JPS612269A - Metal oxide-hydrogen battery - Google Patents

Metal oxide-hydrogen battery

Info

Publication number
JPS612269A
JPS612269A JP59120826A JP12082684A JPS612269A JP S612269 A JPS612269 A JP S612269A JP 59120826 A JP59120826 A JP 59120826A JP 12082684 A JP12082684 A JP 12082684A JP S612269 A JPS612269 A JP S612269A
Authority
JP
Japan
Prior art keywords
hydrogen
battery
negative electrode
alloy
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59120826A
Other languages
Japanese (ja)
Other versions
JPH0517659B2 (en
Inventor
Motoi Kanda
基 神田
Yuji Sato
優治 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59120826A priority Critical patent/JPS612269A/en
Priority to US06/684,587 priority patent/US4605603A/en
Priority to EP84116352A priority patent/EP0149846A1/en
Publication of JPS612269A publication Critical patent/JPS612269A/en
Publication of JPH0517659B2 publication Critical patent/JPH0517659B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a metal oxide-hydrogen battery having large capacity and long life by adding Al to ternary system hydrogen absorption alloy of Misch metal, Ni, and Mn to suppress increase in internal resistance, prevent hydrogen leakage, keep safety, and suppress self discharge of the battery. CONSTITUTION:A positive electrode is manufactured by impregnating nickel hydroxide active material in a nickel sinter, and converting it into nickel oxide by formation. A negative electrode is prepared by mixing a hydrogen absorption alloy and a binder such as polytetrafluoroethylene and forming it in a sheet. As hydrogen absorption alloy, quarternary alloy having a general formula of MmNi5-(x+y)MnzAly (Mm is one of Misch metal or lanthanum series elements, or lanthanum riched Misch metal, x, y are 1>=x+y>=0.2) is used. Mn decreases equibrium plateau pressure, and Al increases life of negative electrode.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、金属酸化物を正極活物質とし水素を負極活物
質とする、いわゆる金属酸化物・水素電池に関し、更に
、+Ii L、 <は、水素負極が新規組成の水素吸蔵
合金で構成され、電池内圧を低位に保持し、自己放電も
抑制されて長寿命を維持する金属酸化物・水素゛電池に
関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a so-called metal oxide/hydrogen battery in which a metal oxide is used as a positive electrode active material and hydrogen is used as a negative electrode active material. This invention relates to a metal oxide/hydrogen battery in which the hydrogen negative electrode is composed of a hydrogen storage alloy with a new composition, which maintains the internal pressure of the battery at a low level, suppresses self-discharge, and maintains a long life.

〔発明の技術的゛:〒τ〆とその問題点]現在、金属酸
11.物・水素電池において、水素負極を水素吸蔵合金
で構成した形式のものが注目を集めている。七の理由は
、この電池系が元来高エネルキー密度を(Il−、容積
効率的に有利であり、しかも安全作動が+i[能であっ
て、特性的にも信頼度の点でも優れているからである。
[Technical aspect of the invention: 〒τ〆 and its problems] Currently, metal acids 11. Among hydrogen batteries, those in which the hydrogen negative electrode is made of a hydrogen storage alloy are attracting attention. The seventh reason is that this battery system inherently has a high energy density (Il-), which is advantageous in terms of volumetric efficiency, safe operation is +i [capability, and it is excellent in terms of characteristics and reliability. It is from.

この形式の、lj i’11Xの水素負極に用いる水素
吸蔵合金としては、征;kから、LaN+5が多用され
ている。また、La、Ge、、ρr、Nd、Smなどの
ランタン系元素の混合物であるミツシュメタル(以下M
mと指称する)とN1の合金、すなわちM+eNi5も
広く用いられている。
LaN+5 is often used as a hydrogen storage alloy for the hydrogen negative electrode of this type of lj i'11X. In addition, Mitsushmetal (hereinafter referred to as M
An alloy of N1 and M+eNi5 is also widely used.

