JPS58116779A - Photovoltaic device - Google Patents

Photovoltaic device

Info

Publication number
JPS58116779A
JPS58116779A JP56212940A JP21294081A JPS58116779A JP S58116779 A JPS58116779 A JP S58116779A JP 56212940 A JP56212940 A JP 56212940A JP 21294081 A JP21294081 A JP 21294081A JP S58116779 A JPS58116779 A JP S58116779A
Authority
JP
Japan
Prior art keywords
amorphous semiconductor
power generation
layer
layers
forbidden band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56212940A
Other languages
Japanese (ja)
Inventor
Masaru Yamano
山野 大
Takashi Shibuya
澁谷 尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP56212940A priority Critical patent/JPS58116779A/en
Publication of JPS58116779A publication Critical patent/JPS58116779A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • H01L31/076Multiple junction or tandem solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Abstract

PURPOSE:To improve the power conversion efficiency of a photovoltaic device by laminating a plurality of generating layers which are made of amorphous semiconductor so that the optically forbidden band widths of the generating layers are sequentially decreased from the light incident side. CONSTITUTION:The first transparent electrode 11 made of indium tin oxide on a transparent substrate 10. The first, second and third generating layers 11, 12, 13 which are formed of amorphous semiconductor are so laminated as to sequentially decrease the optically forbidden band widths of the layers from the light incident side. The second electrode 15 is formed on the generating layer 14. Thus, since the amorphous semiconductor is used, an irregularity in the crystal lattice does not occur, and since the generating layers of different optically forbidden band widths are laminated, the lights from short wavelength to long wavelength can be effectively utilized for the generation.

Description

【発明の詳細な説明】 本発明は非晶質半導体を用いた光起電力装置に関し、特
にその電力変換効率の向上を図ったものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a photovoltaic device using an amorphous semiconductor, and is particularly aimed at improving the power conversion efficiency thereof.

第1図は本発明実施例としての薯起電力装置を示し、u
lViガラス等の透明な絶#基板、Oυilt該基板上
に形成されたインジウム・錫酸化物等からなる透明な第
1電極、11邊、+13)及び(14)#′i該電極電
極順次積層された、何れも非晶質半導体からなる第1、
第2及び第6の発′罐層、O5は第6の発電層(+4)
上に形成されたアルミニウム等からなる第2電極であろ
う 上記装置において、基板uI及び第1電極(11)を介
して光が各発電層に入ると、各層内で自由キャリア(′
ti1子及び又は正札)が生じ、これらが第1、第2電
極0υ、O9に集電されることにより起電圧を生じるっ 本発明の特徴として、光入射方向に積層された第1、第
2、第6の発電−0本Q3、Iの各光学的禁止帯幅Eo
pけ、第2図に示す如く光入射側より順次小さくなって
いるうより具体的に説明すると、第1〜第5発電局の具
体的構成は下表の通りであるっ 即ち、各発電層において主に発電作用の行なわれるのは
大々のl型層であるが上記の如く、光入射側より順次積
層されている第1ItM層(11)、第2I型層(I2
)及び第5■型層(15)の夫々の光学的禁止帯幅Eo
pは2.Oev、1.75ev、t3eVと順に小さく
なっているのである。
FIG. 1 shows an electromotive force device as an embodiment of the present invention.
A transparent insulation substrate such as lVi glass, a transparent first electrode made of indium/tin oxide, etc. formed on the Oυilt substrate, and the electrodes 11, +13) and (14) #'i are laminated in sequence. The first, both of which are made of an amorphous semiconductor,
2nd and 6th power generating layer, O5 is the 6th power generating layer (+4)
In the above device, which may be a second electrode made of aluminum or the like formed above, when light enters each power generation layer through the substrate uI and the first electrode (11), free carriers ('
The present invention is characterized by the fact that the first and second electrodes laminated in the direction of light incidence are , 6th power generation-0 line Q3, each optical forbidden band width Eo of I
As shown in Figure 2, the size of each power generation station decreases in order from the light incidence side. It is the L-type layer that mainly generates electricity, but as mentioned above, the first ItM layer (11) and the second I-type layer (I2) are laminated sequentially from the light incident side.
) and the optical bandgap Eo of the fifth type layer (15)
p is 2. The values decrease in this order: Oev, 1.75ev, and t3eV.

半導体発電現象に2いて、発電に寄与する入射光波長、
即ち吸収波長は発電領域の光学的禁止帯幅に依存するっ
第3図は本実施例における第1、第2、第3発電層Q3
.0.04の夫々の光吸収特性(12m)、(15m)
、(14m)を示している。
In the semiconductor power generation phenomenon, the incident light wavelength that contributes to power generation,
That is, the absorption wavelength depends on the optical forbidden band width of the power generation region. Figure 3 shows the first, second, and third power generation layers Q3 in this example.
.. Respective light absorption characteristics of 0.04 (12m), (15m)
, (14m).

