JPS6122661A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6122661A
JPS6122661A JP59143022A JP14302284A JPS6122661A JP S6122661 A JPS6122661 A JP S6122661A JP 59143022 A JP59143022 A JP 59143022A JP 14302284 A JP14302284 A JP 14302284A JP S6122661 A JPS6122661 A JP S6122661A
Authority
JP
Japan
Prior art keywords
groove
film
silicon dioxide
silicon
dioxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59143022A
Other languages
Japanese (ja)
Inventor
Toshiyuki Ishijima
石嶋 俊之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59143022A priority Critical patent/JPS6122661A/en
Publication of JPS6122661A publication Critical patent/JPS6122661A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To form a high reliable groove capacitance by a method wherein a groove is formed by removing a part of working parts by etching using the anisotropic etching technique, after working a groove forming part and a semiconductor base plate surface at its periphery, into the circular shape convexed downward. CONSTITUTION:A silicon dioxide film 32, a silicon nitride film 33 and a silicon dioxide film 34 are formed in order on a single crystal silicon base plate 31, then its surface is covered by a photoresist 35 removing a capacitance forming region. Next, the films 34, 33, 32 are removed by etching in order by the anisotropie etching technique. A silicon dioxide film 36 is formed, a silicon base plate 31 on the capacitance forming region being oxided. Subsequently, when the film 36 is removed by the anisotropic etching technique, the surface of the silicon base plate becomes to the shape which is applied the shape of the film 36y as it is, and differences in level convexed downward slowly are formed at the center and the end part of the opening part. Furthermore, the groove and films are etched, and an insulation film 37 and an electrical conductivity material 38 are formed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は溝を用いて容量を形成する半導体装置の製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing a semiconductor device that uses grooves to form a capacitor.

(従来技術とその問題点) 現在MOSダイナミックメモリセルとして広い用いられ
ているセルは、1つのトランジスタと1つ・のコンデン
サからなるメモリセルである。(以下ITICセルと略
す。) 第1図にとのITICセルの模式的断面図を示す。
(Prior Art and its Problems) A cell currently widely used as a MOS dynamic memory cell is a memory cell consisting of one transistor and one capacitor. (Hereinafter abbreviated as ITIC cell.) FIG. 1 shows a schematic cross-sectional view of the ITIC cell.

第1図において3がキャパシタ電極で反転層6との間に
絶縁膜5をはさむことによシ記憶容量を形成している。
In FIG. 1, numeral 3 denotes a capacitor electrode, and an insulating film 5 is sandwiched between it and an inversion layer 6 to form a storage capacitor.

2はスイッチングトランジスタのゲート電極でワード線
に接続されておシ、ビット線に接続されている拡散層4
と反転層6の間での電荷の移動を制御する。7は隣接メ
モリセルとの分離領域である。従来例において記憶容量
の大きさは、キャパシタ電極3の面積と絶縁膜5の誘電
率及び膜厚によって決定されている。
Reference numeral 2 denotes a gate electrode of a switching transistor connected to a word line, and a diffusion layer 4 connected to a bit line.
and the inversion layer 6. 7 is an isolation region from adjacent memory cells. In the conventional example, the size of the storage capacity is determined by the area of the capacitor electrode 3 and the dielectric constant and thickness of the insulating film 5.