このような本土吸蔵合金を用いた場合、その電池内圧は
水素吸蔵合金を使用しない電池の内圧(50kg/cm
2以下)に比べてたしかに低くなることは事実である。
When such a mainland storage alloy is used, the internal pressure of the battery is the same as that of a battery that does not use a hydrogen storage alloy (50 kg/cm
It is true that it is certainly lower than 2 or below.

しかしながら、その値は常温においても依然として2〜
5kg1cI112程度であって、例えばニッケルカド
ミウム電池の内圧(0〜1kg/Cm” )に比べれば
高い値である。
However, the value is still 2 to 2 even at room temperature.
The pressure is about 5 kg1cI112, which is a high value compared to, for example, the internal pressure of a nickel cadmium battery (0 to 1 kg/Cm'').

電池内圧が大気圧よりも高い場合には、電池容器の構造
をある程度堅牢にすることが必要であることと並んで、
特性的には次のような不都合な1ハ態を惹起する。第1
の問題は、電池内の水素分子−はその分子径が小さく、
そのため電池容器から徐々番こせよ漏洩することが不可
避であり、安全性を著しく損なうこと;第2の問題は、
第1の現象の結果、水素負極から吸蔵されている水素が
放出されて電池容量は低下し自己放電を招くことである
When the internal pressure of the battery is higher than atmospheric pressure, it is necessary to make the structure of the battery container somewhat robust.
Characteristically, it causes the following inconvenient condition. 1st
The problem is that the hydrogen molecules in the battery have a small molecular diameter.
Therefore, gradual leakage from the battery container is inevitable, significantly impairing safety; the second problem is
As a result of the first phenomenon, occluded hydrogen is released from the hydrogen negative electrode, reducing battery capacity and causing self-discharge.

このようなことから、水素負極には平衡プラトー圧の低
い水素吸蔵合金を使用することが提案され、各種の合金
の研究が進められている。
For this reason, it has been proposed to use a hydrogen storage alloy with a low equilibrium plateau pressure for the hydrogen negative electrode, and research on various alloys is underway.

例えば、 LaNi  MmNi5に関していえば、常
温5 ! 15気圧と高いが、1.かじ、N1の一部を他の元素で
置換するとその中衛プラトー圧の低下が実現される。と
くに、N1の一部をマンカン(Mn)で置換した三元系
の合金は、Mn以外の元素による置換の場合には、得ら
れ六合金の水素吸蔵量の減少、すなわち電極容准の低1
・が生起するのに反して、このような現象が起らないの
で、水素負極の材料としては最も好適なものど考えられ
ていた。
For example, regarding LaNi MmNi5, at room temperature 5! Although it is high at 15 atmospheres, 1. By substituting a part of N1 with another element, a reduction in the middle plateau pressure can be realized. In particular, in the case of a ternary alloy in which a part of N1 is replaced with mankanite (Mn), when substitution is made with an element other than Mn, the hydrogen storage capacity of the resulting six alloys decreases, that is, the electrode capacity decreases.
However, since this phenomenon does not occur, it was considered to be the most suitable material for hydrogen negative electrodes.

しかしながら、L+を含む上記三元系の水素吸蔵合金で
実際に水素()極を構成し、KOHまたはNaOHのよ
うなアルカリ水溶液中で充放電を反復すると、50〜1
00回の充放電サイクルで負極の寿命が尽きてしまうと
いう問題を生している。
However, if a hydrogen () electrode is actually constructed using the above ternary hydrogen storage alloy containing L+ and repeatedly charged and discharged in an alkaline aqueous solution such as KOH or NaOH,
This poses a problem in that the life of the negative electrode runs out after 00 charge/discharge cycles.

