JPS6131601B2 - - Google Patents

Info

Publication number
JPS6131601B2
JPS6131601B2 JP56198199A JP19819981A JPS6131601B2 JP S6131601 B2 JPS6131601 B2 JP S6131601B2 JP 56198199 A JP56198199 A JP 56198199A JP 19819981 A JP19819981 A JP 19819981A JP S6131601 B2 JPS6131601 B2 JP S6131601B2
Authority
JP
Japan
Prior art keywords
solution
oxide
mol
oxides
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56198199A
Other languages
Japanese (ja)
Other versions
JPS5898903A (en
Inventor
Tadayoshi Karasawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP56198199A priority Critical patent/JPS5898903A/en
Priority to NL8204778A priority patent/NL8204778A/en
Priority to DE19823245635 priority patent/DE3245635A1/en
Publication of JPS5898903A publication Critical patent/JPS5898903A/en
Publication of JPS6131601B2 publication Critical patent/JPS6131601B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0036Mixed oxides or hydroxides containing one alkaline earth metal, magnesium or lead
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0045Mixed oxides or hydroxides containing aluminium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0072Mixed oxides or hydroxides containing manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、酸化物強磁性体の製造法の技術分
野に属するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention belongs to the technical field of a method for producing oxide ferromagnets.

(従来の技術) 従来、フエライト磁性物を合成する方法とし
て、○イ硫酸マンガン+硫酸亜鉛+硫酸鉄の溶液に
アルカリを加えて中和する過程に於いて、金属鉄
の共存のもとに加熱し、酸素を圧入撹拌しつつ強
磁性物とするか、又は○ロ酸化マンガン、酸化鉄、
酸化亜鉛などの混合物を焙焼して強磁性物とする
か、さらには、○ハマンガン及び鉄イオン並びに亜
鉛イオンを含む液を噴霧焙焼する、などが代表例
である。
(Prior art) Conventionally, as a method for synthesizing ferrite magnetic materials, ○ In the process of adding alkali to a solution of manganese sulfate + zinc sulfate + iron sulfate to neutralize it, heat it in the presence of metallic iron. Then, it is made into a ferromagnetic material by injecting and stirring oxygen, or by manganese oxide, iron oxide,
Typical examples include roasting a mixture of zinc oxide or the like to make a ferromagnetic material, or spraying and roasting a liquid containing hamanganese, iron ions, and zinc ions.

(発明が解決しようとする問題点) 前記各事例中、○イの製造法は共沈法に属する
が、この方法で製造した強磁性物は頗る高性能で
あり重要な製造法であるが、補助資材として
NH4OH、NaOHなどを用いるので、その回収を
〓〓〓
計つてもなおその経費がかさむこと、また、高密
度の磁性体にするため及び高磁束密度の特性を得
るために、800℃前後で焙焼する必要がある。こ
の焙焼した粉体は、使用目的に添つて1μ前後よ
り0.2μ台の間で適宜解砕して使用される。ま
た、○ロの製造法は最も一般的な方法で、使用原料
の選定、焙焼温度、粉体調整などによつて種々の
磁気特性を持つ粉体が得られる。また安価に製造
できる特長がある。しかし、前記○イの共沈法と異
なり、粉体間の混合によるため、各成分元素を密
混してもその粉体の特性及び粉体間に存在する空
隙が固体間反応に或る制約が生ずる。その結果、
加熱温度の上昇、未反応部分の発生、不必要な原
子価の変動などが発生し易いうらみがある。ま
た、○ハの製造法は各イオンを含む液を噴霧焙焼す
る方法で、前記○イに準ずる良好な方法である。即
ち、各イオンがよく混合されたまま噴霧焙焼され
るので、伝熱面積の拡大もあつてフエライト化反
応が促進され、磁気特性も良好となる。しかしこ
の方法は、焙焼時の熱効率の低いことからして燃
料費がかさむこと、極微粉となるために粒成長を
求めて前記焙焼温度よりも少しく低温で再加熱を
必要とすることなどの不利がある。
(Problems to be Solved by the Invention) Among the above examples, the production method in A belongs to the coprecipitation method, and although the ferromagnetic material produced by this method has extremely high performance and is an important production method, As an auxiliary material
Since NH 4 OH, NaOH, etc. are used, their recovery is necessary.
Even if it is measured, the cost is still high, and in order to make it a high-density magnetic material and obtain the characteristics of high magnetic flux density, it is necessary to roast it at around 800 degrees Celsius. This roasted powder is used after being appropriately crushed to a particle size between about 1μ and 0.2μ depending on the purpose of use. In addition, the manufacturing method of ○ and B is the most common method, and powders with various magnetic properties can be obtained by selecting the raw materials used, roasting temperature, powder adjustment, etc. It also has the advantage of being inexpensive to manufacture. However, unlike the coprecipitation method described in ○B above, since it relies on mixing between powders, even if each component element is mixed closely, the characteristics of the powder and the voids that exist between the powders impose certain restrictions on the solid-solid reaction. occurs. the result,
There are disadvantages such as an increase in heating temperature, generation of unreacted portions, and unnecessary fluctuations in valence. In addition, the manufacturing method of ○C is a method of spraying and roasting a liquid containing each ion, and is a good method similar to the above-mentioned ○B. That is, since each ion is spray roasted while being well mixed, the heat transfer area is expanded, the ferritization reaction is promoted, and the magnetic properties are also improved. However, this method requires high fuel costs due to the low thermal efficiency during roasting, and requires reheating at a slightly lower temperature than the roasting temperature to increase grain growth since it becomes an extremely fine powder. There are disadvantages.