近来メモリの大規模化は微細加工技術の進展に伴うメモ
リセルサイズの縮小化によって達成されておシ、従来例
で示したITICセル構造ではキャパシタ電極面積は減
少するばかシである。このため、従来例のITICセル
では絶縁膜5の膜厚を薄くすることによシ記憶容量の大
幅な減少を防いでいた。しかし現在では絶縁膜の膜厚も
もはや限界に近づいている。一方メモリの大規模化を実
現するためにはメモリセルの微細化は必要であシ、この
ため従来構造のITICセルでは高誘電率の絶縁膜を用
いない限シ記憶容量の大きさは減少する一方である。し
かしながら高誘電率の絶縁膜は現在模索段階で近いうち
に実用化されるのは困難である。このように従来型のI
TICセルは今後増々記憶容量が減少するという問題を
有している。このような記憶容量の減少は、情報の読み
出しを困難にするばかシでなく、雑音に対しても弱くな
シ大きな問題である。このため従来のITICセルでは
もはや対処しきれなくなってきている。
In recent years, large-scale memories have been achieved by reducing memory cell sizes with advances in microfabrication technology, and in the ITIC cell structure shown in the conventional example, the capacitor electrode area is reduced. For this reason, in the conventional ITIC cell, a significant decrease in storage capacity was prevented by reducing the thickness of the insulating film 5. However, the thickness of the insulating film is now approaching its limit. On the other hand, in order to increase the scale of memory, it is necessary to miniaturize memory cells, and for this reason, in ITIC cells with conventional structures, the storage capacity decreases unless an insulating film with a high dielectric constant is used. On the other hand. However, an insulating film with a high dielectric constant is currently in the exploratory stage and it is difficult to put it into practical use in the near future. In this way, the conventional I
TIC cells have a problem that their storage capacity will decrease more and more in the future. Such a reduction in storage capacity does not only make it difficult to read information, but also makes it vulnerable to noise, which is a big problem. For this reason, conventional ITIC cells are no longer able to cope with this problem.

このような情勢の中で、従来のメモリセルの容量部の平
面面積を増加させることなく容量を形成する面積を増加
させる方法として、たとえば第43回応用物理学会学術
講演会の講演予稿集434ページに「深い溝のキャパシ
タ形成への応用」と題して発表された講演においては半
導体基板上に溝を設け、その溝の内壁に絶縁膜を形成し
、さらに電極を形成して容量を形成するものが示されて
いる。(以下溝容量と略す)これによシ、容量形成領域
の平面面積を増加させることなく記憶容量を増加させて
いる。
Under these circumstances, as a method of increasing the area where the capacitor is formed without increasing the planar area of the capacitor part of the conventional memory cell, for example, there is a method to increase the area where the capacitor is formed without increasing the planar area of the capacitor part of the conventional memory cell. In a lecture titled ``Application of deep grooves to capacitor formation,'' he talked about forming a groove on a semiconductor substrate, forming an insulating film on the inner wall of the groove, and then forming an electrode to form a capacitor. It is shown. (hereinafter abbreviated as groove capacitance) This increases the storage capacity without increasing the planar area of the capacitor formation region.

第2図(al〜(clに従来の溝を用いた容量部の製造
プロセスを示す。
FIG. 2 shows a manufacturing process of a capacitive part using conventional grooves (al to cl).

第2図(a)は、シリコン基板21上に絶縁膜として二
酸化珪素膜22を形成した後、その表面を容量形成領域
部を除いてフォトレジスト23で被った状態を示したも
のである。
FIG. 2(a) shows a state in which a silicon dioxide film 22 is formed as an insulating film on a silicon substrate 21, and then its surface is covered with a photoresist 23 except for the capacitor formation region.

第2図(b)は、前記フォトレジスト23をエツチング
マスクとして異方性エツチング技術によシ前記二酸化珪
素膜22をエツチング除去し、さらに前記フォトレジス
ト23を除去した後前記二酸化珪素@22′をエツチン
グマスクとして、再び異方性エツチング技術によ)前記
シリコン基板21をエツチング除去して溝Aを形成した
状態を示したものである。
FIG. 2(b) shows that the silicon dioxide film 22 is etched away by an anisotropic etching technique using the photoresist 23 as an etching mask, and after the photoresist 23 is removed, the silicon dioxide @22' is removed. This figure shows a state in which the silicon substrate 21 is etched away (again using an anisotropic etching technique as an etching mask) to form a groove A.