[9,明の目的] 本発明は水素吸蔵合金を負極とする上記の問題点を解消
し、電池内圧が低位に保持されて水素漏洩が防止されて
安全性が確保され、自己放電も抑制された大容量かつ長
寿命の金属酸化物・水素電池の提供を目的とする [発明の概要] 本発明者らは、−上記目的を達成すべく前述の三元系水
素吸蔵合金に関し鋭意研究を東ねた結果、−に記三元系
合金に所定量のA見を添加すると、この四元系合金は、
若干の容量低下を招くものの充放電サイクル時の寿命は
長くなるとの一11実を見出し、該合金を負極とする金
属酸化物−水素′電池を開発するに到った。
[9. Aim of the present invention] The present invention solves the above-mentioned problems of using a hydrogen storage alloy as a negative electrode, maintains the internal pressure of the battery at a low level, prevents hydrogen leakage, ensures safety, and suppresses self-discharge. [Summary of the Invention] In order to achieve the above object, the present inventors have carried out intensive research on the above-mentioned ternary hydrogen storage alloy. As a result, when a predetermined amount of A is added to the ternary alloy shown in -, this quaternary alloy becomes
They found that although the capacity was slightly reduced, the life during charging and discharging cycles was lengthened, and a metal oxide-hydrogen battery using the alloy as a negative electrode was developed.

すなわち、本発明の金属酸化物・水素電池は、金属酸化
物をIF極活物質とし、水素を負極活物質とする金V、
酩化物・水素電池において、負極が、Mn  A文 次式:  M m N I 5− (x+、 )xy(
式中、Mmはミツシュメタル、ランタン系元素のいずれ
か1種又はランタン富化ミツシュメタルを表わし; N
4はそれぞれl≧H+y≧0.2の関係を満足する数を
表わす) で、[<される水素吸蔵合金で構成されていることを4
¥徴とする。
That is, the metal oxide/hydrogen battery of the present invention uses gold V, which uses a metal oxide as an IF electrode active material and hydrogen as a negative electrode active material,
In an intoxicant-hydrogen battery, the negative electrode has the following formula: M m N I 5- (x+, )xy(
In the formula, Mm represents Mitsuhmetal, any one of lanthanum-based elements, or lanthanum-enriched Mitsuhmetal; N
4 represents a number that satisfies the relationship l≧H+y≧0.2), and 4 indicates that it is composed of a hydrogen storage alloy with [<
It will be charged as ¥.

未発+51の電池において、正極としては、例えば、金
属ニンケルの焼結体に水酸化:−ンケル(Nl(0)1
)2)の、1: :>な活物質を含浸、化成して成るニ
ッケル酸化物(Ni00H)の電極が用いられる。
In an unexploded +51 battery, the positive electrode is, for example, a sintered body of metal nickel with hydroxide: -nickel (Nl(0)1
)2) A nickel oxide (Ni00H) electrode formed by impregnating and chemically forming an active material of 1: :> is used.

負極としては、負極活物質である水素を包蔵した後述の
水素吸蔵合金と例えばポリテトラフルオロエチレンのよ
うな結着剤とを混合したのちシート化して構成したシー
ト電極が用いられる。
As the negative electrode, a sheet electrode is used, which is formed by mixing a hydrogen storage alloy, which will be described later, containing hydrogen as a negative electrode active material, and a binder such as polytetrafluoroethylene, and then forming the mixture into a sheet.

本発明で用いZl水素吸蔵合金は、次の−・般式で表わ
される:  14mN+5−(!+、)Mn、Au 、
の四元系合金である。
The Zl hydrogen storage alloy used in the present invention is represented by the following general formula: 14mN+5-(!+,)Mn, Au,
It is a quaternary alloy.

この合金で、Mmは、■通常、[、a約15重量%。In this alloy, Mm is usually [, a about 15% by weight.

