W , wavelength 488 nm) is applied to this recording medium A according to the pattern in the dark.
15 was irradiated. The laser spot diameter at this time is 0.
5 μm, and the irradiation time was 1 to 2 m5 ec.

被照射部位は青変し、情報の記録が行なわれた。The irradiated area turned blue and information was recorded.

1     再生はHe−Neレーザー元(出力1 m
 W 、波長633nm)18を記録媒体A上にスキャ
ンしく第4図(c) ) 、その透過光19を受光素子
(不図示)で検知することによつ1行なった。
1 Reproduction is performed using a He-Ne laser source (output 1 m
This was carried out by scanning W (wavelength 633 nm) 18 onto the recording medium A (FIG. 4(c)) and detecting the transmitted light 19 with a light receiving element (not shown).

レーザー光未照射部17は透明なので633nmの光は
はとんど吸収されずに透過し、透過率は70%以上であ
った。一方照射部16は633nmの光を吸収し、また
単分子の累積数が多いほどよく吸収した。
Since the area 17 not irradiated with the laser beam was transparent, the light of 633 nm was transmitted without being absorbed, and the transmittance was 70% or more. On the other hand, the irradiation part 16 absorbed light of 633 nm, and the greater the cumulative number of single molecules, the better the absorption.

照射部と未照射部におけるコントラストが高いので、高
8/N比の再生信号が得られた。
Since the contrast between the irradiated area and the non-irradiated area was high, a reproduced signal with a high 8/N ratio was obtained.

尚、繰返し読み出しを行った結果、再現性が認められた
In addition, as a result of repeated reading, reproducibility was observed.

実施例2 レーザー光として、出力8 m W 、波長633nm
のHe −Ne L/−デー光(スポット径1μm。
Example 2 Laser light: output 8 mW, wavelength 633 nm
He-Ne L/-day light (spot diameter 1 μm.

照射時間20m5ec)を用いたことを除いて実施例1
と同様に記録、再生を行なった。その結果、実施例1と
同様の効果が得られ九。
Example 1 except that an irradiation time of 20 m5ec) was used.
Recording and playback were performed in the same way. As a result, the same effects as in Example 1 were obtained.

実施例3 レーザー光として、出力8 m W 、波長442nm
のHe−Cdレーザー光(スポット径0.5 pm、照
射時間1〜2 m s e c )を用いたことを除い
ては実施例1と同様に記録、再生を行なった。
Example 3 Laser light: output 8 mW, wavelength 442 nm
Recording and reproduction were performed in the same manner as in Example 1, except that a He-Cd laser beam (spot diameter of 0.5 pm, irradiation time of 1 to 2 msec) was used.

その結果、実施例1と同様の効果が得られ丸。As a result, the same effect as in Example 1 was obtained.

実施例4 レーサー光として、出力10mW、波長750nmの色
素レーザー光(OXAZINBI、スポット径1μm、
照射時間50 m 5ec)を用いたことを除いて実施
例1と同様に記録、再生を行なった。
Example 4 As a laser beam, a dye laser beam (OXAZINBI, spot diameter 1 μm,
Recording and reproduction were performed in the same manner as in Example 1, except that the irradiation time was 50 m (5 ec).

その結果、実施例1と同様の効果が得られた。As a result, the same effects as in Example 1 were obtained.

(効 果) 本発明の効果を以下に列挙する。(effect) The effects of the present invention are listed below.

(1)  レーザー 光を用いて記録ができるため、高
密度、高解像度の記録が可能である。
(1) Laser Since recording can be performed using light, high-density and high-resolution recording is possible.