而して、前記フエライトの各種製造方法中、最
も普遍的な原料粉末の混合方式は、各粉体即ち酸
化鉄(Fe2O3)の70〜80重量%を主体とし、これ
にMn、Fe、Ni、Cu、Mg、Co、Zn、Cd又は希土
類金属塩、或いはアルカリ金属Ba、Sr、Pbなど
の酸化物の混合粉末間の固体間反応である。この
粉体間の固体間反応の困難な理由は前記のとおり
であるが、これをより良く反応させるためには、
湿式混合するか、或いは粉末を強圧で圧縮する。
また、焙焼温度を高くする。そして、反応促進剤
としてSiO2、V2O5、CaO、B2O5、Bi2O3などを添
加する等の種々の方法がある。しかし結局のとこ
ろ、粉末の粒子間の点、面の接触の反応であり、
粉末の微細化にも限界があるので、充分な状態と
は言えない。
Among the various methods for producing ferrite, the most common method of mixing raw material powders is mainly composed of 70 to 80% by weight of each powder, that is, iron oxide (Fe 2 O 3 ), in addition to which Mn and Fe are added. , Ni, Cu, Mg, Co, Zn, Cd or rare earth metal salts, or mixed powders of oxides such as alkali metals Ba, Sr, and Pb. The reason why this solid-state reaction between powders is difficult is as mentioned above, but in order to make this reaction better,
Either wet mixing or compressing the powder under high pressure.
Also, the roasting temperature is increased. There are various methods such as adding SiO 2 , V 2 O 5 , CaO, B 2 O 5 , Bi 2 O 3 and the like as a reaction accelerator. However, in the end, it is a reaction of point and surface contact between powder particles,
Since there is a limit to the fineness of powder, it cannot be said to be in a sufficient state.

本発明はかかる従来の不利な点を改良した合成
法であり、フエライト製造の新分野を開発したも
のである。
The present invention is a synthetic method that improves on these conventional disadvantages and develops a new field of ferrite production.

次に本発明の骨子の例を述べる。 Next, an example of the gist of the present invention will be described.