Ce約39’1%、能にNd、Pr、Smなどを含む混
合物である、いわゆるミツシュメタル:■ランタン系元
素からその1種を精製して取り出したもの、とりわけI
ll :F、 L <はLa;■ミツシュメタルのうち
、しa成分の多いランタン化ミツシュメタル(lant
hanum rich mischmetal:Lm)
を表わす。
So-called mitshu metal, which is a mixture containing about 39'1% Ce, Nd, Pr, Sm, etc.: ■ A substance obtained by refining one type of lanthanum-based element, especially I
ll : F, L < is La; ■ Among Mitshu metal, lanthanized Mitshu metal (lant
hanum rich mischmetal:Lm)
represents.

この合金において、 Knは平衡プラトー圧を低下せし
めるに寄与する成分であり、 A、Q−は負極として使
用した際のノ「命を延ばすことに寄与する成分である。
In this alloy, Kn is a component that contributes to lowering the equilibrium plateau pressure, and A and Q- are components that contribute to extending the life when used as a negative electrode.

これらMn、Aiの添加量はそれぞれX、7で示されて
いるが、本発明にあっては、このX、マの合計量、すな
わちX+Yが 1≧x+y≧0.2の関係を満足するよ
うにS定されることが必要である。
The amounts of Mn and Ai added are indicated by X and 7, respectively, and in the present invention, the total amount of X and M, that is, X+Y, satisfies the relationship 1≧x+y≧0.2. It is necessary that S be determined as follows.

z+yがlを超えると、負極としてLaNi5.MmN
i5などの従来の合金を用いたときの容量の理論値の1
72以下に容量が低下してしまう。また、z+yが0.
2より小さくなると、得られた合金の1・−衡プラドー
圧が1気圧よりも大きくなって゛重油内圧のFAを招<
 、 Mn、AMの添加量、すなわちx、yl−1それ
ぞれ十二記したl≧H+y≧0.2の範囲内で自由に変
化させることができる。ただし、AJIの添加は負極寿
命の延長にとっては効果的であるが、しかし、容量の低
下をもたらすので、目的とする電池特性との関係を勘案
してx、vはそれぞれ決められる。
When z+y exceeds l, LaNi5. MmN
1 of the theoretical capacity when using conventional alloys such as i5
The capacity will drop to 72 or less. Also, if z+y is 0.
When the pressure becomes smaller than 2, the 1-equilibrium Prado pressure of the obtained alloy becomes larger than 1 atm, leading to FA of the internal pressure of the heavy oil.
, Mn, and AM, that is, x and yl-1 can be freely changed within the range of 1≧H+y≧0.2, respectively. However, although the addition of AJI is effective in extending the life of the negative electrode, it causes a decrease in capacity, so x and v are each determined in consideration of the relationship with the desired battery characteristics.

また、z+yがL記範囲にある場合、本発明の四元系合
金では、LaNi、(!+y)Mn−文、のちのが最も
有用であり、つぎにMmがランタン富化ミツシュメタル
を用いたものが効果的である。後者の場合、1+yは 
1≧、 十Y≧0.3であることが好ましい。また、M
mが通常のミツシュメタルを用いたものは、性能約1.
′は+Wf 2者より若干見劣りがする・が、しかし、
安価でありかつ実用的には何ら不都合はないという点で
[業的である。この合金の場合、ス+yは l≧X l
−Y≧0.4であることが好ましい。
Furthermore, when z+y is in the range of L, among the quaternary alloys of the present invention, LaNi, (!+y)Mn-, and later are most useful, followed by those in which Mm uses lanthanum-enriched Mitsushmetal. is effective. In the latter case, 1+y is
It is preferable that 1≧ and 10Y≧0.3. Also, M
Those using normal Mitshu metal have a performance of about 1.
′ is +Wf slightly inferior to the second one, but,
It is commercial in that it is inexpensive and has no practical disadvantages. In the case of this alloy, S+y is l≧X l
It is preferable that -Y≧0.4.