第2図fe)は、前記二酸化珪素膜22′を除去した後
少なくとも前記溝Aの内壁面を含むように薄い二酸化珪
素膜24を形成し、さらに多結晶シリコン25を少なく
とも前記溝Aの内壁面を含むように形成して容量部を形
成した状態を示したものである。
FIG. 2 fe) shows that after removing the silicon dioxide film 22', a thin silicon dioxide film 24 is formed so as to include at least the inner wall surface of the trench A, and polycrystalline silicon 25 is further coated on at least the inner wall surface of the trench A. This figure shows a state in which the capacitor portion is formed by forming the capacitor portion so as to include the capacitor portion.

しかしながら、このような従来の製造方法によって溝を
形成すると溝の上下のシリコン基板端部26.27が直
角になる。このためシリコン基板21とキャパシタ電極
25との間に形成した絶縁膜24にかかる電界強度がこ
の溝の上下の端部26.27において大きくなる。つま
ルミ界集中が生じる。このため絶縁膜24の耐圧が劣化
し信頼性上大きな問題である。
However, when a groove is formed by such a conventional manufacturing method, the silicon substrate ends 26 and 27 above and below the groove are at right angles. Therefore, the electric field strength applied to the insulating film 24 formed between the silicon substrate 21 and the capacitor electrode 25 becomes large at the upper and lower ends 26 and 27 of this groove. In other words, lumi field concentration occurs. For this reason, the withstand voltage of the insulating film 24 deteriorates, which poses a serious problem in terms of reliability.

(発明の目的) 本発明は、このような従来の欠点を除去せしめて、信頼
性の高い溝容量を形成する製造方法を提供することにあ
る。
(Object of the Invention) An object of the present invention is to provide a manufacturing method that eliminates such conventional drawbacks and forms a highly reliable groove capacity.

(発明の構成) 本発明によれば半導体基板上に溝を形成し、該溝を用い
てメモリセルの容量部を形成する半導体装置の製造方法
において、溝形成部およびその周辺の半導体基板表面を
下に凸の円弧形状に加工した後、異方性エツチング技術
を用いて前記加工部分の一部分をエツチング除去して溝
を形成することを特徴とする半導体装置の製造方法が得
られる。
(Structure of the Invention) According to the present invention, in a method for manufacturing a semiconductor device in which a groove is formed on a semiconductor substrate and the groove is used to form a capacitor portion of a memory cell, the surface of the semiconductor substrate in and around the groove formation portion is A method for manufacturing a semiconductor device is obtained, which comprises processing the semiconductor device into a downwardly convex arc shape and then etching away a portion of the processed portion using an anisotropic etching technique to form a groove.

(実施例) 以下本発明の実施例について図面を参照して詳細に説明
する。
(Example) Examples of the present invention will be described in detail below with reference to the drawings.

第3図(a) 、 tb) 、 fe) 、 (d) 
、 (e) 、 (f)は本発明における溝を用いて容
量部を形成する製造プロセスを順を追って示した模式的
断面図である。
Figure 3 (a), tb), fe), (d)
, (e) and (f) are schematic cross-sectional views sequentially showing the manufacturing process of forming a capacitive part using grooves according to the present invention.

第3図(a)は、単結晶シリコン基板31上に二酸化珪
素膜32、窒化珪素膜33、二酸化珪素膜34を順次形
成した後、その表面上を容量形成領域部を除いてフォト
レジスト35で被った状態を示す。二酸化珪素膜32は
熱酸化法又はCVD法によシ又二酸化珪素膜34はCV
D法によシ容易に形成できる。
FIG. 3(a) shows that after a silicon dioxide film 32, a silicon nitride film 33, and a silicon dioxide film 34 are sequentially formed on a single-crystal silicon substrate 31, a photoresist 35 is applied to the surface of the film except for the capacitor formation region. Indicates the covered state. The silicon dioxide film 32 is formed by a thermal oxidation method or a CVD method, and the silicon dioxide film 34 is formed by a CVD method.
It can be easily formed by method D.