(問題点を解決するための手段) 本願の第1番目の発明は、「酸化マンガン
(MnO)量として45〜55mol%相当分を含む硫酸
マンガン、硝酸マンガン又はこれらの混合溶液
に、溶液中に含むマンガンイオンをMnOに換算
し、その42mol%以下において該溶液を酸化亜鉛
(ZnO)又は酸化マグネシユウム(MgO)又は両
者の混合物を添加して置換し、更に酸化鉄45〜
55mol%、或いは該酸化鉄とSi、Al、Ti、Zr、Ca
などのA群酸化物及びNi、Cu、CoなどのB群酸
化物の一種又は二種以上を密混した物質を、60〜
500℃で乾燥して泥状体を固めた後、800〜1200℃
で加熱分解して酸根を蒸発することにより磁性を
発生せしめ、次いで1200℃乃至1450℃で焙焼して
焼結硬化したことを特徴とする酸化物強磁性体の
製造法。」であり、また、第2番目の発明は「酸
化亜鉛(ZnO)量として約50mnl%相当分を含む
硫酸亜鉛、硝酸亜鉛又はこれらの混合溶液に、溶
液中に含む亜鉛イオンをZnOに換算して、その45
〜25mol%の範囲において該溶液をマンガン、マ
グネシウムなどのイオンを含む溶液、或いはこれ
らの酸化物の一種又は二種以上で置換し、更に酸
化鉄45〜55mol%を添加混合し加熱してこれらに
含む酸根を蒸発除去し、かつ、強磁性の発生する
温度乃至1400℃に焙焼してなる酸化物強磁性体の
製造法。」であり、さらに第3番目の発明は、「酸
化亜鉛(ZnO)量として50mol%相当分を含む硫
酸亜鉛、硝酸亜鉛又はこの混合溶液に、溶液中に
含む亜鉛イオンをZnOに換算し、その45〜25mol
%の範囲において該溶液をマンガン、マグネシユ
ウムなどのイオンを含む溶液又はこれらの酸化物
で置換し、更に酸化鉄45〜55mol%、或いは該酸
化鉄とSi、Al、Ti、Zr、CaなどのA群酸化物及
びNi、Cu、CoなどのB群酸化物の一種又は二種
以上を密混した物質を60〜500℃で乾燥して固め
た後、800〜1200℃で加熱分解して酸根を蒸発せ
しめ、次いで強磁性の発生する温度乃至1450℃に
焙焼することを特徴とする酸化物強磁性体の製造
法。」である。
(Means for Solving the Problems) The first invention of the present application provides that ``a solution of manganese sulfate, manganese nitrate, or a mixture thereof containing an amount of manganese oxide (MnO) equivalent to 45 to 55 mol%, The manganese ions contained are converted into MnO, and the solution is replaced by adding zinc oxide (ZnO) or magnesium oxide (MgO) or a mixture of both at 42 mol % or less, and further iron oxide 45 ~
55mol%, or the iron oxide and Si, Al, Ti, Zr, Ca
60 ~ 60~
After drying at 500℃ to solidify the slurry, drying at 800~1200℃
A method for producing an oxide ferromagnetic material, characterized in that magnetism is generated by thermally decomposing the material to evaporate acid roots, and then roasting and sintering hardening at 1200°C to 1450°C. '', and the second invention is ``Zinc sulfate, zinc nitrate, or a mixed solution thereof containing zinc oxide (ZnO) equivalent to about 50 mnl%, and the zinc ions contained in the solution converted to ZnO. 45
The solution is replaced with a solution containing ions such as manganese and magnesium, or one or more of these oxides in a range of ~25 mol%, and 45 to 55 mol% of iron oxide is added and mixed, and heated. A method for producing an oxide ferromagnetic material by removing the acid radicals contained therein by evaporation and roasting at a temperature at which ferromagnetism occurs to 1400°C. '', and the third invention is ``Zinc sulfate, zinc nitrate, or a mixed solution thereof containing zinc oxide (ZnO) equivalent to 50 mol%, converting the zinc ions contained in the solution into ZnO, 45-25mol
% range, the solution is replaced with a solution containing ions such as manganese, magnesium, etc. or oxides thereof, and further 45 to 55 mol% of iron oxide, or the iron oxide and A such as Si, Al, Ti, Zr, Ca, etc. are substituted. A substance that is a dense mixture of group oxides and one or more of group B oxides such as Ni, Cu, and Co is dried at 60 to 500℃ to solidify it, and then thermally decomposed at 800 to 1200℃ to remove the acid radicals. A method for producing an oxide ferromagnetic material, which comprises evaporating it and then roasting it to a temperature at which ferromagnetism occurs to 1450°C. ”.

(作 用) 鉱石中のマンガンを硫酸、硝酸などで抽出し、
この液を濃縮して約40容量%にする。これに酸化
鉄を加え、更に溶液中のMnO相当分の液の一部
をZnOで置換してZnOを添加混合し、60℃以上に
加熱して濃縮と混練に次いで乾燥し造粒の上、
850℃付近のマンガン含有液の熱分解温度以上、
〓〓〓
好ましくは900〜1200℃に加熱する。この焙焼物
を空気中又は水中に投入し、或いはちつ素ガス中
で冷却し粉砕して磁性材料とする方法である。か
くて本発明では、主体とする酸化鉄粉に対し他の
成分酸化物を硫酸、塩酸、硝酸などに溶解してイ
オンの形で添加混合するもので、これらのイオン
を含む液が酸化鉄に対して濡れの状態で密混す
る。この混合液を加熱又は真空などの方法により
乾燥しつつ造粒する。この混練作業の際に、若干
の遊離酸を添加してあれば、酸化鉄の表面の一部
が腐食し活性が生ずる。
(Function) Manganese in ore is extracted with sulfuric acid, nitric acid, etc.
Concentrate this liquid to about 40% by volume. Iron oxide is added to this, and a part of the liquid equivalent to MnO in the solution is replaced with ZnO, ZnO is added and mixed, heated to 60°C or higher, concentrated and kneaded, then dried, granulated, and
Above the thermal decomposition temperature of manganese-containing liquids around 850℃,
〓〓〓
Preferably heated to 900-1200°C. This method involves putting the roasted material into air or water, or cooling it in nitrogen gas and pulverizing it into a magnetic material. Thus, in the present invention, other component oxides are dissolved in sulfuric acid, hydrochloric acid, nitric acid, etc. and added and mixed in the form of ions to the main iron oxide powder, and the liquid containing these ions is added to the iron oxide powder. On the other hand, it mixes closely when wet. This mixed solution is granulated while being dried by a method such as heating or vacuum. If a small amount of free acid is added during this kneading operation, a part of the surface of the iron oxide will corrode and become active.