発電素子がもし−りの光学的禁止帯幅しか持っておらず
、祈る素子に太陽光などが入射したとすると、その光学
的禁止帯幅に応じた一部の波長の光しか発電に寄与せず
、それより短い波長の入射光エネルギは素子内で熱とな
って酒飲し、又長い波長の入射光エネルギは素子内で吸
収されることなく牧逸するっ これに対し、本実施例では9!J5図か−ら明らかな如
く、素子全体として見れば複数の光学的禁止帯幅が存在
し、しかも光入射側から順次それが小さくなる配置であ
るので、入射光エネルギは、その短波長側のものが素子
の比較的浅い領域で有効に発電に寄与する七共に、長波
長側のものが素子の浅い領域で吸収されることなく素子
の比較的深い領域にまで進んでそこで有効に発電に寄与
する結果、素子全体として大きな発電効率が得られる。
If a power generation element has only a certain optical bandgap, and sunlight or other light is incident on the praying element, only a portion of the wavelength of light corresponding to the optical bandgap will contribute to power generation. First, incident light energy with a shorter wavelength becomes heat within the element and is absorbed, and incident light energy with a longer wavelength is not absorbed within the element and is lost.In contrast, in this embodiment, 9! As is clear from Figure J5, when looking at the element as a whole, there are multiple optical forbidden band widths, and since the arrangement is such that they become smaller sequentially from the light incident side, the incident light energy is At the same time, the long-wavelength components are not absorbed in the shallow region of the device and travel to the relatively deep region of the device, where they effectively contribute to power generation. As a result, high power generation efficiency can be obtained for the entire device.

単結晶材料を用いて、本実施例の如き異なる光学的禁止
帯幅の発電層を複数積層しようとすれば、各発電層間の
結晶格子の不整合問題と、更に、隣接する発電層の闇に
、第1図に見られる、第1Nffi!−(N1)と第2
Pを層(P2)の間、第2N型層(N2)と第3P型層
(P5)との闇の如き逆方向の!11接合が発生するこ
とから、その実現は内錐である。
If a single crystal material is used to stack a plurality of power generation layers with different optical band gaps as in this example, there will be problems of crystal lattice mismatch between each power generation layer, and furthermore, there will be problems with the darkness of adjacent power generation layers. , the first Nffi! can be seen in Figure 1. -(N1) and the second
Between the P layer (P2), the dark opposite direction between the second N-type layer (N2) and the third P-type layer (P5)! Since 11 junctions occur, the realization is an internal cone.

しかし乍ら、本実施例の様に非晶質半導体材料を用いる
場合、上記の如き結晶格子の不整合は全く生じず、かつ
、非晶質半導体は極めて博い膜厚に形成できるので、上
記の如き逆方向格流接合の発生し得る部分の膜厚を実施
例の様に非常に薄くしてPくことにより、トンネル電流
が流れてその部分の接合はほとんど実質的な整流接合と
ならないのである。
However, when an amorphous semiconductor material is used as in this example, the above-mentioned crystal lattice mismatch does not occur at all, and the amorphous semiconductor can be formed to an extremely wide thickness. By making the film thickness of the part where a reverse current junction like this can occur very thin as in the example, a tunnel current flows and the junction in that part hardly becomes a real rectifying junction. be.

上記実施例の製造は、例えば第1電極(11)まで作成
済みの基板Qlを反応室に入れ、断る反応室に適宜反応
ガスを満してグロー放電を生起せしめることによね行な
われる。各発電層113、I3. (14の組成は夫々
異なるので、積l1m順に反応ガスが切替えられること
はもちろんであるっ下表に、各層に対する反応ガスの組
成を示す。尚基板uIは全ての層形成時、250℃の温
度に保たれる。
The manufacturing of the above embodiment is carried out, for example, by placing the substrate Ql, which has been fabricated up to the first electrode (11), into a reaction chamber, and filling the reaction chamber with an appropriate reaction gas to generate glow discharge. Each power generation layer 113, I3. (Since the compositions of 14 are different from each other, it goes without saying that the reaction gas is switched in the order of 1m in volume.) The table below shows the composition of the reaction gas for each layer.The temperature of the substrate uI was 250°C during the formation of all layers. is maintained.

尚、反応ガスにはその他キャリアガスとしてのH2ガス
が含まれている。
Note that the reaction gas also contains H2 gas as a carrier gas.