第3図(blは、前記フォトレジスト35をエツチング
マスクとして異方性エツチング技術によシ前記二酸化珪
素膜34.窒化珪素膜33.二酸化珪素膜32を順次エ
ツチング除去した状態を示す。
FIG. 3 (bl) shows a state in which the silicon dioxide film 34, silicon nitride film 33, and silicon dioxide film 32 are sequentially etched away by an anisotropic etching technique using the photoresist 35 as an etching mask.

第3図(c)は、前記フォトレジスト35を除去した後
前記窒化珪素膜33′を耐熱酸化マスクとして容量形成
領域上の前記シリコン基板31を熱酸化法によシ酸化し
二酸化珪素膜36を形成した状態を示したものである。
FIG. 3(c) shows that after the photoresist 35 is removed, the silicon substrate 31 on the capacitor formation region is oxidized by a thermal oxidation method using the silicon nitride film 33' as a heat-resistant oxidation mask to form a silicon dioxide film 36. This figure shows the formed state.

このように熱酸化法によシ二酸化珪素膜36を形成する
と、通常のLOCO8法によるフィールド酸化膜の形成
時と同様に二酸化珪素膜の横方向へのしみ込みいわゆる
バーズビークが生じる。そしてこのしみ込み量および形
状については前記二酸化珪素32′の膜厚、窒化珪素3
3′の膜厚および二酸化珪素36の成長膜厚を選択する
ことによジ制御することができる。
When the silicon dioxide film 36 is formed by the thermal oxidation method in this manner, the silicon dioxide film permeates in the lateral direction, resulting in so-called bird's beaks, similar to when a field oxide film is formed by the usual LOCO8 method. The amount and shape of this penetration are determined by the thickness of the silicon dioxide 32' and the thickness of the silicon nitride 32'.
The film thickness can be controlled by selecting the film thickness of silicon dioxide 3' and the growth film thickness of silicon dioxide 36.

第3図(d)は、異方性エツチング技術によシ前記二酸
化珪素膜36をエツチング除去した状態を示す。前記二
酸化珪素膜36をエツチング除去した後に現われる前記
シリコン基板表面は、前記二酸化珪素膜36の形状をそ
のまま転写した形となシ開ロ部の中央と端部でゆるやか
な下に凸の段差が形成される。
FIG. 3(d) shows a state in which the silicon dioxide film 36 has been etched away using an anisotropic etching technique. The surface of the silicon substrate that appears after the silicon dioxide film 36 is etched away has a shape that is a direct transfer of the shape of the silicon dioxide film 36, and a gradual downward convex step is formed at the center and end of the seam opening. be done.

第3図+e+は、前記二酸化珪素膜34′をエツチング
マスクとして異方性エツチング技術によシ、前記シリコ
ン基板31をエツチング除去し溝Bを形成した状態を示
す。このエツチングによシエッチング前のシリコン基板
表面の形状はそのまま溝底のシリコン基板表面形状に転
写される。
FIG. 3 +e+ shows a state in which the silicon substrate 31 is etched away to form a groove B by anisotropic etching technique using the silicon dioxide film 34' as an etching mask. By this etching, the shape of the silicon substrate surface before etching is directly transferred to the silicon substrate surface shape of the groove bottom.

第3図(f)は、前記二酸化珪素膜34′、窒化珪素i
1負33’および二酸化珪素膜32′を順次除去した後
、少なくとも前記溝Bの内壁を被うように薄い絶縁膜3
7および導電性物質38を形成した状態を示す。前記薄
い絶縁膜37は、熱酸化法によって形成される二酸化珪
素膜あるいはCVD法によって形成される窒化珪素膜で
よい。さらに前記導電性物質はリン、ヌボロン等の不純
物原子を含んだ多結晶シリコンあるいは高融点金属でよ
い。
FIG. 3(f) shows the silicon dioxide film 34', silicon nitride i
1 negative 33' and the silicon dioxide film 32', a thin insulating film 3 is formed so as to cover at least the inner wall of the groove B.
7 and a conductive material 38 are shown. The thin insulating film 37 may be a silicon dioxide film formed by a thermal oxidation method or a silicon nitride film formed by a CVD method. Further, the conductive material may be polycrystalline silicon containing impurity atoms such as phosphorus or nuboron, or a high melting point metal.