前記混練造粒には例えば、テフロン被覆したジ
ヤケツト付きパドル造粒機が適する。本機は混練
により液の偏折を防ぎ、同時に造粒ができるので
至便である。この混練造粒過程では、第1図に示
すように100℃までの加熱において結晶構造の変
移と結晶水が失われ、各温度でそれぞれ加熱融解
又は不調和溶融によつて酸化鉄の表面に濡れの状
態で密着する。次いでこの密着状態のまま乾燥造
粒され、更に高温で焙焼する。焙焼は硫酸マンガ
ン、硫酸亜鉛、硫酸マグネシユウムなどの熱分解
温度以上、好ましくは900〜1100℃程度に加熱す
る。このような各成分の熱分解温度よりも高い温
度に加熱するので各成分共一挙に分解し、その金
属イオンは酸化鉄に拡散する。この加熱時間は1
〜6時間の間で行なわれるが、副生酸化鉄、例え
ばピクリン液の分解生成物のスプレー焙焼のよう
な酸化鉄では、それの一次粒子は密度が低いが
Mnの溶液がよく滲透しているので、低い焙焼温
度で短時間に実施することができる。また、前記
スプレー方法(ピクリン液をルルギー法)で焙焼
した副生品、或いは赤鉄鉱、その他鉄鉱石などの
高密度の酸化鉄のような物質を用いる場合は1100
℃付近で焙焼する。当然のことながら、高密度の
酸化鉄は粉砕を進めて微粉化することによつて、
この焙焼温度の低下を計ることができる。
For example, a paddle granulator with a Teflon-coated jacket is suitable for the kneading and granulation. This machine is very convenient because it prevents the liquid from being unevenly distributed through kneading, and can also perform granulation at the same time. In this kneading and granulation process, as shown in Figure 1, the crystal structure changes and crystallization water is lost when heated up to 100℃, and the surface of iron oxide is wetted by heating melting or inharmonic melting at each temperature. Close contact in this condition. Next, the powder is dried and granulated in this tightly adhered state, and then roasted at a high temperature. Roasting is performed by heating at a temperature higher than the thermal decomposition temperature of manganese sulfate, zinc sulfate, magnesium sulfate, etc., preferably at about 900 to 1100°C. Since it is heated to a temperature higher than the thermal decomposition temperature of each component, each component decomposes all at once, and the metal ions diffuse into iron oxide. This heating time is 1
However, for by-product iron oxides, such as spray roasting of the decomposition products of picrin liquor, the primary particles have a low density, but
Since the Mn solution permeates well, roasting can be carried out in a short time at a low temperature. In addition, when using by-products roasted by the above-mentioned spray method (Lurgy method of picrin liquid), or substances such as high-density iron oxides such as hematite and other iron ores, 1100
Roast at around ℃. Naturally, high-density iron oxide can be pulverized into a fine powder.
This decrease in roasting temperature can be measured.

ここで、前記焙焼工程に於ける重量変化を調べ
ると、第2図のような曲線となる。図は硫酸マン
ガンの加熱による重量変化を示すものである。即
ち700℃以下で脱水、蒸発し、次いで850℃付近よ
り急激にSO4塩は分解してSO3分が減少し、1000
℃付近よりMn2+及びFe2+が発生して重量の変化
をもたらす。しかしこの重量は、酸化鉄の含有
量、炉内のふん囲気、加熱時間等に影響されるが
僅少である。ここで注目すべきことは、酸化鉄に
添加する他の酸化物は僅少なもの、例えばMn−
Zn系フエライトの合成の場合、Mnをそのイオン
を含む液とし、副成分のZn、Ni、Cu、Mg、Co
などの僅少な酸化物は、液による混合効果によつ
て酸化物のままで添加してもよい。また、Mg−
Zn系の場合は、Zn又はMgのイオンを含む液に
Mn、Ni、Cu、Coなどの酸化物を添加することも
できる。以上の如く酸化鉄以外の副成分中、主た
る特性を現わす物質を溶液とし、これより少ない
物質は酸化物として添加しても同様に好結果が得
られる。
Here, when the weight change in the roasting process is examined, a curve as shown in FIG. 2 is obtained. The figure shows the weight change due to heating of manganese sulfate. That is, the SO 4 salt dehydrates and evaporates below 700°C, and then rapidly decomposes from around 850°C, reducing SO 3 min to 1000°C.
Mn 2+ and Fe 2+ are generated from around ℃, causing a change in weight. However, this weight is small, although it is influenced by the iron oxide content, the atmosphere in the furnace, the heating time, etc. What should be noted here is that the amount of other oxides added to iron oxide is small, such as Mn-
In the case of synthesizing Zn-based ferrite, Mn is used as a liquid containing its ions, and the subcomponents Zn, Ni, Cu, Mg, Co
Small amounts of oxides such as oxides may be added as they are by the mixing effect of the liquid. Also, Mg−
For Zn-based products, use a solution containing Zn or Mg ions.
Oxides such as Mn, Ni, Cu, and Co can also be added. As mentioned above, among the subcomponents other than iron oxide, the substance exhibiting the main properties is made into a solution, and even if smaller amounts of substances are added as oxides, similar good results can be obtained.

