JPS61222215A - Superlattice device - Google Patents

Superlattice device

Info

Publication number
JPS61222215A
JPS61222215A JP60062087A JP6208785A JPS61222215A JP S61222215 A JPS61222215 A JP S61222215A JP 60062087 A JP60062087 A JP 60062087A JP 6208785 A JP6208785 A JP 6208785A JP S61222215 A JPS61222215 A JP S61222215A
Authority
JP
Japan
Prior art keywords
layers
solid
layer
solid layer
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60062087A
Other languages
Japanese (ja)
Inventor
Masafumi Sano
政史 佐野
Hisanori Tsuda
津田 尚徳
Katsuji Takasu
高須 克二
Yutaka Hirai
裕 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60062087A priority Critical patent/JPS61222215A/en
Publication of JPS61222215A publication Critical patent/JPS61222215A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • H01L31/035245Superlattices; Multiple quantum well structures characterised by amorphous semiconductor layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Recrystallisation Techniques (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To provide a photoelectric converting device which can arbitrarily vary the optical band gap and has spectral characteristics with a wide wavelength band, by constituting at least one of first solid-state layers and second solid-state layers by plural layers of composition, each being a non-single- crystalline layer which has a compositing ratio or composition varied arbitrarily. CONSTITUTION:First solid-state layers 2-5 with a thickness to cause quantum effect to develope and second solid-state layers 2'-4' with a thickness being larger than the first layers in electron affinity and being possible to cause electrons in the first layers to tunnel are laminated alternately. At least one of the first layers 2-5 and second layers 2'-4' in such a superlattice are constituted by plural layers of composition, each being a non-single-crystalline layer which has a compositing ratio or composition varied arbitrarily. For example, on a glass substrate 1, first solid-state layers 2-5 made of a-Si1-xNx:H where each layer has x=0.1, x=0.2, x=0.3, or x=0.4, and second solid-state layers 2'-4' made of a-Si1-yCy:H where each layer has y=0.1, y=0.2, y=0.3, are laminated alternately. The thickness of the first layers is 2-200Angstrom and that of the second layers is 2-100Angstrom .

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超格子体に係シ、特に量子効果が現われる厚さ
とした第1の固体層と、該第1の固体層よりも電子親和
力が大きくかつ第1の固体層の電子がトンネル可能な厚
さとした第2の固体層とを交互に積層させた超格子体に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to superlattices, and particularly relates to a first solid layer having a thickness such that a quantum effect appears, and a first solid layer having an electron affinity higher than that of the first solid layer. The present invention relates to a superlattice body in which second solid layers are alternately laminated and are large and thick enough to allow electrons from the first solid layer to tunnel through.

〔従来技術〕[Prior art]

近年、半導体技術の進歩によシ、各種の分光特性を有す
る発光素子、受光素子等の光電変換素子が用いられてい
るが、各光電変換素子の分光特性は構成材料によって規
定され、広波長帯域にわたって所望の分光特性をうる事
はできず、一般的にはせまい範囲で鋭いピークを有する
光電変換素子しか得られていなかった。以上のような問
題点から任意は光学バンドギャップを変える事のできる
半導体素子が望まれていた。
In recent years, with advances in semiconductor technology, photoelectric conversion elements such as light-emitting elements and light-receiving elements with various spectral characteristics have been used.The spectral characteristics of each photoelectric conversion element are determined by the constituent materials, and can be applied over a wide wavelength band. It has not been possible to obtain desired spectral characteristics over a wide range of wavelengths, and generally only photoelectric conversion elements having sharp peaks in a narrow range have been obtained. Due to the above-mentioned problems, there has been a desire for a semiconductor element whose optical bandgap can be arbitrarily changed.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上記従来技術の要求に鑑み、超格子体の
構成層の組成比または組成物を変える事によシ、光学パ
ンドギャッfを任意に変える事のできる超格子体を提供
する事にある。
In view of the above requirements of the prior art, an object of the present invention is to provide a superlattice whose optical breadth gap f can be arbitrarily changed by changing the composition ratio or composition of the constituent layers of the superlattice. be.