以上述べたように本発明の実施例では第3図(a)で示
したように、始めにシリコン基板上に形成する絶縁膜と
して二酸化珪素膜32−窒化珪素膜33−二酸化珪素膜
34の三層構造をとっている。
As described above, in the embodiment of the present invention, as shown in FIG. 3(a), the insulating film formed on the silicon substrate is made of three layers: silicon dioxide film 32, silicon nitride film 33, and silicon dioxide film 34. It has a layered structure.

しかしこの三層絶縁膜を厚い一層の二酸化珪素膜におき
かえてもよい。それは、第3図(e)において二酸化珪
素膜36を形成する際に、開口部でのシリコン基板表面
と厚い二酸化珪素膜で被われたシリコン基板の表面とで
は熱酸化速度に差が生じるために開口部端付近ではバー
ズビークと同様な形状が形成されるからである。
However, this three-layer insulating film may be replaced with a thick single-layer silicon dioxide film. This is because when forming the silicon dioxide film 36 in FIG. 3(e), there is a difference in thermal oxidation rate between the surface of the silicon substrate at the opening and the surface of the silicon substrate covered with a thick silicon dioxide film. This is because a shape similar to a bird's beak is formed near the end of the opening.

(発明の効果) 本発明は、シリコン基板を異方性エツチング技術によシ
エッチング除去して溝を形成する時、エツチング前に容
量形成領績を酸化して容量形成領域の端部に意図的にバ
ーズビークを形成して、溝開口部端付近のシリコン基板
表面をなだらかな段差にしている。こうした後に異方性
エツチング技術によシ溝を形成すると、溝の上端部はか
シでなく同時に溝の底の端部での形状までが直角でなく
なだらかな鈍角となる。このように溝の端部形状を直角
からなだらかな鈍角にすることによシ容量を形成する絶
縁膜にかかる電界強度を弱めこれによシ耐圧を大幅に増
加させることができる。
(Effects of the Invention) The present invention, when etching away a silicon substrate using anisotropic etching technology to form a groove, oxidizes the capacitance formation region before etching to intentionally remove the etching at the end of the capacitance formation region. A bird's beak is formed on the surface of the silicon substrate near the edge of the groove opening to create a gentle step. When a groove is formed by an anisotropic etching technique after this, the top end of the groove is not an edge, and at the same time, the shape of the bottom end of the groove is not a right angle but a gentle obtuse angle. By changing the shape of the end of the groove from a right angle to a gentle obtuse angle in this way, the electric field strength applied to the insulating film forming the capacitance can be weakened, thereby greatly increasing the withstand voltage.

以上述べた通シ、本発明によれば信頼性の高い溝容量を
形成する製造方法を容易に得ることができる。
As described above, according to the present invention, a manufacturing method for forming a highly reliable groove capacitance can be easily obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のITICセルの模式的断面図、第2図(
a) 、 (bl 、 (e)は従来の溝容量部の製造
プロセス ゛を順を追って示した模式的断面図、第3図
(al〜(f)は、本発明の一実施例をプロセスを追っ
て示した模式的断面図である。 図において各記号はそれぞれ次のものを示す。 1.21,31:シリコン基板、2:ワード線に接続し
たスイッチングトランジスタのゲート電極、3:キャパ
シタ電極、4:ビット線に接続された拡散層、5:絶縁
膜、6:反転層、7:分離領域、22.22’ 、32
.32’ 、34.34’ 、36.36’−二酸化珪
素膜、23,35.:フォトレジスト、24,37;薄
い絶縁膜、25,284導電性物質、26 、27:溝
の端部、A、B+溝。 笥1図 (α) (b) 第3図 (シ)
Figure 1 is a schematic cross-sectional view of a conventional ITIC cell, and Figure 2 (
a), (bl, and (e) are schematic cross-sectional views showing the conventional manufacturing process of the groove capacitor section in order. It is a schematic cross-sectional view shown later. In the figure, each symbol indicates the following, respectively: 1.21, 31: silicon substrate, 2: gate electrode of switching transistor connected to word line, 3: capacitor electrode, 4 : Diffusion layer connected to bit line, 5: Insulating film, 6: Inversion layer, 7: Isolation region, 22.22', 32
.. 32', 34.34', 36.36'-silicon dioxide film, 23,35. : Photoresist, 24, 37; Thin insulating film, 25, 284 conductive material, 26, 27: Groove end, A, B+groove. Figure 1 (α) (b) Figure 3 (shi)