このような門A:、系の合金は、目的組成から決められ
る各成分II)素粉末の所定量を混合し、その混合粉末
を例えば1!r空アーク溶解炉で溶解することにより均
一固溶体として得ることができる。さらに、この固溶体
を粉砕するが、あるいは常温で40kg/am2程ti
5の水素雰囲気中に置くというような活性化処理を施1
ことにより容易にその粉末体を調製することができる。
Such a gate A:, system alloy is produced by mixing a predetermined amount of each component II) elementary powder determined from the target composition, and then adding the mixed powder to, for example, 1! It can be obtained as a homogeneous solid solution by melting in an empty arc melting furnace. Furthermore, this solid solution is pulverized, or at room temperature, at a rate of about 40 kg/am2.
Activation treatment such as placing it in a hydrogen atmosphere in step 1
This allows the powder to be easily prepared.

以下に本発明につき実施例に基づいて更に詳細に説明す
る。
The present invention will be explained in more detail below based on examples.

[発明の実施例] 実施例1 (1)負極の形成。[Embodiments of the invention] Example 1 (1) Formation of negative electrode.

La、Ni、Mn、  ^又の各金属元素の粉末をそれ
ぞれ所定騎混合し、得られた混合粉末を真空アーク溶解
炉で溶解して、組成がLaNi、、6Mno、3All
 o、+の均一固溶体を得た。この固溶体を直径約5I
1mに破砕し、ついでこれを活性化処理(水素Ff:3
5kg/cm2.常温、1時間)することにより50〜
100μmの粉末を得た。
The powders of each metal element La, Ni, Mn, and ^ are mixed in a predetermined amount, and the resulting mixed powder is melted in a vacuum arc melting furnace to obtain compositions of LaNi, 6Mno, 3All.
A homogeneous solid solution of o, + was obtained. This solid solution has a diameter of about 5I
It is crushed into pieces of 1 m, and then activated (hydrogen Ff: 3
5kg/cm2. 50 ~ by heating at room temperature for 1 hour)
A powder of 100 μm was obtained.

この合金の30°Cにおける平衡プラI・−圧は0.4
気圧、その理論容量、すなわち、1V衡圧がプラトー領
域を超えて1気圧に達するときの水素吸蔵φに対応する
電極容量(ちなみに、LaN+5は約350mAh/g
)は340mAh/gであった。
The equilibrium pressure of this alloy at 30°C is 0.4
Atmospheric pressure, its theoretical capacity, that is, the electrode capacity corresponding to hydrogen storage φ when 1 V equilibrium pressure exceeds the plateau region and reaches 1 atm (by the way, LaN+5 is about 350 mAh/g
) was 340mAh/g.

口の合金粉末とポリテトラフルオロエチレン(PTFE
)の分散液とを混合して充分に混練したのち厚み0.5
mmのシートに成形した。合金粉末とPTFEとの混合
比は乾燥状態で90:10であった。
Alloy powder and polytetrafluoroethylene (PTFE)
) and the dispersion liquid and kneaded thoroughly, the thickness was 0.5
It was molded into a sheet of mm. The mixing ratio of alloy powder and PTFE was 90:10 in a dry state.

fIIられたシート2枚を、1枚のニッケルネットの1
14面から圧着して厚み0.8mmの一体的′■1を極
を形成1.これを負極とした。
The two fII sheets are combined into one nickel net.
Press from 14 sides to form a pole 1 with a thickness of 0.8 mm. This was used as the negative electrode.

(2) 、’iF、極の形成 多孔質の二ソウル焼結体にN + (OH) 2を含浸
し、これを化成処理1.て Ni0OH電極を形成しこ
れを正極とした。
(2) Formation of 'iF, Pole A porous two-soul sintered body is impregnated with N + (OH) 2 and subjected to chemical conversion treatment 1. A Ni0OH electrode was formed and used as a positive electrode.

