JPS6225275B2 - - Google Patents

Info

Publication number
JPS6225275B2
JPS6225275B2 JP54170717A JP17071779A JPS6225275B2 JP S6225275 B2 JPS6225275 B2 JP S6225275B2 JP 54170717 A JP54170717 A JP 54170717A JP 17071779 A JP17071779 A JP 17071779A JP S6225275 B2 JPS6225275 B2 JP S6225275B2
Authority
JP
Japan
Prior art keywords
amorphous
thin film
layer
solar cell
sixge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54170717A
Other languages
Japanese (ja)
Other versions
JPS5694674A (en
Inventor
Setsuo Kaneko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP17071779A priority Critical patent/JPS5694674A/en
Publication of JPS5694674A publication Critical patent/JPS5694674A/en
Publication of JPS6225275B2 publication Critical patent/JPS6225275B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 本発明は太陽エネルギを電気エネルギに変換す
る太陽電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to solar cells that convert solar energy into electrical energy.

近年既存エネルギ源の枯渇が問題になり無公害
でしかも無尽蔵にある太陽エネルギーの有効利用
がいそがれている。太陽電池はこのエネルギーを
直接電気エネルギーに変換する方法として有望視
されているが現在のところ太陽電池そのものが高
価なために発電コストが高くつきこれが民生用と
しての実用化を妨げている大きな原因となつてい
る。
In recent years, the depletion of existing energy sources has become a problem, and the effective use of solar energy, which is non-polluting and inexhaustible, has become a problem. Solar cells are seen as a promising method for directly converting this energy into electrical energy, but at present the cost of power generation is high due to the high cost of solar cells themselves, which is a major factor preventing their practical application for consumer use. It's summery.

この発電コストを下げるために安価な太陽電池
を実現しようとする努力が各方面で行なわれてい
る。その1つとして、最近SiH4のグロー放電分
解によつて局在準位密度の少ないSi非晶質薄膜が
作られるようになり、伝算型の制御や接合の形成
が可能であることが明らかになつたことからこの
非晶質薄膜を用いた太陽電池が提案されている。
この非晶質薄膜太陽電池は、基板として高価なSi
結晶を使う必要がなく、安価なステンレススチー
ルやガラスで良いこと、1μm程度の薄膜化が可
能なこと、低温プロセスで良いことなど低価格太
陽電池としてのすぐれた資質をそなえており、従
来の太陽電池にくらべて1/100以下の価格におさ
えることができるものと期待されている。
Efforts are being made in various fields to realize inexpensive solar cells in order to reduce the cost of power generation. One example is that Si amorphous thin films with low local level density have recently been created by glow discharge decomposition of SiH 4 , making it possible to conduct conduction-type control and form junctions. Because of this, solar cells using this amorphous thin film have been proposed.
This amorphous thin-film solar cell uses expensive Si as a substrate.
It has excellent qualities as a low-cost solar cell, such as it does not require the use of crystals, can be made using inexpensive stainless steel or glass, can be made into a thin film of about 1 μm, and can be processed at low temperatures. It is expected that the price will be less than 1/100 of that of batteries.

しかしながらこの非晶質Siは結晶質Siと異なり
そのバンドギヤツプエネルギは1.7eVと大きく、
かつ電子と正孔の拡散長が短かいために0.6μm
より長波長側の光感度がきわめて小さく、変換効
率が小しいという欠点があつた。
However, unlike crystalline Si, this amorphous Si has a large band gap energy of 1.7 eV.
and 0.6 μm due to the short diffusion length of electrons and holes.
The drawbacks were that the photosensitivity at longer wavelengths was extremely low and the conversion efficiency was low.

このような長波長側の感度を改善することを目
的として本願出願人は特願昭53−81682号により
Si非晶質薄膜のかわりにバンドギヤツプエネルギ
の小さいSixGe1-x非晶質薄膜を用い長波長側の光
に対する吸収係数を大きくすることにより、光生
成するキヤリアを多くして長波長側の感度を増加
させた薄膜太陽電池とその製造方法を既に提案し
ている。
For the purpose of improving the sensitivity on the long wavelength side, the applicant of the present application has filed a patent application No. 53-81682.
By using a SixGe 1-x amorphous thin film with low bandgap energy instead of a Si amorphous thin film and increasing the absorption coefficient for light on the long wavelength side, more carriers are generated and the long wavelength side is increased. We have already proposed a thin-film solar cell with increased sensitivity and a method for manufacturing it.