又、量産的な方法として、上記各層形成用の個別の反応
室を各層の形成順に近接配列すると共に、これら各反応
室の闇をシャッタにより分離する構成となし、基板OI
をこれら各室を順次通過させることにより全ての層を流
れ作業的に形成することができる。
In addition, as a mass production method, the individual reaction chambers for forming each layer are arranged close to each other in the order of formation of each layer, and the darkness of each reaction chamber is separated by a shutter, and the substrate OI is
All the layers can be formed in a production line by passing through each of these chambers in sequence.

他の実施例として、上記第1、第2、第61型層(I1
)、(I2)、(I5)の夫々の光学的禁止帯幅Eop
 を入射光方向く徐々に小さくすることによりこれら各
層内て内部電界を追加的に形成しても良い。断る内部電
界は各■型層内で光照射により発生する自由キャリアの
移動を促進して再結合誦賦を抑制し、効率を更に高める
As another embodiment, the first, second, and 61st type layers (I1
), (I2), and (I5), each optical band gap Eop
An internal electric field may be additionally formed in each of these layers by gradually decreasing the value of the field in the direction of the incident light. The internal electric field promotes the movement of free carriers generated by light irradiation within each type layer, suppresses recombination, and further increases efficiency.

コノ様な第11型P4(I+)O形Fs、t−j:、 
上E第1の実施例における反応ガス組U NHs/S 
i Ha 十NHsを当初の10%から始め、襖の成長
に従い最終5%まで徐々に変化させればよく、この場合
Eo阻2、OeVからt 8 eVまで変化する。第2
1型層(■2)の形成は、上記第1の実施例における基
板温度を当初の180℃から始め、膜の成長に従い最終
500℃にまで徐々に変化させればよく、この場合Eo
pHi、 8 eVから1.7 eVまで変化する。
Kono-like 11th type P4(I+)O type Fs, t-j:,
Upper E Reaction gas set U NHs/S in the first embodiment
i Ha NHs may be started from the initial 10% and gradually changed to a final 5% as the fusuma grows, in which case it changes from Eo 2, OeV to t 8 eV. Second
The type 1 layer (■2) can be formed by starting the substrate temperature from the initial 180°C in the first embodiment and gradually changing it to a final temperature of 500°C as the film grows.
pHi, varies from 8 eV to 1.7 eV.

第31fu層(Is)の形成は、上記第1の実施例にお
ける反応ガス組U 5nC14/S iHs +SnC
1m  を当初の1%から始め、膜の成長に従い最終2
0%まで徐々に変化させればよく、この場合Eopはt
6eVからt 1 eVまで変化する。尚第51fM層
(Is)の祈る変更に伴い、第5N型層(N5)の形成
のための反応ガス組成は、5nC1a/5iHa +5
nC1a=20%、PHs/SiH4+ 5nCLa=
 1%に変更され、このときEopはt 1 eV と
なる。
The 31st fu layer (Is) was formed using the reaction gas set U 5nC14/S iHs +SnC in the first embodiment.
1m, starting from 1% of the initial value and increasing to the final 2% as the film grows.
It is sufficient to gradually change it to 0%, and in this case Eop is t
It varies from 6 eV to t 1 eV. Due to the change in the 51st fM layer (Is), the reaction gas composition for forming the 5th N-type layer (N5) is 5nC1a/5iHa +5
nC1a=20%, PHs/SiH4+ 5nCLa=
1%, and at this time Eop becomes t 1 eV.

更に他の実施例として、第1、第2、第6発電層cia
、a飄α荀の各隣接間に存在する逆方向整流接合を完全
になくす丸めに、上記第1の実施例における第1、第2
N型m(N+)、(N2) oFs、長終了付近の領域
(各層の20%〜50%の厚み@域)をV型に、又部2
、fH5P型層(P2人(Ps)の成長開始付近の領域
(各層の20−50%の厚み領域)をP+型になしても
よい。
Furthermore, as another example, the first, second, and sixth power generation layers cia
, the first and second in the first embodiment are rounded to completely eliminate the backward rectifying junctions existing between adjacent ones of the
N-type m(N+), (N2) oFs, the region near the long end (20% to 50% thickness @ region of each layer) is V-shaped, and part 2
, the region near the start of growth of the fH5P type layer (P2 (Ps) (20-50% thickness region of each layer) may be made into P+ type.

以上の説明から明らかな如く、本発明によれば、非晶質
半導体を用いた光起電力装置において、非晶質半導体に
特有な性質を利用して発電層を積層構造となすことによ
り高効率の光起電力装置を実現することができる。
As is clear from the above description, according to the present invention, in a photovoltaic device using an amorphous semiconductor, high efficiency is achieved by forming a power generation layer into a laminated structure by utilizing properties specific to the amorphous semiconductor. A photovoltaic device can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例を示す側面図、第2図はエネルギ
帯構造図、第5図は光吸収特性図であるっUり、0.0
4・・・発電層。
Fig. 1 is a side view showing an embodiment of the present invention, Fig. 2 is an energy band structure diagram, and Fig. 5 is a light absorption characteristic diagram.
4...Power generation layer.