(3)電池の製造 以1−の負極、II極、更には厚み0.3mmのポリア
ミド不織布をセパ1/−タとし、8モル/fLのKOH
溶液を電解液と1.て第1図に示した電池を製造した。
(3) Manufacture of batteries The negative electrode and II electrode of step 1, and a separator made of polyamide non-woven fabric with a thickness of 0.3 mm, and 8 mol/fL of KOH
Add the solution to the electrolyte and 1. The battery shown in FIG. 1 was manufactured using the following steps.

第1図において、lは負極、2はセパレータ、3は正極
である。4および5はそれぞれ負極および正極の端f−
で身)す、ステンレス製容器6とは電気的に独fi L
でいる。なお汁器6は、電池の各構成費素を組み込んだ
後溶接して密閉化している。
In FIG. 1, 1 is a negative electrode, 2 is a separator, and 3 is a positive electrode. 4 and 5 are the negative and positive electrode ends f-
The stainless steel container 6 is electrically connected to the stainless steel container 6.
I'm here. Note that the juicer 6 is sealed by welding after each component of the battery is assembled.

また7は内圧をA11l ’、Ii、’するためのパイ
プで、8は圧力測定器である。11極3はセパレータ2
でU字型につつみ、その両側から本発明による負極lを
接して配置し、アクリル製のホルタ−9で密着させた。
Further, 7 is a pipe for measuring the internal pressure A11', Ii, and 8 is a pressure measuring device. 11 pole 3 is separator 2
It was wrapped in a U-shape, and the negative electrodes 1 according to the present invention were placed in contact with each other from both sides thereof, and were brought into close contact with an acrylic halter 9.

10は電解液である。IF極の容量は 1.OAh、負
極のLaN 14. eMIlo 、 :+A l o
 、 lは2.OAhの理論容量をもっている。
10 is an electrolytic solution. The capacity of the IF pole is 1. OAh, negative electrode LaN 14. eMIlo, :+A lo
, l is 2. It has a theoretical capacity of OAh.

(4)電池特性 この電池の内圧をまず1気圧(Okg/cm’ )の状
態にしたのち、200mAhで5時間充電し、ついで同
じ< 200mAhで1.Ovまで放電するという充放
電サイクルを反復した。
(4) Battery characteristics The internal pressure of this battery was first brought to 1 atm (Okg/cm'), then charged at 200 mAh for 5 hours, and then charged at the same < 200 mAh for 1. A charge/discharge cycle of discharging to Ov was repeated.

このときの電池の放電容歇、放電終r時における電池内
圧と充放電サイクルとの関係を測定した。
At this time, the relationship between the discharge capacity of the battery, the battery internal pressure at the end of discharge, and the charge/discharge cycle was measured.

比較のために、水素吸蔵合金として、I−a N i 
5(30°Cにおけるf Iiプラトー圧3気バー)及
びLaNi、6Mno、4(30℃における平衡プラト
ー圧0,3気圧)を用いて実施例1と同様の構成で電池
を製造し、これらの放電容量、電池内圧と充放電サイク
ルの関係を測定した。以F―の結果を第2図、第3図と
して示した。図中、→−は末完11 、−4−はLaN
i  、+はL a N l a 、 e M n o
 、 aの場合を表わす。
For comparison, as a hydrogen storage alloy, I-a Ni
5 (f Ii plateau pressure at 30° C. 3 atm) and LaNi, 6Mno. The relationship between discharge capacity, battery internal pressure, and charge/discharge cycles was measured. The results of F- are shown in Figures 2 and 3. In the figure, →- is final perfect 11, -4- is LaN
i, + is L a N l a, e M no
, represents the case of a.

実施例2 負極に用いた水素吸蔵合金が、 MmNi  Mn  A文  (30°Cにおけるf衡
プ4.2 0.8 0.2 ラドー圧0.3気I1.’ 、 ’+ii:極容量約3
00mAh/g)であったことを除い−(は実施例1と
同様の電池を製造し、その特性を調べた。
Example 2 The hydrogen storage alloy used for the negative electrode was MmNi Mn
A battery similar to that of Example 1 was manufactured and its characteristics were investigated.

