JPS61221133A - Method of side chain alkylation of alkyl-substituted aromatic hydrocarbon - Google Patents

Method of side chain alkylation of alkyl-substituted aromatic hydrocarbon

Info

Publication number
JPS61221133A
JPS61221133A JP60061881A JP6188185A JPS61221133A JP S61221133 A JPS61221133 A JP S61221133A JP 60061881 A JP60061881 A JP 60061881A JP 6188185 A JP6188185 A JP 6188185A JP S61221133 A JPS61221133 A JP S61221133A
Authority
JP
Japan
Prior art keywords
alkyl
substituted aromatic
catalyst
aromatic hydrocarbon
potassium carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60061881A
Other languages
Japanese (ja)
Other versions
JPH0699329B2 (en
Inventor
Katsuo Taniguchi
谷口 捷生
Kenji Shimamoto
島本 健治
Kenji Saeki
憲治 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP60061881A priority Critical patent/JPH0699329B2/en
Publication of JPS61221133A publication Critical patent/JPS61221133A/en
Publication of JPH0699329B2 publication Critical patent/JPH0699329B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To alkylate the side chain of an alkyl-substituted aromatic hydrocarbon with an aliphatic monoolefin, and to obtain an alkyl-substituted aromatic hydrocarbon having increased carbons, by alkylating the side chain of an alkyl- substituted aromatic hydrocarbon with an aliphatic monoolefin by the use of a catalyst obtained by supporting an alkali metal on potassium carbonate powder. CONSTITUTION:In producing an alkyl-substituted aromatic hydrocarbon having increased carbons by alkylating the side chain of an alkyl-substituted aromatic hydrocarbon with an aliphatic monoolefin, an alkali metal supported on potassium carbonate powder is used as a catalyst. The catalyst uses potassium carbonate powder and the alkali metal in a weight ratio of 100:1-7 and is obtained by blending them in a dispersion medium (preferably toluene, hexane, etc.) comprising a hydrocarbon inert to the alkali metal at 150-230 deg.C. Preferably potassium carbonate powder has <=0.85g/cm<2> bulk density and 100-800mu average particle diameter. EFFECT:A catalyst is obtained by a simple method at low temperature.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、特定の方法によって調製した、炭酸カリウム
粉体にアルカリ金属を担持せしめた触媒の存在下に、ア
ルキル置換芳香族炭化水素(a)を脂肪族モノオレフィ
ンを用いて側鎖アルキル化し、医薬、農薬等を製造する
際の中間体として有用な炭素数を増したアルキル置換芳
香族炭化水素(b)を製造する方法に関する。
Detailed Description of the Invention [Technical Field] The present invention provides a method for converting alkyl-substituted aromatic hydrocarbons (a) into fatty acids in the presence of a catalyst prepared by a specific method and having an alkali metal supported on potassium carbonate powder. The present invention relates to a method for producing an alkyl-substituted aromatic hydrocarbon (b) with an increased number of carbon atoms, which is useful as an intermediate in producing medicines, agricultural chemicals, etc., by alkylating the side chain using a group monoolefin.

〔従来の技術〕[Conventional technology]

アルキル置換芳香族炭化水素と脂肪族モノオレフィンを
反応させ側鎖アルキル化反応によって炭素数を増したア
ルキル置換芳香族炭化水素を製造する従来の方法に関し
ては、例えば英国特許明細書第1269280号には炭
酸カリウムに金属ナトリウムを担持した触媒を用いて該
反応を行う方法が開示されている。該公報には炭酸カリ
ウムにナトリウムを蒸着担持する方法、液体アンモニア
に溶解したナトリウムを沈着担持する方法、あるいは不
活性ガス雰囲気下に、150〜400℃で熔融させたナ
トリウムを混合して担持する方法によって調製された触
媒を使用できる旨が記載されている。該公報の実施例の
触媒はいずれも高温でナトリウムを溶融担持する方法に
よって調製した触媒である。
Regarding the conventional method of producing an alkyl-substituted aromatic hydrocarbon having an increased number of carbon atoms through a side chain alkylation reaction by reacting an alkyl-substituted aromatic hydrocarbon with an aliphatic monoolefin, for example, British Patent Specification No. 1269280 describes A method is disclosed in which the reaction is carried out using a catalyst in which sodium metal is supported on potassium carbonate. The publication describes a method in which sodium is deposited and supported on potassium carbonate, a method in which sodium dissolved in liquid ammonia is deposited and supported, or a method in which sodium melted at 150 to 400°C is mixed and supported in an inert gas atmosphere. It is stated that a catalyst prepared by can be used. All of the catalysts in the Examples of this publication were prepared by a method of melting and supporting sodium at high temperatures.