上記あ目的は量子効果が現われる厚さとした第1の固体
層と、該第1の固体層よりも電子親和力が大きくかつ第
1の固体層の電子がトンネル可能な厚さとした第2の固
体層とを交互に積層させた超格子体において、前記第1
の固体層と前記第2の固体層との少なくとも一方の固体
層を複数の組放物よシ構成し、各層ごとに任意に組成比
又は組成物を変えた非単結晶層とした事を特徴とする本
発明の超格子体によって達成される。
The purpose of the above is to create a first solid layer with a thickness that allows quantum effects to occur, and a second solid layer that has a larger electron affinity than the first solid layer and has a thickness that allows electrons from the first solid layer to tunnel through. In the superlattice body in which the first
At least one of the solid layer and the second solid layer is composed of a plurality of set paraboloids, and each layer is a non-single crystal layer with a composition ratio or composition arbitrarily changed. This is achieved by the superlattice of the present invention.

〔実施例〕〔Example〕

以下1本発明の実施例を図面を用いて詳細に説明する。 EMBODIMENT OF THE INVENTION Below, one embodiment of the present invention will be described in detail using the drawings.

第1図は本発明の超格子の一実施例を示した断面図であ
る。第1図において、1はガラス基板、2.3,4.5
は第1の固体層で、ここでは構成材料はa −S l 
1− xNx : Hであシ、2.3.4.5はそれぞ
れx=o、1 # x=0.2 # X=0.3 、 
Xl:0.4の場合である。7.3’ 、 4’は第2
の固体層で、ここでは構成材料はa−811−アC7:
Hであシ、τ、3′。
FIG. 1 is a sectional view showing an embodiment of the superlattice of the present invention. In Figure 1, 1 is a glass substrate, 2.3, 4.5
is the first solid layer, where the constituent materials are a −S l
1- xNx: H, 2.3.4.5 respectively x=o, 1 # x=0.2 # X=0.3,
This is the case when Xl: 0.4. 7.3' and 4' are the second
Here, the constituent material is a-811-AC7:
H, τ, 3′.

4′はそれぞれy=0.1 、 y=0.2 、 y=
0.3の場合である。第1の固体92〜5は第2の固体
層τ〜4′よりも電子親和力が大きく、その層厚をキャ
リアのドブロイ波長(λ= h/p )程度、あるいは
キャリアの平均自由行程の程度に減少させると量子サイ
ズ効果が顕著になシ、新たなエネルギー準位(量子化準
位)が形成される。さらに第2の固体層2′〜4′の厚
さを前記第1の固体層の量子化単位の電子がトンネルヤ
きるほど薄くすると、電子は量子化準位において積層構
造の層の中を自由に運動できるようKなる。本発明の超
格子体はこの条件を満たすように第1の固体層の厚さを
2〜2001、第2の固体層の厚さを2〜100Xとす
る事が望ましい。固体112〜5及び固体層2〜4′の
製造方法としてはグロー放電法、スノ母ツタ法。
4′ are respectively y=0.1, y=0.2, y=
This is the case of 0.3. The first solid layer 92-5 has a larger electron affinity than the second solid layer τ~4', and its layer thickness is approximately the de Broglie wavelength of the carrier (λ = h/p) or the mean free path of the carrier. When it decreases, the quantum size effect becomes noticeable and a new energy level (quantization level) is formed. Furthermore, when the thickness of the second solid layers 2' to 4' is made thin enough to allow electrons in the quantization unit of the first solid layer to tunnel through, the electrons can freely move through the layers of the stacked structure at the quantization level. I'm going to be K so I can exercise. In order to satisfy this condition, the superlattice of the present invention desirably has a first solid layer with a thickness of 2 to 2,001×, and a second solid layer with a thickness of 2 to 100×. The method for manufacturing the solids 112-5 and the solid layers 2-4' is a glow discharge method and a snow ivy method.