(2)用いる光源の波長領域が従来より長波長側のもの
が使用できるようKなった。
(2) The wavelength range of the light source used is now longer than before.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) 、 (bl 、 (c)は、本発明の記
録方法を説明するための概略図であり、第2図(a) 
、 (b)は本発明に用いる記録媒体を製造するための
装置の概略説明図である。 1・・・・・・・・・水槽 2・・・・・・・・・枠 3・・・・・・・・・浮子 4・・・・・・・・・重り 5・・・・・・・−滑車 6・・・・・・・・・磁石 7・・・・・・・・・対磁石 8・・・・・・・・・吸引パイプ 9・・・・・・・・・吸引ノズル lO・・・・・・・・・液面 11・・・・・・・・・担体 12・・・・・・・・・担体上下腕 13・・・・・・・・・基板(担体) 14・・・・・・・・・記録層 15・・・・・・・・・レーザー光(450−750n
m)16・・・・・・・・・レーザー光照射部17・・
・・・・・・・レーザー光未照射部18 ・== He
 −Ne L/−デー光(633nm)19・・・・・
・・・・透過光 zl 第2図の
FIGS. 1(a), (bl, and c) are schematic diagrams for explaining the recording method of the present invention, and FIG. 2(a)
, (b) is a schematic explanatory diagram of an apparatus for manufacturing a recording medium used in the present invention. 1...Aquarium 2...Frame 3...Float 4...Weight 5... ...-Pulley 6... Magnet 7... Counter magnet 8... Suction pipe 9... Suction Nozzle lO...Liquid level 11...Carrier 12...Carrier upper and lower arms 13...Substrate (carrier ) 14... Recording layer 15... Laser light (450-750n
m) 16... Laser light irradiation section 17...
・・・・・・Laser beam unirradiated area 18 ・== He
-Ne L/-D light (633nm) 19...
...Transmitted light zl in Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)ジアセチレン誘導体化合物からなる媒体に、45
0−750nmの範囲内の波長をもつレーザー光を入力
情報に従つて照射することにより記録を行うことを特徴
とする記録方法。
(1) In a medium consisting of a diacetylene derivative compound, 45
A recording method characterized in that recording is performed by irradiating laser light with a wavelength within the range of 0-750 nm according to input information.
(2)該ジアセチレン誘導体化合物が分子内に親水性部
位と疎水性部位とを有する特許請求の範囲第1項記載の
記録方法。
(2) The recording method according to claim 1, wherein the diacetylene derivative compound has a hydrophilic site and a hydrophobic site within the molecule.
(3)該記録層が該ジアセチレン誘導体化合物の単分子
膜又は単分子累積膜からなる特許請求の範囲第1項記載
の記録方法。
(3) The recording method according to claim 1, wherein the recording layer comprises a monomolecular film or a monomolecular cumulative film of the diacetylene derivative compound.
JP60080854A 1985-04-16 1985-04-16 Recording method Pending JPS61239989A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60080854A JPS61239989A (en) 1985-04-16 1985-04-16 Recording method
US06/851,083 US4917939A (en) 1985-04-16 1986-04-14 Recording method and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60080854A JPS61239989A (en) 1985-04-16 1985-04-16 Recording method

Publications (1)

Publication Number Publication Date
JPS61239989A true JPS61239989A (en) 1986-10-25

Family

ID=13729931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60080854A Pending JPS61239989A (en) 1985-04-16 1985-04-16 Recording method

Country Status (1)

Country Link
JP (1) JPS61239989A (en)

Similar Documents

Publication Publication Date Title
JPS61239989A (en) Recording method
JPH0259789B2 (en)
JPH0452934B2 (en)
JPS6247840A (en) Optical recording medium
JPS61239988A (en) Recording medium
JPS61201244A (en) Light recording method
JPH0148524B2 (en)
JPS61143190A (en) Recording medium
JPS61239987A (en) Recording medium
JPS61180237A (en) Recording medium
JPS62140886A (en) Optical recording medium
JPS62130883A (en) Optical recording medium
JPH0458615B2 (en)
JPH0336409B2 (en)
JPS61179791A (en) Recording medium
JPS61156120A (en) Recording medium
JPS61156119A (en) Recording medium
JPS61192590A (en) Image forming medium
JPS61156117A (en) Recording medium
JPS61156118A (en) Recording medium
JPS61163339A (en) Optical recording method
JPS61201243A (en) Light recording method
JPS61137776A (en) Recording medium
JPS61137774A (en) Recording medium
JPS61143185A (en) Recording medium