一般に高温下にアルカリ金属を熔融担持するためには、
キルンなど特別な調製装置を必要とし操作が繁雑であり
、調製した触媒は容易に発火の危険性があることからそ
の取扱い上の安全性に課題をかかえている。又得られる
触媒においてはナトリウムの担体への分散が不均一であ
りNa−に間の交換率が低い。そのため該公報の実施例
の結果も含めて従来の触媒の活性は未だ充分とは言えな
い。
Generally, in order to melt and support alkali metals at high temperatures,
It requires special preparation equipment such as a kiln and is complicated to operate, and the prepared catalyst can easily catch fire, posing safety issues when handling it. In addition, in the resulting catalyst, the dispersion of sodium in the carrier is non-uniform, and the exchange rate between Na- and Na- is low. Therefore, the activity of conventional catalysts, including the results of the examples in the publication, cannot be said to be sufficient.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者等は側鎖アルキル化反応によって炭素数を増し
たアルキル置換芳香族炭化水素を製造する際に使用され
ている従来の触媒には前記した問題点のあることを認め
た。そこで、これを改良すべ〈従来に比べて簡単かつ安
全な方法によってしかも活性の高い触媒を調整し、これ
を用いてアルキル置換芳香族炭化水素(a)を脂肪族モ
ノオレフィンによって側鎖アルキル化して炭素数を増し
たアルキル置換芳香族炭化水素(b)を従来の触媒に比
して高い収量で得る方法について検討した。
The present inventors have recognized that the conventional catalysts used in the production of alkyl-substituted aromatic hydrocarbons with increased carbon numbers through side chain alkylation reactions have the above-mentioned problems. Therefore, it is necessary to improve this by preparing a highly active catalyst using a simpler and safer method than before, and using this to alkylate the side chain of an alkyl-substituted aromatic hydrocarbon (a) with an aliphatic monoolefin. We investigated a method for obtaining an alkyl-substituted aromatic hydrocarbon (b) with an increased number of carbon atoms in a higher yield than with conventional catalysts.

〔発明を解決するための手段・作用〕[Means/effects for solving the invention]

その結果、下記方法を採用すれば前記目的を達成できる
ことを見出し本発明を完成するに到った。
As a result, the inventors discovered that the above object could be achieved by employing the following method and completed the present invention.

すなわち本発明の方法によれば、アルカリ置換芳香族炭
化水素を脂肪族モノオレフィンにより側鎖アルキル化す
るに際し、アルカリ金属と炭酸カリウム粉体をアルカリ
金属に対して不活性な液状の炭化水素からなる分散媒中
でアルカリ金属の融点以上の温度で混合することにより
炭酸カリウム粉体にアルカリ金属を担持せしめた触媒を
用いることを特徴とするアルキル置換芳香族炭化水素の
側鎖アルキル化方法、が提示される。
That is, according to the method of the present invention, when side chain alkylating an alkali-substituted aromatic hydrocarbon with an aliphatic monoolefin, an alkali metal and potassium carbonate powder are replaced with a liquid hydrocarbon inert to alkali metals. A method for side chain alkylation of alkyl-substituted aromatic hydrocarbons is presented, which is characterized by using a catalyst in which an alkali metal is supported on potassium carbonate powder by mixing in a dispersion medium at a temperature equal to or higher than the melting point of the alkali metal. be done.

放−娠 本発明で使用される触媒は特定の方法によって炭酸カリ
ウム粉体にアルカリ金属を担持せしめた触媒である。す
なわち、本発明では、アルカリ金属と炭酸カリウム粉体
をアルカリ金属に対して不活性な液状の炭化水素からな
る分散媒中でアルカリ金属の融点以上の温度で混合する
ことにより炭酸カリウム粉体にアルカリ金属を担持せし
めた触媒を用いて、アルキル置換芳香族炭化水素の側鎖
アルキル化反応が行われる。
Release The catalyst used in the present invention is a catalyst in which an alkali metal is supported on potassium carbonate powder by a specific method. That is, in the present invention, an alkali is added to the potassium carbonate powder by mixing the alkali metal and the potassium carbonate powder in a dispersion medium consisting of a liquid hydrocarbon that is inert to the alkali metal at a temperature higher than the melting point of the alkali metal. A side chain alkylation reaction of an alkyl-substituted aromatic hydrocarbon is carried out using a metal-supported catalyst.

本発明で使用されるアルカリ金属としてはりチウム、ナ
トリウム、カリウムなどであって、この中ではナトリウ
ムが好ましい。
Alkali metals used in the present invention include lithium, sodium, potassium, etc. Among these, sodium is preferred.

本発明で用いられる炭酸カリウム粉体については、従来
から知られている方法によって得られる炭酸カリウム粉
体を使用することができる。本発明では特にどういった
物性の炭酸カリウムを用いなければならないということ
はないが、後述する反応の活性の点から本発明では以下
に示す物性を有する炭酸カリウム粉体を使用することが
特に好ましい。すなわち、嵩密度が通常0.85g/d
以下、平均粒径が通常100ないし800μでかっ粒径
100ないし800μの範囲にある粉体重量が全粉体重
量の通常60%以上を占める炭酸カリウム粉体を用いて
得られる触媒を使用した場合には、本発明の側鎖アルキ
ル化反応によって生成するアルキル置換芳香族炭化水素
の生成量が増大するので特に好ましい。なお前記平均粒
径はJIS規格標準ふるいを用いてふるい分は法によっ
て粒度分布を求めRR3線図からメジアン径として求め
られる。
Regarding the potassium carbonate powder used in the present invention, potassium carbonate powder obtained by a conventionally known method can be used. In the present invention, it is not particularly necessary to use potassium carbonate having physical properties, but from the viewpoint of the activity of the reaction described below, it is particularly preferable to use potassium carbonate powder having the physical properties shown below in the present invention. . That is, the bulk density is usually 0.85 g/d.
Below, when using a catalyst obtained using potassium carbonate powder, the average particle size is usually 100 to 800μ, and the powder weight in the range of 100 to 800μ usually accounts for 60% or more of the total powder weight. It is particularly preferable to increase the amount of alkyl-substituted aromatic hydrocarbons produced by the side chain alkylation reaction of the present invention. The average particle diameter is determined by using a JIS standard sieve, determining the particle size distribution by the sieve method, and determining the median diameter from the RR3 diagram.