Claims (1)

【特許請求の範囲】[Claims]  半導体基板上に溝を形成し、該溝を用いてメモリセル
の容量部を形成する半導体装置の製造方法において、溝
形成部およびその周辺の半導体基板表面を下に凸の円弧
形状に加工した後、異方性エッチング技術を用いて前記
加工部分の一部分をエッチング除去して溝を形成するこ
とを特徴とする半導体装置の製造方法。
In a method for manufacturing a semiconductor device in which a groove is formed on a semiconductor substrate and the groove is used to form a capacitive portion of a memory cell, after the groove forming portion and the surface of the semiconductor substrate around the groove are processed into a downwardly convex arc shape. . A method of manufacturing a semiconductor device, comprising etching away a portion of the processed portion using an anisotropic etching technique to form a groove.
JP59143022A 1984-07-10 1984-07-10 Manufacture of semiconductor device Pending JPS6122661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59143022A JPS6122661A (en) 1984-07-10 1984-07-10 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59143022A JPS6122661A (en) 1984-07-10 1984-07-10 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6122661A true JPS6122661A (en) 1986-01-31

Family

ID=15329096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59143022A Pending JPS6122661A (en) 1984-07-10 1984-07-10 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6122661A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6444040A (en) * 1987-08-11 1989-02-16 Fujitsu Ltd Manufacture of semiconductor device
JPH02286571A (en) * 1989-02-09 1990-11-26 Ind Grafica Meschi Srl Service for high speed printer and its apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6444040A (en) * 1987-08-11 1989-02-16 Fujitsu Ltd Manufacture of semiconductor device
JPH02286571A (en) * 1989-02-09 1990-11-26 Ind Grafica Meschi Srl Service for high speed printer and its apparatus

Similar Documents

Publication Publication Date Title
KR900007606B1 (en) Semiconductor memory
US5472904A (en) Thermal trench isolation
JPS6010773A (en) Method of forming 1-element fet-memory capacitor circuit
JPS58137245A (en) Semiconductor memory and its manufacture
JPH03209868A (en) Manufacture of ic capacitor and semiconductor ic device
KR910007111B1 (en) Semiconductor memory device and its method for manufacturing
JPS5810861A (en) Semiconductor device and manufacture thereof
JPS63288043A (en) Method of isolating side surface isolated element
JPS6122661A (en) Manufacture of semiconductor device
JPS6070758A (en) Semiconductor memory and manufacture thereof
JPH06120446A (en) Semiconductor storage device and manufacture thereof
JPS6054472A (en) Semiconductor memory and manufacture thereof
JPS62137863A (en) Semiconductor memory device
JPS63305527A (en) Semiconductor device and manufacture thereof
EP0317160A2 (en) Semiconductor device having a side wall film and method of producing the same
JPH01216538A (en) Semiconductor device and manufacture thereof
JPS59182558A (en) Semiconductor memory device
JP3004280B2 (en) Semiconductor memory cell
KR960012643B1 (en) Method for forming the element isolation film of the semiconductor element
JPH0474477A (en) Non-volatile memory and its manufacture
JPS63182859A (en) Semiconductor integrated circuit device
JPS60115254A (en) Semiconductor device and manufacture thereof
JPS62160731A (en) Manufacture of semiconductor device
JPH0223646A (en) Semiconductor device
JPS59171158A (en) Semiconductor memory cell