次に添加物の添加効果を説明する。 Next, the effect of adding additives will be explained.

一般に、Ni−Zn、Cu−Zn、Mg−Zn、希土類
系などのフエライトは電気抵抗が高い特長をも
ち、それによつて音声よりマイクロ波に至る高周
波域に於いて、損失の少ない高周波線輪が提供さ
れる。また、他の系統としてMn−Zn系フエライ
トは電気抵抗が低いが、なおかつ、搬送周波帯域
以下で高性能を発揮する特長がある。しかし、こ
れら両系統共酸化鉄がフエライト形成の当量分を
越す過剰分がFe3O4として存在する場合、又は
Cu2O、Ni2O3などの発生によつてこれらの量に応
じて抵抗値は減少する傾向がある。更にこれらフ
エライトの合成は、その使用原料及び製造方法に
よつてフエライト化反応に大なる差異が生ずる。
In general, ferrites such as Ni-Zn, Cu-Zn, Mg-Zn, and rare earth metals have high electrical resistance, which allows them to be used as high-frequency coils with low loss in the high-frequency range from voice to microwave. provided. In addition, as another type of ferrite, Mn-Zn ferrite has a low electrical resistance, but also has the feature of exhibiting high performance below the carrier frequency band. However, if there is an excess of iron oxides in both systems as Fe 3 O 4 over the equivalent of ferrite formation, or
Due to the generation of Cu 2 O, Ni 2 O 3, etc., the resistance value tends to decrease depending on the amount of these. Furthermore, in the synthesis of these ferrites, the ferrite-forming reaction varies greatly depending on the raw materials used and the manufacturing method.

本発明は、前記フエライト化反応に於ける諸要
因を究明し、種々実験した結果、反応にあずかる
硬化剤又は結晶成長抑制剤としてCa、Bi、B、
V、W、Na、Si、Sn、Sb、Nb、As、Al、Zr、
Tiなどの酸化物又はこれらの塩を用い、かつ反
応炉内のふん囲気を調整して反応性の向上と結晶
の細分化及び電気抵抗の上昇を計り、高周波帯に
おける損失の減少に適するよう0.8〜0.7%以下で
調整した。特にこれらの添加剤のうち、Si、Al、
Caなどでは0.001%以下では効果がなくなり、0.7
〜0.8%以上では特性を劣化させるので、それを
上限とした。また補助剤としてはNi、Cu、Co、
Mgなどの酸化物を適宜選択して加えた。Ni、Cu
系の添加は使用周波数の上昇と共に増加調整し、
高周波損失の低減を計り上限を2%としたが、そ
れはこれ以上ではヒステリシス損失の増加を来た
し、前記添加剤の効果の方が追好であるためであ
る。CoOは磁気異方性の低下を期して添加し、上
〓〓〓
限値を越すと磁気異方性が逆にプラス量として増
加するため、上限を定めた。また、ZnOは磁気臨
界点の調節のため添加するもので、25mol%以上
添加すると磁気臨界点が下り過ぎて実用に耐えな
いためである。また、MgOは高周波特性を向上
させ、電気抵抗の増加に役立つもので、25mol%
以上では透磁率の低下が著しくなるため、これを
上限とした。次いで仮焼した原料を1μ台に粉砕
の上、所要の形状に成形して1300℃に加熱し、酸
化を防止して冷却する。
The present invention has investigated various factors in the ferritization reaction, and as a result of various experiments, Ca, Bi, B,
V, W, Na, Si, Sn, Sb, Nb, As, Al, Zr,
By using oxides such as Ti or their salts and adjusting the atmosphere inside the reactor, we aimed to improve reactivity, fragment crystals, and increase electrical resistance, making it suitable for reducing loss in high frequency bands. Adjusted to ~0.7% or less. Especially among these additives, Si, Al,
For Ca etc., there is no effect below 0.001%, and 0.7
If it exceeds ~0.8%, the characteristics deteriorate, so this was set as the upper limit. In addition, auxiliary agents include Ni, Cu, Co,
Oxides such as Mg were appropriately selected and added. Ni,Cu
The addition of the system is adjusted to increase as the frequency of use increases,
The upper limit was set at 2% in order to reduce high frequency loss, but this is because hysteresis loss would increase if it exceeded this, and the effect of the additive is better. CoO was added to reduce magnetic anisotropy, and
An upper limit was set because magnetic anisotropy increases as a positive amount when the limit value is exceeded. Further, ZnO is added to adjust the magnetic critical point, and if 25 mol % or more is added, the magnetic critical point will drop too much to be practical. In addition, MgO improves high frequency characteristics and helps increase electrical resistance, and is 25mol%
Above this value, the magnetic permeability decreases significantly, so this is set as the upper limit. Next, the calcined raw material is crushed into particles on the order of 1 μm, formed into the desired shape, heated to 1300°C, and cooled to prevent oxidation.