本発明で使用されるアルカリ金属に対して不活性な液状
の炭化水素からなる分散媒として具体的には、ベンゼン
、トルエン、エチルベンゼン、イソプロピルベンゼン、
キシレン、メシチレン等のアルキル基で置換された芳香
族炭化水素およびヘキサン、ヘプタン、オクタン、デカ
ン、ドデカン、トリデカン等の脂肪族飽和炭化水素およ
びテトラリン、デカリン、シクロヘキサン等の脂環式炭
化水素などを例示できるが、本発明ではこの中でもトル
エン、キシレン、ヘキサン、n−オクタン、n−デカン
を用いることが好ましい。特に後述する本発明の反応に
おいて原料として用いられるアルキル置換芳香族炭化水
素(81を前記分散媒として用いると、触媒調製に引き
続いて反応を開始できるので操作が簡単となり経済的か
つ安全上有利であるので特に好ましい。本発明では前記
分散媒は単独使用しても良いし、又必要に応じて混合使
用することもできる。
Specifically, the dispersion medium made of liquid hydrocarbon inert to alkali metals used in the present invention includes benzene, toluene, ethylbenzene, isopropylbenzene,
Examples include aromatic hydrocarbons substituted with alkyl groups such as xylene and mesitylene, aliphatic saturated hydrocarbons such as hexane, heptane, octane, decane, dodecane, and tridecane, and alicyclic hydrocarbons such as tetralin, decalin, and cyclohexane. However, in the present invention, among these, toluene, xylene, hexane, n-octane, and n-decane are preferably used. In particular, when an alkyl-substituted aromatic hydrocarbon (81) used as a raw material in the reaction of the present invention, which will be described later, is used as the dispersion medium, the reaction can be started following catalyst preparation, which is advantageous in terms of ease of operation and economic and safety. Therefore, it is particularly preferable.In the present invention, the above-mentioned dispersion medium may be used alone, or may be used in combination as necessary.

本発明では、触媒を調製するに当たって使用される炭酸
カリウム粉体とアルカリ金属の割合については、該粉体
の100重量部に対してアルカリ金属が通常0.5ない
し10重量部、好ましくは1ないし7重量部である。ア
ルカリ金属の量が0.5重量部以下の場合には後述する
本発明の側鎖アルキル化反応の活性が低く、又10重量
部以上の場合には均一な担持が困難であるばかりか、反
応中に高重合物を副生じ、触媒を被毒する。また極端な
場合にはピッチ様の固形物を発生し、反応器を閉塞する
等のトラブルを生ずるので好ましくない。また本発明で
前記分散媒を使用する場合の割合については、炭酸カリ
ウム粉体の100重量部に対して通常100ないし10
00重量部、好ましくは150ないし500重量部であ
る。
In the present invention, the ratio of potassium carbonate powder and alkali metal used in preparing the catalyst is usually 0.5 to 10 parts by weight, preferably 1 to 10 parts by weight, per 100 parts by weight of the powder. 7 parts by weight. If the amount of alkali metal is less than 0.5 parts by weight, the activity of the side chain alkylation reaction of the present invention, which will be described later, will be low, and if it is more than 10 parts by weight, not only will it be difficult to support the alkali metal uniformly, but the reaction will be delayed. Highly polymerized substances are produced as by-products, poisoning the catalyst. Furthermore, in extreme cases, pitch-like solids may be generated, which may cause troubles such as clogging of the reactor, which is not preferable. In addition, in the present invention, the proportion of the dispersion medium used is usually 100 to 10 parts by weight per 100 parts by weight of the potassium carbonate powder.
00 parts by weight, preferably 150 to 500 parts by weight.