本発明は前に既提案の改善に関するものでその
目的はSixGe1-x非晶質薄膜を用いた太陽電池の変
換効率をさらに向上せしめた薄膜太陽電池を提供
することにある。本発明によれば、基板上に形成
したSixGe1-x非晶質薄膜でp―i―n構造または
p―n-―n構造またはn―p-―p構造を構成せ
しめてなり該構造のi層、n-層、又はp-薄膜層
のSi濃度が受光面側に向つて次第に高くなるよう
にしたことを特徴とする太陽電池が得られる。
The present invention relates to an improvement on the previously proposed solar cell, and its purpose is to provide a thin film solar cell that further improves the conversion efficiency of a solar cell using a SixGe 1-x amorphous thin film. According to the present invention, a SixGe 1-x amorphous thin film formed on a substrate constitutes a pin structure, a pn - -n structure, or an np - -p structure, and A solar cell is obtained in which the Si concentration of the i-layer, n - layer, or p - thin film layer gradually increases toward the light-receiving surface side.

前記本発明におけるSixGe1-x非晶質薄膜はxの
値を任意に変えることによりバンドギヤツプエネ
ルギを0.95〜1.7eVまで任意に変えることがで
き。従つて前記本発明によればSixGe1-x非晶質薄
膜を用いてp―i―nまたはp―n-―n、また
はn―p-―p構造を形成しかつ前記i層、n-
又はp-層中のSi濃度を受光面側に向つて高くす
ることにより、非晶質薄膜のバンドギヤツプエネ
ルギを受光面側に向つて大きくすることができ
る。このため、バンドギヤツプエネルギの変化に
よつて生じた内部電界によつて受光面付近ではも
とより、受光面よりも深いところで発生した電子
―正孔対も容易に分離でき、光電流として外部に
取り出すことができるようになり、変換効率が改
善される。
In the SixGe 1-x amorphous thin film according to the present invention, the band gap energy can be arbitrarily changed from 0.95 to 1.7 eV by arbitrarily changing the value of x. Therefore, according to the present invention, a SixGe 1-x amorphous thin film is used to form a p-i-n, p-n - -n, or n-p - -p structure, and the i layer, n - By increasing the Si concentration in the layer or p - layer toward the light-receiving surface, the bandgap energy of the amorphous thin film can be increased toward the light-receiving surface. Therefore, the internal electric field generated by the change in bandgap energy can easily separate electron-hole pairs generated not only near the light-receiving surface but also deeper than the light-receiving surface, which is then released to the outside as a photocurrent. The conversion efficiency is improved.

以下実施例を図面により説明する。 Examples will be described below with reference to the drawings.