次に本発明の実施例を示す。 Next, examples of the present invention will be shown.

実施例 1 百分比で酸化鉄69.56、Mn3O43.89、MgO9.97
の主成分に対し、補助成分NiO0.34、CuO0.45、
CoO0.01を加え、更に硬化剤としてCaO0.65、
ZrO0.01、SiO20.1を混じ、これにZnOに換算して
15.02%となる硫酸亜鉛溶液を加えて、混練す
る。この混合液をパドル乾燥機に入れ約90℃に加
熱の上、混練しつつ乾燥し造粒する。造粒は3mm
径〜2mm径に仕上げる。この混練時間は第1図に
見られるように順次温度を上げ、図では100℃ま
での経過が示されているが、200℃以上で無水塩
になるまで加熱温を上げる。次いで1000℃で2時
間加熱し、粉砕、成形、本焼成を行なう。その特
性は次のとおりである。
Example 1 Iron oxide 69.56, Mn 3 O 4 3.89, MgO 9.97 in percentage
For the main component, the auxiliary components NiO0.34, CuO0.45,
Added CoO0.01 and further added CaO0.65 as a hardening agent.
Mix ZrO0.01 and SiO 2 0.1 and convert it to ZnO.
Add 15.02% zinc sulfate solution and mix. This mixed solution is placed in a paddle dryer, heated to approximately 90°C, kneaded, dried, and granulated. Granulation is 3mm
Finish to a diameter of ~2mm. During this kneading time, the temperature is gradually increased as shown in Figure 1, and although the figure shows progress up to 100°C, the heating temperature is increased to 200°C or higher until it becomes an anhydrous salt. Next, the mixture is heated at 1000°C for 2 hours to perform pulverization, molding, and main firing. Its characteristics are as follows.

μo410、B103100、Hc0.3、ρ1×108Ω、
Tc155℃ 実施例 2 酸化鉄71.35%、酸化亜鉛12.70%にMnOとして
換算して15.95%を含む硫酸マンガン溶液を加
え、スラリー濃度約50%となし、ボールミルで
2hr混合粉砕後、パドル乾燥機で混練、乾燥しつ
つ造粒する。次いで造粒物を1100℃で2hr仮焼し
急冷する。急冷した仮焼物は振動ミルで2hr粉砕
し、これにSiO20.05重量%、Al2O30.05%、
V2O50.01%、CaO0.005%を密混し所要の形状に
成形して1300℃で2hr加熱した後、ちつ素気中で
冷却する。このものの磁気特性はμo2050、
B104900、He0.25である。
μo410, B 10 3100, Hc0.3, ρ1×10 8 Ω,
Tc 155℃ Example 2 A manganese sulfate solution containing 15.95% in terms of MnO was added to 71.35% iron oxide and 12.70% zinc oxide to make a slurry concentration of about 50%, and milled in a ball mill.
After 2 hours of mixing and pulverization, it is kneaded in a paddle dryer and granulated while drying. The granules are then calcined at 1100°C for 2 hours and rapidly cooled. The rapidly cooled calcined product was ground in a vibration mill for 2 hours, and 0.05% by weight of SiO 2 , 0.05% of Al 2 O 3 ,
0.01% V 2 O 5 and 0.005% CaO are intimately mixed, molded into the desired shape, heated at 1300°C for 2 hours, and then cooled in air. The magnetic properties of this thing are μo2050,
B 10 4900, He 0.25.

実施例 3 酸化鉄71%、酸化亜鉛13%を秤取し、これに加
熱分解によつて16%のMnOとして残留すべき
MnSO4の溶液を添加し、更にこれらの混合物に
対し重量%で前記同様にNiO0.02%相当分の
NiSO4とCoO0.01%相当分のCoSO4の溶液を添加
し、更にSiO20.02%、Al2O30.01%、V2O50.01%
を加えてボールミルで充分密混し、次いでパドル
乾燥機で混練しつつ造粒乾燥し、1100℃で3hr仮
焼して水中急冷する。急冷した仮焼物をボールミ
ルで6hr湿式粉砕し、脱水乾燥後、解砕してポリ
ビニルアルコール(P.V.A.)を0.1%加えて所求
の形状に成形し、1300℃で酸素分圧0.4%中で2hr
焼結する。冷却は900℃まで0.1%の酸素を含むち
つ素気中で行ない、900℃以上ではちつ素気中で
冷却した。この焼成物の磁気特性は、μo3200、
B104800、Hc0.3である。
Example 3 Weigh out 71% iron oxide and 13% zinc oxide, which should remain as 16% MnO by thermal decomposition.
A solution of MnSO 4 was added, and an amount equivalent to 0.02% NiO was added to the mixture in weight% as above.
Add a solution of NiSO 4 and CoSO 4 equivalent to 0.01% CoO, and further add 0.02% SiO 2 , 0.01% Al 2 O 3 , and 0.01% V 2 O 5
The mixture is thoroughly mixed in a ball mill, then granulated and dried while kneading in a paddle dryer, calcined at 1100°C for 3 hours, and rapidly cooled in water. The rapidly cooled calcined product was wet-pulverized for 6 hours in a ball mill, dehydrated and dried, then crushed, added with 0.1% polyvinyl alcohol (PVA), molded into the desired shape, and heated at 1300℃ for 2 hours in an oxygen partial pressure of 0.4%.
Sinter. Cooling was performed up to 900°C in pure air containing 0.1% oxygen, and above 900°C in clear air. The magnetic properties of this fired product are μo3200,
B 10 4800, Hc 0.3.