本発明では、アルカリ金属と炭酸カリウム粉体を前記分
散媒中にアルカリ金属の融点以上の温度で混合すること
によってアルカリ金属を炭酸カリウム粉体に担持せしめ
て本発明の触媒が得られるわけであるが、この場合の該
温度としては通常120ないし250℃、好ましくは1
50ないし230℃である。該温度が120℃以下の場
合には炭酸カリウムのカリウムイオンとアルカリ金属と
の相互作用ならびに炭酸カリウム粉体に由来するカリウ
ムと担持しようとするアルカリ金属例えばナトリウムと
の交換反応が起こりにくいため高活性な触媒が得られな
いので好ましくない。また温度が250℃以上の場合に
は、トルエン、エチルベンゼン、キシレン等を前記分散
媒として用いた場合にはこの分散媒自身のカップリング
反応等が触媒調製時に発生し、これによって触媒は被毒
されて活性を失ってしまい、又分散媒として前記脂肪族
飽和炭化水素を用いた場合も金属状のカリウムが多く副
生し、反応中にピッチ状の固形物を生成するので好まし
くない。
In the present invention, the catalyst of the present invention is obtained by mixing an alkali metal and potassium carbonate powder in the dispersion medium at a temperature higher than the melting point of the alkali metal, thereby supporting the alkali metal on the potassium carbonate powder. However, the temperature in this case is usually 120 to 250°C, preferably 1
The temperature is 50 to 230°C. When the temperature is below 120°C, interaction between potassium ions in potassium carbonate and alkali metals and exchange reactions between potassium derived from potassium carbonate powder and alkali metals to be supported, such as sodium, are difficult to occur, resulting in high activity. This is not preferred because a suitable catalyst cannot be obtained. Furthermore, when the temperature is 250°C or higher, when toluene, ethylbenzene, xylene, etc. are used as the dispersion medium, a coupling reaction of the dispersion medium itself occurs during catalyst preparation, and the catalyst is poisoned by this. Furthermore, when the aliphatic saturated hydrocarbon is used as a dispersion medium, a large amount of metallic potassium is produced as a by-product, and a pitch-like solid is produced during the reaction, which is not preferable.

本発明では、前記方法によって炭酸カリウム粉体にアル
カリ金属を担持して得られる触媒は、この後分散媒を除
去して水分を含まない不活性ガス雰囲気中にて反応に供
する迄保存しても良いし、あるいはそのまま水分を含ま
ない前記分散媒中にて保存しても良い。この場合、分散
媒として後述する本発明の側鎖アルキル化反応の原料と
して用いるアルキル置換芳香族炭化水素(a)を用いた
場合には、調製した触媒をそのまま次の反応に供するこ
とができるので特に好ましいことは前述したとおりであ
る。
In the present invention, the catalyst obtained by supporting an alkali metal on potassium carbonate powder by the above method may be stored after removing the dispersion medium in an inert gas atmosphere containing no moisture until it is subjected to the reaction. Alternatively, it may be stored as is in the dispersion medium that does not contain water. In this case, if the alkyl-substituted aromatic hydrocarbon (a) used as a raw material for the side chain alkylation reaction of the present invention, which will be described later, is used as a dispersion medium, the prepared catalyst can be directly used in the next reaction. What is particularly preferable is as described above.

前記した本発明の方法によって得られる触媒は、担体の
炭酸カリウム粉体に該炭酸カリウムに由来しないアルカ
リ金属が担体基準で通常0.5ないし10重量%、好ま
しくは1ないし7重量%担持された触媒である。
In the catalyst obtained by the method of the present invention described above, an alkali metal not derived from the potassium carbonate is supported on the potassium carbonate powder as a carrier, usually 0.5 to 10% by weight, preferably 1 to 7% by weight, based on the carrier. It is a catalyst.

本発明の方法によれば従来法に比べて比較的低温でしか
も簡単な方法によって後述する反応に対して高活性な触
媒が得られる。
According to the method of the present invention, a highly active catalyst for the reactions described below can be obtained at a relatively low temperature and in a simple manner compared to conventional methods.

反−息 本発明では前記方法によって調製された触媒の存在下に
アルキル置換芳香族炭化水素(a)と脂肪族モノオレフ
ィンを反応させて側鎖アルキル化反応によって炭素数を
増したアルキル置換芳香族炭化水素(b)が製造される
In the present invention, an alkyl-substituted aromatic hydrocarbon (a) and an aliphatic monoolefin are reacted in the presence of a catalyst prepared by the above method to increase the number of carbon atoms through a side chain alkylation reaction. Hydrocarbon (b) is produced.

本発明で使用されるアルキル置換芳香族炭化水素(a)
として具体的にはトルエン、エチルベンゼン、n−プロ
ピルベンゼン、イソプロピルベンゼン、n−ブチルベン
ゼン、5ec−ブチルベンゼン、イソブチルベンゼン、
n−デシルベンゼン、キシレン、メシチレン、テトラベ
ンゼン等のアルキル置換ベンゼン、メチルナフタレン、
ジメチルナフタレン、イソプロピルナフタレン等のアル
キル置換ナフタレンおよびメチルインダン、エチルイン
ダン等のアルキル置換インダンなどを例示でき、本発明
では側鎖アルキル基においてα位の炭素に水素原子が結
合したアルキル基を少なくとも1つ以上有するアルキル
置換芳香族炭化水素が使用される。本発明では前記した
アルキル置換芳香族炭化水素(a)の中でも特にトルエ
ンを使用することが好ましい。
Alkyl-substituted aromatic hydrocarbon (a) used in the present invention
Specifically, toluene, ethylbenzene, n-propylbenzene, isopropylbenzene, n-butylbenzene, 5ec-butylbenzene, isobutylbenzene,
Alkyl-substituted benzenes such as n-decylbenzene, xylene, mesitylene, and tetrabenzene, methylnaphthalene,
Examples include alkyl-substituted naphthalenes such as dimethylnaphthalene and isopropylnaphthalene, and alkyl-substituted indanes such as methylindane and ethylindane. An alkyl-substituted aromatic hydrocarbon having the above is used. In the present invention, it is particularly preferable to use toluene among the alkyl-substituted aromatic hydrocarbons (a) described above.