)10MO−CVD法、光CVD法、高真空蒸着法が用
いられる。本実施例では前記グロー放電法を用いた。
)10MO-CVD method, photo-CVD method, and high vacuum evaporation method are used. In this example, the glow discharge method described above was used.

a−811−エNx : H膜である第1の固体層2〜
5は原料ガスとして5IH4,NH,を用いマス70−
でガス流量をコントロールして作成した。またa−81
1−アcy:H膜である第2の固体層2′〜4′は原料
ガスにS iH4,0M4を用いマスフローでガス流量
をコントロールして作成した。2系統のガスが混合しな
いように各層の堆積が終了するとターボモレキ、ラーポ
ングで真空度t 10−’Torr以下まで下げて、残
留ガスを除去した。いずれの膜もグロー放電法によシ作
成し、放電/譬ワーを調節する事で膜厚を均一に形成し
た。
a-811-ENx: First solid layer 2 which is a H film
5 uses 5IH4, NH as the source gas and mass 70-
It was created by controlling the gas flow rate. Also a-81
The second solid layers 2' to 4', which are 1-acy:H films, were prepared by using SiH4,0M4 as a raw material gas and controlling the gas flow rate by mass flow. After the deposition of each layer was completed, the vacuum level was lowered to t 10-' Torr or less using a turbo moleki and a larpong to remove residual gases so that the two systems of gas would not mix. All films were produced by a glow discharge method, and the film thickness was made uniform by adjusting the discharge/discharge rate.

上記実施例においては第1の固体層2〜5と第2の固体
82’〜イとの組成比を変えたが第1の固体層2〜5の
*−S l 1−xNx : HのXを0.2として固
定し、第2の固体層2’〜4’のa−81,−yCy 
: Hのyのみをy=0.2 * y=0.3 、 y
=0.4と変えてもよい。
In the above embodiment, the composition ratios of the first solid layers 2 to 5 and the second solids 82' to 82' were changed; is fixed as 0.2, and a-81,-yCy of the second solid layer 2' to 4'
: Only y of H is y=0.2 * y=0.3, y
It may be changed to =0.4.

第2図に本発明による超格子体の前記実施例のバンド図
を示す。(、)は第1の固定層と第2の固定層との組成
比を各層ごとに変化させた場合の7472図であシ、伽
)は第2の固体層のみ組成比を変えた場合のバンド図で
ある。−2図(i)、伽)において第1図の各層に対応
する領域には同−付号を付しである。第2図(a) 、
 (b)に示すように第1の固体層と第2の固体層又は
どちらか一方の固体層の組成比t−変える事によりて光
学ノ4ンドギャッグが変化し、また量子化準位に生じた
ミニ7(ンドも、光学バンドギャップの変化しない井戸
層及び/4リヤ一層が同一の超格子構造のものに比べて
大きく変化L’(いた。つまり光学バンドギャップが変
化し、それに伴う量子化準位も変化するため、井戸層及
ヒバリヤ一層が同一で光学バンドキャップが変化しない
ものに比べて、光学バンドギャップの変化に起因する1
=バンドの変化の度合が大きい。
FIG. 2 shows a band diagram of the embodiment of the superlattice according to the present invention. Figures (,) are 7472 diagrams when the composition ratio of the first fixed layer and the second fixed layer is changed for each layer. It is a band diagram. In FIG. 2(i), 弽), the regions corresponding to each layer in FIG. 1 are given the same numerals. Figure 2(a),
As shown in (b), by changing the composition ratio t of the first solid layer and the second solid layer, or either one of the solid layers, the optical node gag changes, and also occurs at the quantization level. The mini-7 (mini-7) also had a large change L' (in other words, the optical band gap changed and the quantization standard Since the optical level also changes, compared to a case where the well layer and the barrier layer are the same and the optical band gap does not change, the
= The degree of band change is large.

以上の実施例においては固体層の組成比を連続的に変え
たが、任意の層のみ組成比を変えてもよい。又光学バン
ドギャップは組成比だけでなく組成物を変えてもよい。
In the above embodiments, the composition ratio of the solid layer was changed continuously, but the composition ratio of only an arbitrary layer may be changed. Further, the optical band gap may be determined by changing not only the composition ratio but also the composition.

例えばn型不純物またはp型不純物をドーグし、そのド
ー/臂ントの量を変える事によって光学バンドギャップ
を変えてもよい・固体層の構成材料は上記組合せの他に
、a−8l/a−G・。
For example, the optical bandgap may be changed by doping an n-type impurity or a p-type impurity and changing the amount of the dopant.・In addition to the above combination, the material for forming the solid layer may be a-8l/a- G.

a−817a−8IC、a−Go/a−81C等があシ
、又コノ構成材料はターミネータ、例えばH,ハロゲノ
等を含んでいてもよい、前記実施例ではアモルファス材
料について記載したが、多結晶材料等であってもよい。
a-817a-8IC, a-Go/a-81C, etc., and the constituting material may also contain a terminator, such as H, halogeno, etc. In the above embodiment, an amorphous material is described, but a polycrystalline material may be used. It may be a material or the like.

第1の固体層と第2の固体層の層数は各2層以上であれ
ばよいが、望ましくは数十層程度がよい。
The number of layers of the first solid layer and the second solid layer may be two or more each, but desirably about several tens of layers.

以上前記実施例の超格子体によれば、光学バンドギャッ
プを任意に変える事ができ、発光波長帯域の広い発光素
子、感度波長帯域の広い受光素子等を提供する事ができ
る。
According to the superlattice body of the embodiment described above, the optical bandgap can be changed arbitrarily, and a light emitting element with a wide emission wavelength band, a light receiving element with a wide sensitivity wavelength band, etc. can be provided.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明の超格子体によれば
、光学パンドギャッfを任意に変える事ができ、広波長
帯域の分光特性を有する光電変換素子を提供する事がで
きる。
As explained above in detail, according to the superlattice of the present invention, the optical pando gap f can be changed arbitrarily, and a photoelectric conversion element having spectral characteristics in a wide wavelength band can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の超格子体の一実施例の断面図である。 第2図は本発明の超格子体の上記実施例のバンド図であ
シ、(、)は第1の固体層と第2の固体層との組成比を
各層ととに変化させた場合のバンド図であシ、伽)は第
2の固体層のみ組成比を変えた場合のバンド図である。 1・・・ガラス基板 2.3,4.5・・・第1の固体層 2’、3’、4’・・・第2の固体層 代理へ 弁理士  山 下 積 平 部1図 第2図 (a)     (b)
FIG. 1 is a sectional view of one embodiment of the superlattice of the present invention. FIG. 2 is a band diagram of the above embodiment of the superlattice of the present invention, and (,) shows the band diagram when the composition ratio of the first solid layer and the second solid layer is changed for each layer. Band diagrams (Ashi and Ka) are band diagrams when only the composition ratio of the second solid layer is changed. 1...Glass substrate 2.3, 4.5...First solid layer 2', 3', 4'...To substitute for second solid layer Patent attorney Tsumi Yamashita Hirabe 1 Figure 2 Figures (a) (b)

Claims (1)