Claims (1)

【特許請求の範囲】[Claims] (1)非晶質半導体からなる複数の発電層を光入射方向
に複数積層すると共に、各発電層の光学的禁止帯幅を光
入射側より順次小さくしたことを特徴とする光起電力装
置。
(1) A photovoltaic device characterized in that a plurality of power generation layers made of amorphous semiconductor are laminated in the light incidence direction, and the optical band gap of each power generation layer is made smaller sequentially from the light incidence side.
JP56212940A 1981-12-29 1981-12-29 Photovoltaic device Pending JPS58116779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56212940A JPS58116779A (en) 1981-12-29 1981-12-29 Photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56212940A JPS58116779A (en) 1981-12-29 1981-12-29 Photovoltaic device

Publications (1)

Publication Number Publication Date
JPS58116779A true JPS58116779A (en) 1983-07-12

Family

ID=16630807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56212940A Pending JPS58116779A (en) 1981-12-29 1981-12-29 Photovoltaic device

Country Status (1)

Country Link
JP (1) JPS58116779A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60240168A (en) * 1984-05-15 1985-11-29 Semiconductor Energy Lab Co Ltd Manufacture of photoelectric converter
JPS60240169A (en) * 1984-05-15 1985-11-29 Semiconductor Energy Lab Co Ltd Manufacture of photoelectric converter
JPS60240167A (en) * 1984-05-15 1985-11-29 Semiconductor Energy Lab Co Ltd Photoelectric converter
JPS616874A (en) * 1984-06-20 1986-01-13 Sanyo Electric Co Ltd Photovoltaic element
JPS61104678A (en) * 1984-10-29 1986-05-22 Mitsubishi Electric Corp Amorphous solar cell
US5039354A (en) * 1988-11-04 1991-08-13 Canon Kabushiki Kaisha Stacked photovoltaic device with antireflection layer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60240168A (en) * 1984-05-15 1985-11-29 Semiconductor Energy Lab Co Ltd Manufacture of photoelectric converter
JPS60240169A (en) * 1984-05-15 1985-11-29 Semiconductor Energy Lab Co Ltd Manufacture of photoelectric converter
JPS60240167A (en) * 1984-05-15 1985-11-29 Semiconductor Energy Lab Co Ltd Photoelectric converter
JPH0525187B2 (en) * 1984-05-15 1993-04-12 Handotai Energy Kenkyusho
JPH0525186B2 (en) * 1984-05-15 1993-04-12 Handotai Energy Kenkyusho
JPS616874A (en) * 1984-06-20 1986-01-13 Sanyo Electric Co Ltd Photovoltaic element
JPS61104678A (en) * 1984-10-29 1986-05-22 Mitsubishi Electric Corp Amorphous solar cell
US5039354A (en) * 1988-11-04 1991-08-13 Canon Kabushiki Kaisha Stacked photovoltaic device with antireflection layer

Similar Documents

Publication Publication Date Title
US4758527A (en) Method of making semiconductor photo-electrically-sensitive device
US4532373A (en) Amorphous photovoltaic solar cell
EP0204567A2 (en) Thin film solar module
US20110168245A1 (en) Four Terminal Multi-Junction Thin Film Photovoltaic Device and Method
JPH0370183A (en) Photovoltaic element
JPS6249672A (en) Amorphous photovoltaic element
CN103681889B (en) Electret-structure-introduced efficient solar cell and preparing method thereof
KR890003148B1 (en) Semiconductor with fiber structure and manufacture thereof
JPS58139478A (en) Amorphous solar battery
JPS5846074B2 (en) Method of manufacturing photovoltaic device
US20120285508A1 (en) Four terminal multi-junction thin film photovoltaic device and method
JPS58116779A (en) Photovoltaic device
JPH05299677A (en) Solar battery and its manufacture
JPH09172193A (en) Thin film solar battery
JPS58171869A (en) Photovoltaic device
JPS5963774A (en) Thin-film silicon solar cell
Mickey Solar photovoltaic cells
JPS6225275B2 (en)
JPS6111475B2 (en)
JPS6074685A (en) Photovoltaic device
JP2737705B2 (en) Solar cell
JP2004335734A (en) Thin film solar cell
JP2004335733A (en) Thin film solar cell
KR101129422B1 (en) Fabrication method of solar cell and solar cell fabrication by the same
JPS5983916A (en) Amorphous multielement semiconductor