本発明で使用される脂肪族モノオレフィンとして具体的
にはエチレン、プロピレン、1−ブテン、2−ブテン、
イソブチレン、1−ペンテン、2−ペンテン、1−ヘキ
セン、2−ヘキセン、3−ヘキセン、1−ヘプテン、2
−ヘプテン、2−オクテン、2−デセン、3−メチル−
1−ブテン、2−メチル−2−ブテン、4−メチル−1
−ペンテン等を例示できるが、この中ではエチレン、プ
ロピレン1,1−ブテン、2−ブテン、イソブチンを使
用することが好ましい。
Specifically, the aliphatic monoolefins used in the present invention include ethylene, propylene, 1-butene, 2-butene,
Isobutylene, 1-pentene, 2-pentene, 1-hexene, 2-hexene, 3-hexene, 1-heptene, 2
-Heptene, 2-octene, 2-decene, 3-methyl-
1-butene, 2-methyl-2-butene, 4-methyl-1
Examples include -pentene, among which ethylene, propylene 1,1-butene, 2-butene, and isobutyne are preferably used.

本発明の方法では、前記したアルキル置換芳香族炭化水
素(alと脂肪族モノオレフィンを反応させる場合の条
件として、これら原料の仕込み割合については、アルキ
ル置換芳香族炭化水素(a)の100モル部に対して脂
肪族モノオレフィンは通常10ないし2000モル部、
好ましくは10口ないし700モル部である。触媒の使
用量については、アルキル置換芳香族炭化水素(alの
100重量部当たり通常0.1ないし50重量部、好ま
しくは1ないし20重量部の触媒が用いられる。本発明
では触媒調製後、反応を行うに当たって必要に応じて例
えばベンゼン、エチルアミン、トリエチルアミン、ブチ
ルアミン、シクロヘキシルアミン、トルイジン、n−デ
カリン、ヘキサン、シクロヘキサン等の反応溶媒を適宜
の量用いても差し支えない。
In the method of the present invention, as the conditions for reacting the alkyl-substituted aromatic hydrocarbon (al) with the aliphatic monoolefin, the charging ratio of these raw materials is 100 molar parts of the alkyl-substituted aromatic hydrocarbon (a). The aliphatic monoolefin is usually 10 to 2000 mole parts,
Preferably it is 10 to 700 mole parts. Regarding the amount of catalyst used, the amount of catalyst used is usually 0.1 to 50 parts by weight, preferably 1 to 20 parts by weight per 100 parts by weight of the alkyl-substituted aromatic hydrocarbon (al).In the present invention, after preparing the catalyst, the reaction In carrying out this process, an appropriate amount of a reaction solvent such as benzene, ethylamine, triethylamine, butylamine, cyclohexylamine, toluidine, n-decalin, hexane, cyclohexane, etc. may be used as necessary.

本発明の方法では、反応を例えば回分式の場合は以下の
方法によって実施することができる。オートクレーブ等
の反応器にアルキル置換芳香族炭化水素+8)、触媒お
よび必要に応じて反応溶媒を所定量仕込み、所定の温度
に昇温してから脂肪族モノオレフィンを所定量注入する
方法を示すことができるが、本発明では必ずしもこの方
法に限定されるものではなく、反応の他の方式として固
定床加圧流通式を用いることができる。反応は攪拌下に
実施され、反応温度としては通常140ないし250℃
、好ましくは150ないし200℃であり、反応圧力は
通常10ないし200気圧の範囲にある。反応時間は通
常1ないし20時間である。
In the method of the present invention, the reaction can be carried out by the following method, for example, in the case of a batch method. To show a method of charging a predetermined amount of an alkyl-substituted aromatic hydrocarbon + 8), a catalyst, and a reaction solvent if necessary into a reactor such as an autoclave, raising the temperature to a predetermined temperature, and then injecting a predetermined amount of aliphatic monoolefin. However, the present invention is not necessarily limited to this method, and a fixed bed pressurized flow method can be used as another reaction method. The reaction is carried out under stirring, and the reaction temperature is usually 140 to 250°C.
, preferably 150 to 200°C, and the reaction pressure is usually in the range of 10 to 200 atm. The reaction time is usually 1 to 20 hours.