(発明の効果) 本発明によると、焼結硬化によつて高磁性が安
定し、抵抗率が高く加工性のよい高周波用低損失
の磁性体が得られ、しかも、低廉な価格で提供で
きる。
(Effects of the Invention) According to the present invention, a high-magnetism stabilized by sinter hardening, a high-frequency, low-loss magnetic material with high resistivity and good workability can be obtained, and moreover, it can be provided at a low price.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は硫酸塩の溶解度性を示す数種金属の線
図、第2図は硫酸マンガンの加熱による重量変化
を示す線図である。 〓〓〓
FIG. 1 is a diagram of several metals showing the solubility of sulfate, and FIG. 2 is a diagram showing weight changes due to heating of manganese sulfate. 〓〓〓

Claims (1)

【特許請求の範囲】 1 酸化マンガン(MnO)量として45〜55mol%
相当分を含む硫酸マンガン、硝酸マンガン又はこ
れらの混合溶液に、溶液中に含むマンガンイオン
をMnOに換算し、その42mol%以下において該溶
液を酸化亜鉛(ZnO)又は酸化マグネシユウム
(MgO)又は両者の混合物を添加して置換し、更
に酸化鉄45〜55mol%、或いは該酸化鉄とSi、
Al、Ti、Zr、CaのA群酸化物及びNi、Cu、Coの
B群酸化物の一種又は二種以上を密混した物質
を、60〜500℃で乾燥して泥状体を固めた後、800
〜1200℃で加熱分解して酸根を蒸発することによ
り磁性を発生せしめ、次いで1200℃乃至1450℃で
焙焼して焼結硬化したことを特徴とする酸化物強
磁性体の製造法。 2 酸化亜鉛(ZnO)量として50mol%相当分を
含む硫酸亜鉛、硝酸亜鉛又はこれらの混合溶液
に、溶液中に含む亜鉛イオンをZnOに換算して、
その45〜25mol%の範囲において該溶液をマンガ
ン、マグネシユウムのイオンを含む溶液、或いは
これらの酸化物の一種又は二種以上で置換し、更
に酸化鉄45〜55mol%を添加混合し加熱してこれ
らに含む酸根を蒸発除去し、かつ、強磁性の発生
する温度乃至1400℃に焙焼してなる酸化物強磁性
体の製造法。 3 酸化亜鉛(ZnO)量として50mol%相当分を
含む硫酸亜鉛、硝酸亜鉛又はこの混合溶液に、溶
液中に含む亜鉛イオンをZnOに換算し、その45〜
25mol%の範囲において該溶液をマンガン、マグ
ネシユウムのイオンを含む溶液又はこれらの酸化
物で置換し、更に酸化鉄45〜55mol%、或いは該
酸化鉄とSi、Al、Ti、Zr、CaのA群酸化物及び
Ni、Cu、CoのB群酸化物の一種又は二種以上を
密混した物質を60〜500℃で乾燥して固めた後、
800〜100℃で加熱分解して酸根を蒸発せしめ、次
いで強磁性の発生する温度乃至1450℃に焙焼する
ことを特徴とする酸化物強磁性体の製造法。
[Claims] 1. 45 to 55 mol% as manganese oxide (MnO) amount
Manganese sulfate, manganese nitrate, or a mixed solution of these containing a corresponding amount of manganese ions is converted to MnO, and the solution is added with zinc oxide (ZnO) or magnesium oxide (MgO), or both. A mixture is added and substituted, and further 45 to 55 mol% of iron oxide, or the iron oxide and Si,
A substance containing one or more of group A oxides of Al, Ti, Zr, and Ca and group B oxides of Ni, Cu, and Co was dried at 60 to 500°C to solidify a slurry. After 800
A method for producing an oxide ferromagnetic material, characterized in that magnetism is generated by thermal decomposition at ~1200°C to evaporate acid radicals, and then roasted at 1200°C to 1450°C to sinter harden. 2 Into a solution of zinc sulfate, zinc nitrate, or a mixture thereof containing 50 mol% of zinc oxide (ZnO), convert the zinc ion contained in the solution into ZnO,
The solution is replaced with a solution containing manganese or magnesium ions in the range of 45 to 25 mol %, or one or more of these oxides, and 45 to 55 mol % of iron oxide is added and mixed and heated. A method for producing an oxide ferromagnetic material by removing the acid radicals contained in the ferromagnetic material by evaporation, and then roasting it at a temperature at which ferromagnetism occurs to 1400°C. 3. Add zinc sulfate, zinc nitrate, or a mixed solution thereof containing zinc oxide (ZnO) equivalent to 50 mol%, convert the zinc ion contained in the solution to ZnO, and add 45 to
The solution is replaced with a solution containing manganese and magnesium ions or their oxides in a range of 25 mol%, and further 45 to 55 mol% of iron oxide, or the iron oxide and A group of Si, Al, Ti, Zr, Ca. oxides and
After drying and solidifying a substance that is a mixture of one or more B group oxides such as Ni, Cu, and Co at 60 to 500°C,
1. A method for producing an oxide ferromagnetic material, which comprises thermal decomposition at 800 to 100°C to evaporate acid radicals, and then roasting to a temperature at which ferromagnetism occurs to 1450°C.
JP56198199A 1981-12-09 1981-12-09 Oxide ferromagnetic material and manufacture thereof Granted JPS5898903A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP56198199A JPS5898903A (en) 1981-12-09 1981-12-09 Oxide ferromagnetic material and manufacture thereof
NL8204778A NL8204778A (en) 1981-12-09 1982-12-09 METHOD FOR PREPARING FERROMAGNETIC OXIDES
DE19823245635 DE3245635A1 (en) 1981-12-09 1982-12-09 Process for producing a ferromagnetic oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56198199A JPS5898903A (en) 1981-12-09 1981-12-09 Oxide ferromagnetic material and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS5898903A JPS5898903A (en) 1983-06-13
JPS6131601B2 true JPS6131601B2 (en) 1986-07-21