【特許請求の範囲】[Claims] 量子効果が現われる厚さとした第1の固体層と、該第1
の固体層よりも電子親和力が大きくかつ第1の固体層の
電子がトンネル可能な厚さとした第2の固体層とを交互
に積層させた超格子体において、前記第1の固体層と前
記第2の固体層との少なくとも一方の固体層を複数の組
成物より構成し、各層ごとに任意に組成比又は組成物を
変えた非単結晶層とした事を特徴とする超格子体。
a first solid layer having a thickness such that a quantum effect appears;
In a superlattice body in which a second solid layer is alternately laminated with a second solid layer having a larger electron affinity than the solid layer and having a thickness such that electrons in the first solid layer can tunnel through, the first solid layer and the second solid layer A superlattice body characterized in that at least one of the solid layers of No. 2 is composed of a plurality of compositions, and is a non-single crystal layer in which the composition ratio or composition is arbitrarily changed for each layer.
JP60062087A 1985-03-28 1985-03-28 Superlattice device Pending JPS61222215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60062087A JPS61222215A (en) 1985-03-28 1985-03-28 Superlattice device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60062087A JPS61222215A (en) 1985-03-28 1985-03-28 Superlattice device

Publications (1)

Publication Number Publication Date
JPS61222215A true JPS61222215A (en) 1986-10-02

Family

ID=13189922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60062087A Pending JPS61222215A (en) 1985-03-28 1985-03-28 Superlattice device

Country Status (1)

Country Link
JP (1) JPS61222215A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6232608A (en) * 1985-08-05 1987-02-12 Sanyo Electric Co Ltd Super-lattice device manufacturing method
JPS62165129A (en) * 1986-01-16 1987-07-21 Sanyo Electric Co Ltd Photosensor
US4784702A (en) * 1986-04-22 1988-11-15 Thomson-Csf PIN photodiode formed from an amorphous semiconductor
US20120097228A1 (en) * 2010-10-21 2012-04-26 Sharp Kabushiki Kaishao Solar cell
US8653501B2 (en) 2010-06-14 2014-02-18 Canon Kabushiki Kaisha Emitting device and manufacturing method therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6232608A (en) * 1985-08-05 1987-02-12 Sanyo Electric Co Ltd Super-lattice device manufacturing method
JPS62165129A (en) * 1986-01-16 1987-07-21 Sanyo Electric Co Ltd Photosensor
US4784702A (en) * 1986-04-22 1988-11-15 Thomson-Csf PIN photodiode formed from an amorphous semiconductor
US8653501B2 (en) 2010-06-14 2014-02-18 Canon Kabushiki Kaisha Emitting device and manufacturing method therefor
US20120097228A1 (en) * 2010-10-21 2012-04-26 Sharp Kabushiki Kaishao Solar cell
JP2012089756A (en) * 2010-10-21 2012-05-10 Sharp Corp Solar cell

Similar Documents

Publication Publication Date Title
CA1241100A (en) Solar cell made from amorphous superlattice material
US4433202A (en) Thin film solar cell
US4523051A (en) Thin films of mixed metal compounds
US4688068A (en) Quantum well multijunction photovoltaic cell
US4638111A (en) Thin film solar cell module
US5738732A (en) Solar cell and manufacturing method thereof
JP2002141531A (en) Solar cell and manufacturing method thereof
US4451838A (en) Semiconductor photoelectric conversion device
FR2549642A1 (en) SOLAR CELL
JPH06244442A (en) Semiconductor thin film having chalcophylite structure and manufacture thereof, solar battery and light emitting device
JPS61222215A (en) Superlattice device
JPS58171869A (en) Photovoltaic device
EP0127724B1 (en) Photodetector
JPS6225275B2 (en)
JPS62159475A (en) Amorphous silicon solar cell
JP2763805B2 (en) Photoelectric conversion element
JPH0364973A (en) Photovoltaic element
JPS58116779A (en) Photovoltaic device
JP2001284619A (en) Phtovoltaic device
JPH0338069A (en) Thin film solar cell
JPS6095977A (en) Photovoltaic device
JPH0448786A (en) Semiconductor photodetector
JPH0732260B2 (en) Photodetector having superlattice structure of amorphous semiconductor
JPH04137769A (en) Compound semiconductor solar cell
JPS6193675A (en) Manufacture of photovoltaic device