反応終了後、反応混合物を濾過して触媒を除き、蒸留、
晶析等の通常の分離手段によって本発明の目的とする側
鎖アルキル化反応によって炭素数を増したアルキル置換
芳香族炭化水素(b)を分離することができる。本発明
では該アルキル置換芳香族炭化水素(b)として具体的
には、n−プロピルベンゼン、n−プロピルトルエン、
5ec−7’チルベンゼン、5eC−ブチルトルエン、
tert−アミルベンゼン、イソブチルベンゼン、イソ
ブチルトルエン、2−メチルベンゼン、2−メチルブチ
ルトルエン、n−プロビルナフタレン、等を例示できる
が、この中ではn−プロピルベンゼン、n−プロピルト
ルエン、イソブチルベンゼン、イソブチルトルエン、t
er t−アミルベンゼン、2−メチルブチルベンゼン
、2−メチルブチルトルエンなどが好ましい。
After the reaction is complete, the reaction mixture is filtered to remove the catalyst, distilled,
The alkyl-substituted aromatic hydrocarbon (b) having an increased number of carbon atoms due to the side chain alkylation reaction, which is the object of the present invention, can be separated by ordinary separation means such as crystallization. In the present invention, the alkyl-substituted aromatic hydrocarbon (b) specifically includes n-propylbenzene, n-propyltoluene,
5ec-7' thylbenzene, 5eC-butyltoluene,
Examples include tert-amylbenzene, isobutylbenzene, isobutyltoluene, 2-methylbenzene, 2-methylbutyltoluene, n-propylnaphthalene, among which n-propylbenzene, n-propyltoluene, isobutylbenzene, isobutyltoluene, t
Preferred are er t-amylbenzene, 2-methylbutylbenzene, 2-methylbutyltoluene, and the like.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば、従来法に比べて簡単な方法によ
って分散媒中で調製される、アルカリ金属を炭酸カリウ
ム粉体に担持した触媒を用いることにより、側鎖アルキ
ル化反応により炭素数を増したアルキル置換芳香族炭化
水素(b)を従来法に比べて高い収量で得ることができ
る。
According to the method of the present invention, by using a catalyst in which an alkali metal is supported on potassium carbonate powder, which is prepared in a dispersion medium by a simpler method than in the conventional method, the number of carbon atoms can be increased by a side chain alkylation reaction. The alkyl-substituted aromatic hydrocarbon (b) can be obtained in a higher yield than in the conventional method.

〔実施例〕〔Example〕

以下、本発明の方法を実施例によって具体的に説明する
Hereinafter, the method of the present invention will be specifically explained using examples.

実施例1 炭酸カリウム1.5水和塩のスラリーを150℃で粉霧
乾燥して得られた顆粒状粉末を400℃で2時間焼成し
た後、乾燥窒素雰囲気下に嵩密度および粒度分布をロー
タツブ法にて測定した。この炭酸カリウムの嵩密度は0
.67g/*1であり、平均粒子径(メジアン径Dme
d )は420μであり、さらに100〜800μの粒
径の粒子が全体の92%を占めた。
Example 1 A granular powder obtained by spray-drying a slurry of potassium carbonate hemihydrate at 150°C was calcined at 400°C for 2 hours, and then the bulk density and particle size distribution were determined by rotary bubbling under a dry nitrogen atmosphere. Measured using the method. The bulk density of this potassium carbonate is 0
.. 67g/*1, and the average particle diameter (median diameter Dme
d) was 420μ, and particles with a particle size of 100 to 800μ accounted for 92% of the total.

この炭酸カリウム粉末58gおよび金属ナトリウム2g
をトルエン2001!とともにオートクレーブ゛(1β
)に入れ、190℃で2時間、600rpmの回転数で
攪拌することによって触媒を調製した。この触媒のアル
カリ金属を原子吸光法で分析したところ、金属に対金属
Naの原子比は107対1であった。
58g of this potassium carbonate powder and 2g of metallic sodium
Toluene 2001! Autoclave (1β
) and stirring at 600 rpm for 2 hours at 190°C. When the alkali metal of this catalyst was analyzed by atomic absorption spectroscopy, the atomic ratio of Na to metal was 107:1.

温度を 150℃に低下した後、トルエンをさらに40
0m!加え、これにプロピレンを圧入し、初期反応圧力
を60kg/cfflに設定した。プロピレン導入と同
時に反応が始まり、圧力低下が認められた。
After reducing the temperature to 150°C, add toluene to an additional 40°C.
0m! In addition, propylene was pressurized into this, and the initial reaction pressure was set at 60 kg/cffl. The reaction started at the same time as propylene was introduced, and a pressure drop was observed.

容器内の圧力が30kg/−になった時点で、再びプロ
ピレンを圧入して50kg/cJに戻し、反応を再開し
た。この操作を3回繰返した後反応を終了し、内容物を
ガスクロマトグラフィー(カラムPEG6000、 4
m)で分析した。全反応時間は4時間であった。結果を
表1に示す。
When the pressure inside the container reached 30 kg/-, propylene was again pressurized to return the pressure to 50 kg/cJ, and the reaction was restarted. After repeating this operation three times, the reaction was terminated and the contents were subjected to gas chromatography (column PEG6000, 4
m). Total reaction time was 4 hours. The results are shown in Table 1.