第1図は本発明の1実施例を示す太陽電池の断
面図を示したものである。基板として透明導電膜
12をコートしたガラス11を用い、これを受光
面とする。その上にp型Si非晶質薄膜13を100
Å形成しさらに、ドープしないi―SixGe1-x非晶
質又はn-―SixGe1-x非晶質薄膜14を1μm形
成する。このときi層またはn-層を形成する
SixGe1-xの組成比xは各層の厚さを横軸に、
SixGe1-x中のxの濃度を縦軸にとつて第2図に示
す曲線21のように1から0.5まで変化させるよ
うに形成する。尚、同図に23はp層、24はi
層またはn-層、25はn層を示す。前記xの値
は薄膜形成時のガス雰囲気(例えばSiH4
GeH4)の比を変えることにより任意に変えること
ができる。初めにSiH4ガスのみを導入してプラ
ズマ放電分解し、順次GeH4の分圧を高めていき
最終的にはSiH4とGeH4の導入比を同じになるよ
うにするとバンドギヤツプエネルギが変化した
SixGe1-x非晶質薄膜が得られる。このときバンド
ギヤツプエネルギーは1.7eVから1.3eVに変化し
ており、内部電界として約5KV/cmが見積れる。
FIG. 1 shows a cross-sectional view of a solar cell showing one embodiment of the present invention. A glass 11 coated with a transparent conductive film 12 is used as a substrate, and this is used as a light receiving surface. On top of that, a p-type Si amorphous thin film 13 is placed 100%
Further, an undoped i-SixGe 1-x amorphous or n - -SixGe 1-x amorphous thin film 14 is formed to a thickness of 1 μm. At this time, an i-layer or an n - layer is formed.
The composition ratio x of SixGe 1-x is the thickness of each layer on the horizontal axis,
It is formed so that the concentration of x in SixGe 1-x is varied from 1 to 0.5 as shown by a curve 21 shown in FIG. 2 on the vertical axis. In addition, in the same figure, 23 is a p layer, 24 is an i layer.
Layer or n - layer, 25 indicates the n-layer. The value of x is determined by the gas atmosphere during thin film formation (for example, SiH 4 and
It can be changed arbitrarily by changing the ratio of GeH 4 ). Initially, only SiH 4 gas is introduced for plasma discharge decomposition, and the partial pressure of GeH 4 is gradually increased until the ratio of introduction of SiH 4 and GeH 4 is the same, thereby increasing the band gap energy. changed
A SixGe 1-x amorphous thin film is obtained. At this time, the band gap energy changes from 1.7eV to 1.3eV, and the internal electric field is estimated to be about 5KV/cm.

次に、n型Si0.5Ge0.5非晶質薄膜15を300Å形
成し、さらに裏面電極Alを蒸着して太陽電池を
作成する。このようにして得た本発明による薄膜
太陽電池における分光感度特性を従来のSi非晶質
太陽電池および組成分布を持たせない既提案の
SixGe1-x非晶質太陽電池と比較して横軸に波長、
縦軸に感度をとつて第3図に示す。図において3
1は従来型のSi非晶質太陽電池、32は組成分布
を持たせない既提案のSixGe1-x非晶質太陽電池、
33は本発明による薄膜太陽電池の特性を示す。
同図から明らかなように本発明によれば0.6μm
より長波長側の感度が増加してかつ、変換効率が
改善されている。すなわち、曲線31における従
来の変換効率は高々2%であり、曲線32で表わ
される既提案では、2.6%に改善され、さらに本
発明による薄膜太陽電池(曲線33)の変換効率
は2.9%と大幅に改善されている。
Next, an n-type Si 0.5 Ge 0.5 amorphous thin film 15 with a thickness of 300 Å is formed, and a back electrode Al is further deposited to form a solar cell. The spectral sensitivity characteristics of the thin film solar cell according to the present invention thus obtained are compared with those of the conventional Si amorphous solar cell and the previously proposed one which does not have a composition distribution.
Wavelength on the horizontal axis compared to SixGe 1-x amorphous solar cell,
Figure 3 shows the sensitivity on the vertical axis. In the figure 3
1 is a conventional Si amorphous solar cell, 32 is a previously proposed SixGe 1-x amorphous solar cell without compositional distribution,
33 shows the characteristics of the thin film solar cell according to the present invention.
As is clear from the figure, according to the present invention, the thickness is 0.6 μm.
Sensitivity on the longer wavelength side is increased and conversion efficiency is improved. In other words, the conventional conversion efficiency in curve 31 is at most 2%, which is improved to 2.6% in the existing proposal shown in curve 32, and the conversion efficiency of the thin film solar cell according to the present invention (curve 33) is significantly increased to 2.9%. has been improved.