比較のだめげ1、負極にMIlIN14.2Mno、B
 (30℃における可i衡プノI・−月二〇、25気圧
、電極容量330mAh/g)を用いたムのについても
同様に特性を調べた。以−(−のも−1果を第4図、第
5図に示した。図で、漬−は本発明、−Ik−は比較例
の場合である。
Comparison Dage 1, MILIN14.2Mno, B for the negative electrode
The characteristics of a sample using a vacuum pump (at 30 DEG C., 25 atm, electrode capacity 330 mAh/g) were similarly investigated. The following results are shown in FIGS. 4 and 5. In the figures, "pickled" is the case of the present invention, and -Ik- is the case of the comparative example.

[発明の効果1 以1−の説明(゛二明らかなように、本発明の電池は、
充放電す・fクルが進んでも電池内圧が高くならず、し
かもイの放゛市容量も長期に亘り高位を維持していて、
従東の金属酸化物・水素電池より優れた特性を有しその
C業的価値は大である。
[Effect of the invention 1 Explanation of 1-(2) As is clear, the battery of the present invention has the following effects:
The internal pressure of the battery does not increase even as the charging/discharging cycle progresses, and the market capacity of the battery remains high for a long period of time.
It has better characteristics than the metal oxide/hydrogen battery manufactured by Tohoku, and its commercial value is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明電池の概略断面図である。第2図〜第5
図は、゛いずれも電池の特性を示すグラフである。 1−負極  2−セパレータ  3−正極6−電池容器
  1〇−電解液 第1図 −尾1−7
FIG. 1 is a schematic cross-sectional view of the battery of the present invention. Figures 2 to 5
The figures are graphs showing battery characteristics. 1-Negative electrode 2-Separator 3-Positive electrode 6-Battery container 10-Electrolyte Figure 1-Tail 1-7

Claims (1)

【特許請求の範囲】 1、金属酸化物を正極活物質とし、水素を負極活物質と
する金属酸化物・水素電池において、負極が、次式:M
mNi_5_−_(_x_+_y_)Mn_xAl_y
(式中、Mmはミッシュメタル、ランタン系元素のいず
れか1種又はランタン富化ミッシュメタルを表わし;x
、yはそれぞれ1≧x+y≧0.2の関係を満足する数
を表わす) で示される水素吸蔵合金で構成されていることを特徴と
する金属酸化物・水素電池。 2、該負極が、次式:LaNi_5_−_(_x_+_
y_)Mn_xAl_y(式中、x、yはそれぞれ上と
同じ意味を有する) で示される水素吸蔵合金から成る特許請求の範囲第1項
記載の金属酸化物・水素電池。
[Claims] 1. In a metal oxide/hydrogen battery in which a metal oxide is used as a positive electrode active material and hydrogen is used as a negative electrode active material, the negative electrode is formed by the following formula: M
mNi_5_-_(_x_+_y_)Mn_xAl_y
(In the formula, Mm represents any one of misch metal, lanthanum-based elements, or lanthanum-enriched misch metal; x
, y each represent a number satisfying the relationship 1≧x+y≧0.2) A metal oxide/hydrogen battery comprising a hydrogen storage alloy represented by the following. 2. The negative electrode has the following formula: LaNi_5_-_(_x_+_
y_)Mn_xAl_y (wherein x and y each have the same meanings as above) The metal oxide/hydrogen battery according to claim 1, comprising a hydrogen storage alloy represented by the following formula.
JP59120826A 1983-12-26 1984-06-14 Metal oxide-hydrogen battery Granted JPS612269A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP59120826A JPS612269A (en) 1984-06-14 1984-06-14 Metal oxide-hydrogen battery
US06/684,587 US4605603A (en) 1983-12-26 1984-12-21 Hermetically sealed metallic oxide-hydrogen battery using hydrogen storage alloy
EP84116352A EP0149846A1 (en) 1983-12-26 1984-12-27 Hermetically sealed metallic oxide-hydrogen battery using hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59120826A JPS612269A (en) 1984-06-14 1984-06-14 Metal oxide-hydrogen battery

Publications (2)

Publication Number Publication Date
JPS612269A true JPS612269A (en) 1986-01-08
JPH0517659B2 JPH0517659B2 (en) 1993-03-09

Family

ID=14795917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59120826A Granted JPS612269A (en) 1983-12-26 1984-06-14 Metal oxide-hydrogen battery

Country Status (1)

Country Link
JP (1) JPS612269A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61233969A (en) * 1985-04-10 1986-10-18 Matsushita Electric Ind Co Ltd Electrode for storage battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07168428A (en) * 1993-12-13 1995-07-04 Nec Corp Sealing material for closing toner discharge port

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5719347A (en) * 1980-07-04 1982-02-01 Agency Of Ind Science & Technol Misch metal-nickel alloy for occluding hydrogen
JPS5763670A (en) * 1980-10-03 1982-04-17 Agency Of Ind Science & Technol Manufacture of misch metal-nickel quaternary alloy for occluding hydrogen and manufacture
JPS5877544A (en) * 1981-10-29 1983-05-10 Sekisui Chem Co Ltd Hydrogen occluding alloy
JPS58217655A (en) * 1982-06-11 1983-12-17 Agency Of Ind Science & Technol Hydrogen occluding multi-component alloy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5719347A (en) * 1980-07-04 1982-02-01 Agency Of Ind Science & Technol Misch metal-nickel alloy for occluding hydrogen
JPS5763670A (en) * 1980-10-03 1982-04-17 Agency Of Ind Science & Technol Manufacture of misch metal-nickel quaternary alloy for occluding hydrogen and manufacture
JPS5877544A (en) * 1981-10-29 1983-05-10 Sekisui Chem Co Ltd Hydrogen occluding alloy
JPS58217655A (en) * 1982-06-11 1983-12-17 Agency Of Ind Science & Technol Hydrogen occluding multi-component alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61233969A (en) * 1985-04-10 1986-10-18 Matsushita Electric Ind Co Ltd Electrode for storage battery

Also Published As

Publication number Publication date
JPH0517659B2 (en) 1993-03-09

Similar Documents

Publication Publication Date Title
JP2680669B2 (en) Hydrogen storage alloy electrode for alkaline storage battery
JP2965475B2 (en) Hydrogen storage alloy
US20060234129A1 (en) Batteries utilizing a solid polymeric electrolyte
JPS59181459A (en) Metal oxide hydrogen battery
JPS612269A (en) Metal oxide-hydrogen battery
JPH0562429B2 (en)
JP2566912B2 (en) Nickel oxide / hydrogen battery
JP2537084B2 (en) Hydrogen storage alloy electrode
JP2989877B2 (en) Nickel hydride rechargeable battery
JPS60109174A (en) Manufacture of hydrogen absorption electrode
JPS6215769A (en) Nickel-hydrogen alkaline battery
JPS61168870A (en) Metal-hydrogen alkaline storage battery
JP3012658B2 (en) Nickel hydride rechargeable battery
JP3182790B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPS61214360A (en) Sealed alkaline storage battery
JPH0810596B2 (en) Metal oxide / hydrogen battery
JPH08138658A (en) Hydrogen storage alloy-based electrode
JP3796085B2 (en) Hydrogen storage alloy electrode and manufacturing method thereof
JPS60220556A (en) Manufacturing method of hydrogen occluding electrode for enclosed storage battery
JP3454780B2 (en) Alkaline storage battery
JPH0690922B2 (en) Sealed alkaline storage battery
JP2823303B2 (en) Hydrogen storage alloy electrode
JPH0810591B2 (en) Hydrogen storage alloy electrode
JP2634859B2 (en) Electrode manufacturing method
JP3025770B2 (en) Metal oxide / hydrogen battery