表    1 比較例1 実施例1で使用したものと同じ400℃で焼成した炭酸
カリウムを攪拌装置のついた円筒形のセパラブルフラス
コに入れ、マントルヒーターを用いて実施例1と同じ1
90℃に昇温した。窒素雰囲気下に攪拌しながら、金属
ナトリウム2gを少量づつ落下し、添加後も約1時間同
じ状態で攪拌を継続した。室温迄降温し、窒素雰囲気下
にオートクレーブに移し、トルエン、600mfを加え
て150℃に昇温した。この触媒の一部を原子吸光で分
析したところ金属に対金属Naの原子比率は0.53:
1であった。実施例1に準じプロピレンを導入し、60
kg/cIaまで昇温し、反応を繰返した。この時の全
反応時間は13時間であった。結果を表1に示す。
Table 1 Comparative Example 1 Potassium carbonate calcined at 400°C, the same as that used in Example 1, was placed in a cylindrical separable flask equipped with a stirring device, and the mixture was heated using a mantle heater.
The temperature was raised to 90°C. While stirring under a nitrogen atmosphere, 2 g of metallic sodium was dropped little by little, and stirring was continued in the same state for about 1 hour after the addition. The temperature was lowered to room temperature, transferred to an autoclave under a nitrogen atmosphere, toluene and 600 mf were added, and the temperature was raised to 150°C. When a part of this catalyst was analyzed by atomic absorption, the atomic ratio of Na to metal was 0.53:
It was 1. Propylene was introduced according to Example 1, and 60
The temperature was raised to kg/cIa and the reaction was repeated. The total reaction time at this time was 13 hours. The results are shown in Table 1.

実施例2 実施例1においてトルエンの替りにp−キシレンを用い
る以外はすべて同じ方法で触媒を調製した後、引継きp
−キシレンと1−ブテンの反応を行った。バラキシレン
400mfおよび触媒を入れた後、170℃に昇温し、
■−ブテンを導入して80kg/ruaにした。8時間
後生成物をガスクロマトグラフィー(PEG 6000
. 4m)を用いて分析した。
Example 2 A catalyst was prepared in the same manner as in Example 1 except that p-xylene was used instead of toluene, and then p-xylene was used instead of toluene.
- A reaction between xylene and 1-butene was carried out. After adding 400mf of baraxylene and a catalyst, the temperature was raised to 170°C,
①-Butene was introduced to make it 80 kg/rua. After 8 hours, the product was subjected to gas chromatography (PEG 6000
.. 4m).

表    2 実施例3 炭酸カリウム水溶液をエバポレーターで濃縮して得られ
た結晶を遠心分離器で脱水した後粉砕し、400℃で2
時間焼成することによって炭酸カリウム粉末を得た。こ
の顆粒状粉末は嵩密度が0.78g/mlであり、平均
粒径(Dmed )は320 p、かつ粒度分布は10
0〜800μの粒径の粒子が全体の85%を占めた。
Table 2 Example 3 The crystals obtained by concentrating an aqueous potassium carbonate solution using an evaporator were dehydrated using a centrifuge, and then ground, and the crystals were heated at 400°C for 2 hours.
Potassium carbonate powder was obtained by firing for a period of time. This granular powder has a bulk density of 0.78 g/ml, a mean particle size (Dmed) of 320 p, and a particle size distribution of 10
Particles with a particle size of 0 to 800 μ accounted for 85% of the total.

この炭酸カリウム57gおよび金属ナトリウム3gなら
びにn−デカン200mjとともにオートクレーブに入
れ、230度で3時間600rpmの回転数で攪拌する
ことによって触媒を開裂した。反応器の温度を160℃
に下げ、β−メチルナフタレン200gを加えた後、エ
チレンを容器内の圧力が50kg/−に達するまで圧入
した。2時間後容器内の圧力は28kg/−を示した。
The catalyst was placed in an autoclave together with 57 g of potassium carbonate, 3 g of sodium metal, and 200 mj of n-decane, and stirred at 600 rpm for 3 hours at 230 degrees to cleave the catalyst. The temperature of the reactor is 160℃
After adding 200 g of β-methylnaphthalene, ethylene was pressurized until the pressure inside the container reached 50 kg/-. After 2 hours, the pressure inside the container was 28 kg/-.

結果を第3表に示す。The results are shown in Table 3.

比較例2 比較例1と同じ方法で調製した触媒60gをn−デカン
200m!ならびにβ−メチルナフタレン200gとと
もにオートクレーブに入れ、160℃でエチレンを50
kg/c+&まで圧入して反応させた結果を表3に示し
た。
Comparative Example 2 60 g of catalyst prepared in the same manner as Comparative Example 1 was added to 200 m of n-decane! and 200 g of β-methylnaphthalene in an autoclave, and 50 g of ethylene was added at 160°C.
Table 3 shows the results of the reaction at a pressure of up to kg/c+&.

なお5時間で容器内の圧力は32kg/c1aを示した
Note that the pressure inside the container was 32 kg/c1a after 5 hours.

Claims (1)

【特許請求の範囲】[Claims] (1)アルキル置換芳香族炭化水素を脂肪族モノオレフ
ィンにより側鎖アルキル化するに際し、アルカリ金属と
炭酸カリウム粉体をアルカリ金属に対して不活性な炭化
水素からなる分散媒中でアルカリ金属の融点以上の温度
で混合することにより炭酸カリウム粉体にアルカリ金属
を担持せしめた触媒を用いることを特徴とするアルキル
置換芳香族炭化水素の側鎖アルキル化方法。
(1) When side-chain alkylating an alkyl-substituted aromatic hydrocarbon with an aliphatic monoolefin, the alkali metal and potassium carbonate powder are mixed in a dispersion medium consisting of a hydrocarbon that is inert to the alkali metal at the melting point of the alkali metal. A method for side chain alkylation of alkyl-substituted aromatic hydrocarbons, characterized by using a catalyst in which an alkali metal is supported on potassium carbonate powder by mixing at a temperature above.
JP60061881A 1985-03-28 1985-03-28 Method for side-chain alkylation of alkyl-substituted aromatic hydrocarbons Expired - Fee Related JPH0699329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60061881A JPH0699329B2 (en) 1985-03-28 1985-03-28 Method for side-chain alkylation of alkyl-substituted aromatic hydrocarbons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60061881A JPH0699329B2 (en) 1985-03-28 1985-03-28 Method for side-chain alkylation of alkyl-substituted aromatic hydrocarbons