Family

ID=16387115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56198199A Granted JPS5898903A (en) 1981-12-09 1981-12-09 Oxide ferromagnetic material and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS5898903A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0553801U (en) * 1991-12-25 1993-07-20 トーヨーエイテック株式会社 Internal processing equipment for differential gear case

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60132302A (en) * 1983-12-20 1985-07-15 Sumitomo Special Metals Co Ltd Oxide magnetic material
JPS60132301A (en) * 1983-12-20 1985-07-15 Sumitomo Special Metals Co Ltd Oxide magnetic material
JP2646883B2 (en) * 1991-05-28 1997-08-27 株式会社村田製作所 Manufacturing method of ferrite laminated parts
JP2001068326A (en) * 1999-08-30 2001-03-16 Tdk Corp MnZn BASED FERRITE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0553801U (en) * 1991-12-25 1993-07-20 トーヨーエイテック株式会社 Internal processing equipment for differential gear case

Also Published As

Publication number Publication date
JPS5898903A (en) 1983-06-13

Similar Documents

Publication Publication Date Title
JP3542319B2 (en) Single crystal ferrite fine powder
US4372865A (en) Carbonate/hydroxide coprecipitation process
US3428416A (en) Method of manufacturing ferrites
JPS6131601B2 (en)
CN103956247A (en) High-frequency and low-attenuation magnetic material and production method thereof
JPH09124322A (en) Production of soft magnetic hexagonal ferrite powder, and sintered product and radio wave absorber using the same
US4472369A (en) Process for producing ferrites
US3438900A (en) Ferrimagnetic material suitable for use at frequencies of at least 50 mc./sec. with improved properties
KR970008749B1 (en) Process for the preparation of nickel-zinc ferrite powder
JPH11307336A (en) Manufacture of soft magnetic ferrite
US3461072A (en) Ferrimagnetic material for use at frequencies higher than 50 mc./sec. having reduced loss factor and higher quality factor
JP7426818B2 (en) Manufacturing method of magnetic material and coil parts including magnetic material
CN115745592B (en) Broadband high-Tc high-permeability manganese zinc ferrite material and preparation method thereof
JPH0359008B2 (en)
JP7426819B2 (en) Manufacturing method of magnetic material and coil parts including magnetic material
JP2824603B2 (en) Ferrite particle powder for bonded magnetic material and method for producing the same
JP3406382B2 (en) Method for producing ferrite magnetic powder
JPH06333724A (en) Sintered ferrite with crystallite particle and manufacture thereof
JPH0366254B2 (en)
JPH07211534A (en) Method of manufacturing low loss oxide magnetic material
JP2849207B2 (en) Method for producing raw material oxide for soft ferrite
JPS63158811A (en) Manufacture of oxide ferromagnetic material
JPH0867554A (en) Production of oxide magnetic material
JPH07176419A (en) Method of manufacturing pre-baked powder for high frequency low loss magnetic material
JPH04219321A (en) Zinc raw material for soft ferrite and production of oxide raw material for soft ferrite using the same