またn―p-―p型については、前記p―i―
n型又はp―n-―n型と同様に透明電極が付い
たガラス板上にn型Si非晶質層、組成分布が付い
たp-SixGe1-x非晶質層、続いてp型Si0.5Ge0.5
晶質層、裏面電極を設けて太陽電池を形成する。
この場合も、第3図の曲線33に示したような同
様な効果が得られた。第4図は本発明の他の実施
例を示す図で基板としてステンレススチール等の
金属基板を用いた場合の一例を示したものであ
る。同図において、ステンレス基板41上にn型
Si0.5Ge0.5非晶質層42を300Å続いて、受光面側
に向つてSi濃度が大きくなるようにi又はn
n-SixGe1-x非晶質層、43を1μm、p型Si非晶
質層44を100Å形成したのち透明電極45、グ
リツド電極46を形成して太陽電池を構成してい
る。この実施例の場合も前記第一の実施例と同様
に第3図の曲線33に示すような分光感度特性を
得た。
In addition, for the n-p - -p type, the above-mentioned p-i-
n-type or p-n -- N-type Si amorphous layer on a glass plate with a transparent electrode similar to n-type, p - SixGe 1-x amorphous layer with composition distribution, followed by p-type A Si 0.5 Ge 0.5 amorphous layer and a back electrode are provided to form a solar cell.
In this case as well, similar effects as shown by curve 33 in FIG. 3 were obtained. FIG. 4 is a diagram showing another embodiment of the present invention, and shows an example in which a metal substrate such as stainless steel is used as the substrate. In the same figure, an n-type
A Si 0.5 Ge 0.5 amorphous layer 42 of 300 Å is followed by an i or n layer such that the Si concentration increases toward the light-receiving surface side.
After forming an n - SixGe 1-x amorphous layer 43 of 1 μm and a p-type Si amorphous layer 44 of 100 Å, a transparent electrode 45 and a grid electrode 46 are formed to constitute a solar cell. In this example, as in the first example, spectral sensitivity characteristics as shown by curve 33 in FIG. 3 were obtained.

このように本発明によれば、変換効率を大幅に
改善せしめた薄膜太陽電池が実現され、その産業
上の効果は顕著である。
As described above, according to the present invention, a thin film solar cell with significantly improved conversion efficiency has been realized, and its industrial effects are remarkable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す図で、図にお
いて11はガラス基板、12は透明電極、13は
p型Si非晶質層、14は組成分布を持つたi又は
n-型SixGe1-x非晶質層、15はn型Si0.5Ge0.5
晶質層、16は裏面電極を示す。 第2図は第1図における薄膜太陽電池を構成す
るSixGe1-x非晶質層におけるx濃度分布を示した
ものである。 第3図は本発明による薄膜太陽電池の分光感度
特性を従来との比較で示したもので、図におい
て、31は従来の非晶質Si薄膜太陽電池、32は
既提案の組成分布を持たない非晶質SixGe1-x薄膜
太陽電池の分光感度特性を示し、33は本発明に
よる薄膜太陽電池の分光感度特性を示す。 第4図は本発明による他の実施例を示す図で、
図において、41はステンレススチール基板、4
2はn型Si0.5Ge0.5非晶質層、43は組成分布を
もたせたi又はn-SixGe1-x非晶質層、44はp
型Si非晶質層、45は透明電極、46はグリツド
電極を示す。
FIG. 1 is a diagram showing an embodiment of the present invention, in which 11 is a glass substrate, 12 is a transparent electrode, 13 is a p-type Si amorphous layer, and 14 is an i or
An n - type SixGe 1-x amorphous layer, 15 an n-type Si 0.5 Ge 0.5 amorphous layer, and 16 a back electrode. FIG. 2 shows the x concentration distribution in the SixGe 1-x amorphous layer constituting the thin film solar cell in FIG. 1. Figure 3 shows the spectral sensitivity characteristics of the thin film solar cell according to the present invention in comparison with the conventional one. In the figure, 31 is a conventional amorphous Si thin film solar cell, and 32 is a conventional amorphous Si thin film solar cell, and 32 does not have the previously proposed composition distribution. The spectral sensitivity characteristics of an amorphous SixGe 1-x thin film solar cell are shown, and 33 shows the spectral sensitivity characteristics of a thin film solar cell according to the present invention. FIG. 4 is a diagram showing another embodiment according to the present invention,
In the figure, 41 is a stainless steel substrate;
2 is an n-type Si 0.5 Ge 0.5 amorphous layer, 43 is an i or n - SixGe 1-x amorphous layer with a composition distribution, and 44 is a p-type
A type Si amorphous layer, 45 a transparent electrode, and 46 a grid electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 SixGe1-x非晶質溝膜用い、p―i―n構造、
またはp―n-―n構造、またはn―p-―p構造
を構成せしめてなり、該構造のi層、n-層又は
p-型薄膜層のSi濃度が受光面の方向に沿つて次
第に高くなるようにしたことを特徴とする薄膜太
陽電池。
1 Using SixGe 1-x amorphous groove film, pin structure,
or constitutes a p-n - -n structure, or an n-p - -p structure, and the i-layer, n - layer or
A thin film solar cell characterized in that the Si concentration of the p - type thin film layer gradually increases along the direction of the light receiving surface.
JP17071779A 1979-12-27 1979-12-27 Thin-film solar cell Granted JPS5694674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17071779A JPS5694674A (en) 1979-12-27 1979-12-27 Thin-film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17071779A JPS5694674A (en) 1979-12-27 1979-12-27 Thin-film solar cell

Publications (2)

Publication Number Publication Date
JPS5694674A JPS5694674A (en) 1981-07-31
JPS6225275B2 true JPS6225275B2 (en) 1987-06-02

Family

ID=15910083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17071779A Granted JPS5694674A (en) 1979-12-27 1979-12-27 Thin-film solar cell

Country Status (1)

Country Link
JP (1) JPS5694674A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4379943A (en) * 1981-12-14 1983-04-12 Energy Conversion Devices, Inc. Current enhanced photovoltaic device
JPS58139478A (en) * 1982-02-15 1983-08-18 Agency Of Ind Science & Technol Amorphous solar battery
JPS5990959A (en) * 1982-11-16 1984-05-25 Sanyo Electric Co Ltd Amorphous silicon field-effect type transistor
JPS61232685A (en) * 1985-04-09 1986-10-16 Agency Of Ind Science & Technol Amorphous silicon solar battery and manufacture thereof
JPS6249672A (en) * 1985-08-29 1987-03-04 Sumitomo Electric Ind Ltd Amorphous photovoltaic element
JPS62165374A (en) * 1986-01-16 1987-07-21 Sumitomo Electric Ind Ltd Amorphous photovoltaic element
US20100059119A1 (en) * 2008-09-09 2010-03-11 Electronics And Telecommunications Research Institute Solar cell and method of manufacturing the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
2ND E.C.PHOTOVOLTAIC SOLAR ENERGY CONFERENCE=1979 *
JOURNAL OF APPLIED PHYSICS=1975 *

Also Published As

Publication number Publication date
JPS5694674A (en) 1981-07-31

Similar Documents

Publication Publication Date Title
KR910001742B1 (en) Photo electromotive force device
KR101000064B1 (en) Hetero-junction silicon solar cell and fabrication method thereof
US4547622A (en) Solar cells and photodetectors
JP2589462B2 (en) Photoelectric device
US20120247545A1 (en) Graphene-based multi-junctions flexible solar cell
JPS6249672A (en) Amorphous photovoltaic element
JPWO2005011002A1 (en) Silicon-based thin film solar cell
JP2006080557A (en) Improved stabilizing properties of amorphous silicon series element manufactured by high hydrogen dilution low temperature plasma vapor deposition
US8704326B2 (en) Thin-film photoelectric conversion device and method for production thereof
JP2001267598A (en) Laminated solar cell
JPS58139478A (en) Amorphous solar battery
Soley et al. Advances in high efficiency crystalline silicon homo junction solar cell technology
JPH05299677A (en) Solar battery and its manufacture
JPS6225275B2 (en)
CN117059691A (en) Heterojunction solar cell
JPS6334632B2 (en)
JPS6111475B2 (en)
JPH0125235B2 (en)
JPS609178A (en) Photovoltaic device
US20110220177A1 (en) Tandem photovoltaic device with dual function semiconductor layer
JP2632740B2 (en) Amorphous semiconductor solar cell
JPS636882A (en) Photocell of tandem structure
JP3245962B2 (en) Manufacturing method of thin film solar cell
JPS58116779A (en) Photovoltaic device
JPH0586677B2 (en)