Publications (2)

Publication Number Publication Date
JPS61221133A true JPS61221133A (en) 1986-10-01
JPH0699329B2 JPH0699329B2 (en) 1994-12-07

Family

ID=13183923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60061881A Expired - Fee Related JPH0699329B2 (en) 1985-03-28 1985-03-28 Method for side-chain alkylation of alkyl-substituted aromatic hydrocarbons

Country Status (1)

Country Link
JP (1) JPH0699329B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4916100A (en) * 1986-12-31 1990-04-10 Neste Oy Process for preparing a catalyst system for selective alkylation of toluene with propylene
US5157186A (en) * 1990-11-13 1992-10-20 Ethyl Corporation Process for catalytic coupling of an alkene with an aromatic hydrocarbon
FR2703678A1 (en) * 1993-04-08 1994-10-14 Inst Francais Du Petrole Process for the preparation of isobutylbenzene in the presence of a supported catalyst
US5625102A (en) * 1993-12-27 1997-04-29 Mitsubishi Oil Co., Ltd. Method of alkylating the side chain of alkyl-substituted aromatic hydrocarbons

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153229A (en) * 1984-08-22 1986-03-17 Nippon Petrochem Co Ltd Alkylation process
JPS6157526A (en) * 1984-08-29 1986-03-24 Nippon Petrochem Co Ltd Production of aromatic hydrocarbon

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153229A (en) * 1984-08-22 1986-03-17 Nippon Petrochem Co Ltd Alkylation process
JPS6157526A (en) * 1984-08-29 1986-03-24 Nippon Petrochem Co Ltd Production of aromatic hydrocarbon

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4916100A (en) * 1986-12-31 1990-04-10 Neste Oy Process for preparing a catalyst system for selective alkylation of toluene with propylene
US5157186A (en) * 1990-11-13 1992-10-20 Ethyl Corporation Process for catalytic coupling of an alkene with an aromatic hydrocarbon
FR2703678A1 (en) * 1993-04-08 1994-10-14 Inst Francais Du Petrole Process for the preparation of isobutylbenzene in the presence of a supported catalyst
US5625102A (en) * 1993-12-27 1997-04-29 Mitsubishi Oil Co., Ltd. Method of alkylating the side chain of alkyl-substituted aromatic hydrocarbons

Also Published As

Publication number Publication date
JPH0699329B2 (en) 1994-12-07

Similar Documents

Publication Publication Date Title
JPH01207137A (en) Carrier for catalyst and manufacture of catalyst and dimerization method of olefin
JP2748631B2 (en) Method for producing alkyl-substituted aromatic hydrocarbon
JPS61221133A (en) Method of side chain alkylation of alkyl-substituted aromatic hydrocarbon
JPH03165837A (en) Manufacture of catalytic support and olefin dimer process
EP0328940B1 (en) Process for preparing alkyl-substituted aromatic hydrocarbons
EP0357031B1 (en) Process for preparing alkyl-substituted aromatic hydrocarbons
JPH05310613A (en) Production of monoalkenylbenzene
JP2748646B2 (en) Method for producing alkyl-substituted aromatic hydrocarbon
US5104843A (en) Catalyst composition for coupling process
EP0406867A1 (en) Catalysts and catalyst supports, with inorganic nitrates, for olefin dimerization
JPH10259147A (en) Production of monoalkenylbenzenes
JP2625985B2 (en) Method for producing alkyl-substituted aromatic hydrocarbon
JPH0639396B2 (en) Method for side-chain alkylation of alkyl-substituted aromatic hydrocarbons
US5227559A (en) Process for preparing alkyl-subtituted aromatic hydrocarbons
JP2830129B2 (en) Preparation of alkyl-substituted aromatic hydrocarbons
JP3028020B2 (en) Method for producing monoalkenylbenzenes
JP2596108B2 (en) Preparation of alkyl-substituted aromatic hydrocarbons
GB2254802A (en) Catalyst composition for coupling process
US5347062A (en) Process for preparing alkyl-substituted aromatic hydrocarbons
US5157186A (en) Process for catalytic coupling of an alkene with an aromatic hydrocarbon
JPS61263643A (en) Preparation of catalyst deposited with alkali metal
JP2748577B2 (en) Process for producing alkyl-substituted aromatic hydrocarbons
JP2792132B2 (en) Process for producing alkyl-substituted aromatic hydrocarbons
JP2745706B2 (en) Method for producing alkyl-substituted aromatic hydrocarbon
JPH06256233A (en) Side chain alkalation of alkyl-substituted aromatic hydrocarbon

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees