JPS61220489A - Manufacture of semiconductor laser - Google Patents

Manufacture of semiconductor laser

Info

Publication number
JPS61220489A
JPS61220489A JP6231885A JP6231885A JPS61220489A JP S61220489 A JPS61220489 A JP S61220489A JP 6231885 A JP6231885 A JP 6231885A JP 6231885 A JP6231885 A JP 6231885A JP S61220489 A JPS61220489 A JP S61220489A
Authority
JP
Japan
Prior art keywords
layer
active layer
mesa
etching
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6231885A
Other languages
Japanese (ja)
Inventor
Akira Tanaka
明 田中
Junichi Kinoshita
順一 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6231885A priority Critical patent/JPS61220489A/en
Publication of JPS61220489A publication Critical patent/JPS61220489A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a semiconductor laser element characterized by a small leaking current, high reliability, narrow width of an active layer, uniform controllability and stable lateral mode, by etching the side surface of a mesa part so that an arc shape is provided at a part lower than the constricted part of the side surface of the mesa. CONSTITUTION:On an n-type (100) InP substrate 8, a buffer layer 7, an active layer 3, a clad layer 2 and an ohmic layer 1 are grown. An SiO2 film is deposited, and a stripe shaped mask 9 is formed in the direction of (011). Approximately vertical etching is performed to the upper part of the active layer 3, by using a 4HCl+H2O solution for InP and using a KOH+K3Fe(CN)6+H2O solution for InGaAsP. The layer is further etched by using 0.2% brommethanol. Thus the part lower than the constricted part of the side surface of mesa becomes an arc shape. The width of the active layer can be specified as 2mum or less. Then current blocking layers 6 and 5 and a cap layer 4 are formed. Since the width of the active layer 3 can be made small and the layer can be formed uniformly, a stable lateral mode can be obtained.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、屈折率導波型である埋め込みへテロ構造の
半導体レーデの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a refractive index waveguide type buried heterostructure semiconductor radar.

〔背景技術とその問題点〕[Background technology and its problems]

一般に、ダブルヘテロ構造の半導体ウェファにメサスト
ライプ状にエツチングを施し、更にこのメサストライプ
を結晶成長により埋め込むいわゆる埋め込みへテロ構造
は、ストライプ状の活性層の幅を制御することにより、
安定な基本横モード発振が得られる屈折率導波機構を有
している。また、埋め込む結晶中に逆バイアス接合を設
ける等の電流狭窄機構の採用により、活性層に効率良く
電流が集中し、低電流しきい値が容易に実現、できる。
In general, a so-called buried heterostructure is created by etching a double heterostructure semiconductor wafer into a mesa stripe shape and then burying the mesa stripe by crystal growth.By controlling the width of the stripe-shaped active layer,
It has a refractive index waveguide mechanism that provides stable fundamental transverse mode oscillation. Furthermore, by employing a current confinement mechanism such as providing a reverse bias junction in the buried crystal, current is efficiently concentrated in the active layer, and a low current threshold can be easily achieved.

例えば、Ga1nAs/ InP系埋め込み型ダブルヘ
テロ構造の半導体レーデは、従来、第4図に示すように
構成され、n型(100)InP基板8上にn型層nP
バッファ一層7、アンドープGa1nAsP活性層3、
p型InPクラッド層2を含む結晶層を成長させ、更に
良好なオーミック性を得るためにp型層aInAgPキ
ャップ層Jを成長させ、上記結晶層表面に810□など
の酸化膜又は窒化膜を堆積させストライブを形成し、ブ
ロムメタノールにより逆メサ形状にエツチングを行なう
か、又はInGaAsPに対して硫酸系又はKOI(を
含むエツチング液、InPに対して塩酸系のエツチング
液を用いて垂直状にメサエッチングを行なって活性層を
ストライブ状とし、屈折率導波路を形成していた。その
後、活性層のみに高効率に電流を挟挿して低しきい値化
を図るために、通常p−n逆接合を形成したInP層5
,6でメサストライプ側面を埋め込むいわゆる埋め込み
成長を行なっていた。尚、GaInAsPキャップ層4
は表面を平坦化するためのものである。
For example, a Ga1nAs/InP-based buried double heterostructure semiconductor radar is conventionally constructed as shown in FIG.
buffer layer 7, undoped Ga1nAsP active layer 3,
Grow a crystal layer including a p-type InP cladding layer 2, grow a p-type aInAgP cap layer J to obtain better ohmic properties, and deposit an oxide film or nitride film such as 810□ on the surface of the crystal layer. Either a stripe is formed and etched into an inverted mesa shape using bromo-methanol, or a mesa is etched vertically using an etching solution containing sulfuric acid or KOI for InGaAsP, and a hydrochloric acid-based etching solution for InP. The active layer is etched into a stripe shape to form a refractive index waveguide.After that, in order to reduce the threshold voltage by inserting a current with high efficiency only in the active layer, it is usually InP layer 5 forming a reverse junction
, 6, the so-called buried growth was performed to bury the sides of the mesa stripe. Note that the GaInAsP cap layer 4
is for flattening the surface.

ところで一般に埋め込み型半導体レーデの場合、安定な
単−構モード発振を得るためには、活性層の幅を1μm
程度に制御しなくてはならない。そこで、活性層幅を狭
く制御するため、ブロム−メタノールを用いるエツチン
グ法により逆メサ状にエツチングし、逆メサのくびれを
活性層に一致させていた。その時、活性層積のメサ側面
は第5図に示すように鋭角にくびれ、続いて埋め込み成
長を液相エピタキシャル成長法により行なう場合、成長
用融液10が濡れない領域1)が形成され、この部分で
の結晶性が悪くなシ、活性層側面での非放射再結合中心
の増加、接合の飽和電流密度の増加等によシ、漏洩電流
が増加し、活性層への挟挿効果が悪くなる現象が多発し
ていた。この事実は発振しきい値の上昇、外微分量子効
率の低下等の特性の劣化を招く大きな原因となっていた
。又、第6図に示すように、垂直エツチングの場合も活
性層の横に垂直な角が形成され、融液10の濡れのない
領域11が形成され、逆メサの場合と同様にデバイスの
特性に悪影響を与えていた。又、第5図の逆メサの例の
場合、活性層側面を濡れのない領域11から上もしくは
下に位置させることも解決策の一つであるが、この場合
には、活性層側面の位置を大きく上下に移動することは
、活性層幅を広くすることとなり、横モードの安定化の
点からは好ましくなかった。
By the way, in general, in the case of a buried semiconductor radar, in order to obtain stable single mode oscillation, the width of the active layer must be set to 1 μm.
It has to be controlled to a certain extent. Therefore, in order to control the width of the active layer to be narrow, an etching method using bromine-methanol was used to form an inverted mesa, so that the constriction of the inverted mesa coincided with the active layer. At this time, the mesa side surface of the active layer stack is constricted at an acute angle as shown in FIG. Due to poor crystallinity in the active layer, an increase in non-radiative recombination centers on the sides of the active layer, an increase in the saturation current density of the junction, etc., leakage current increases and the intercalation effect in the active layer worsens. The phenomenon was occurring frequently. This fact has been a major cause of deterioration of characteristics, such as an increase in the oscillation threshold and a decrease in external differential quantum efficiency. Also, as shown in FIG. 6, in the case of vertical etching, a vertical corner is formed on the side of the active layer, and a region 11 that is not wetted by the melt 10 is formed, which affects the characteristics of the device as in the case of inverted mesa. had a negative impact on. In addition, in the case of the inverted mesa example shown in FIG. Moving up and down a large amount would increase the width of the active layer, which was not preferable from the standpoint of stabilizing the transverse mode.

又、ブロム−メタノールによるエツチングは活性層幅を
狭く制御するために、酸化膜マスクのストライブ幅を、
活性層3からオーミックキャップ層1までの厚さに応じ
、変化させなければならなかった。
In addition, in order to control the active layer width narrowly, the stripe width of the oxide film mask is
It had to be varied depending on the thickness from the active layer 3 to the ohmic cap layer 1.

〔発明の目的〕[Purpose of the invention]

この発明の目的は、メサエッチング法及び形状による欠
点を克服し、漏洩電流が少なく信頼性が高く、かつ活性
層幅を細く均一性良く制御できることによシ、横モード
の安定な埋め込みへテロ型半導体レーデ素子の製造方法
を提供することである。
The purpose of this invention is to overcome the drawbacks caused by the mesa etching method and shape, and to achieve a buried hetero-type structure with low leakage current and high reliability, and a stable transverse mode buried hetero-etching method by which the width of the active layer can be controlled thinly and with good uniformity. An object of the present invention is to provide a method for manufacturing a semiconductor radar element.

〔発明の概要〕[Summary of the invention]

この発明は、メサ側面のくびれから下の形状を円弧状と
なし、その円弧のくびれの位置での接線とメサ側面のな
す角を融液の接触角よシ大なるようにすることによって
、メサ側面で完全に融液が濡れるようにし、メサ側面で
の結晶性を向上させることが出来るようにしたものであ
る。又、接線とメサ側面のなす角が僅かに接触角よシ小
なる場合には、メルトの濡れない領域に活性層の側面を
位置させないことによシ、メサ側面での結晶性を向上し
たものである。又、メサ側面からの円弧のくびれの位置
での接線が垂直に近いため、必然的に活性層の幅はくび
れの下でも細く制御出来る利点も有しておシ、漏洩電流
の少ない低しきい値でかつ横モードの安定な埋め込み型
半導体レーザを、再現性良く製造できるようにしたもの
である。
In this invention, the mesa side surface is shaped like an arc below the constriction, and the angle between the tangent at the constriction of the arc and the mesa side surface is larger than the contact angle of the melt. This allows the side surfaces to be completely wetted by the melt, thereby improving crystallinity on the mesa sides. In addition, if the angle between the tangent and the mesa side surface is slightly smaller than the contact angle, the crystallinity on the mesa side surface can be improved by not positioning the side surface of the active layer in an area that is not wetted by the melt. It is. In addition, since the tangent line at the constriction of the arc from the side of the mesa is close to vertical, the width of the active layer can be controlled to be narrow even under the constriction, resulting in a low threshold with low leakage current. This makes it possible to manufacture a buried semiconductor laser with high stability and transverse mode with good reproducibility.

〔発明の実施例〕[Embodiments of the invention]

この発明を、GaInAsP/InP系埋め込みダブル
ヘテロ構造に適用した実施例について、以下図面を参照
して詳細に説明を行なう。
An embodiment in which the present invention is applied to a GaInAsP/InP buried double heterostructure will be described in detail below with reference to the drawings.

即ち、第1図はこの発明の製造方法によシ得られた埋め
込み型半導体レーデであり、n型(100)InP基板
8上に後述の製造方法により、バッファ一層7、活性層
3、クラッド層2及びオーミック層1が成長形成されて
いる。更に、電流阻止層6,5及び埋め込み層であるキ
ャップ層4が成長形成されている。
That is, FIG. 1 shows a buried semiconductor radar obtained by the manufacturing method of the present invention, in which a buffer layer 7, an active layer 3, and a cladding layer are formed on an n-type (100) InP substrate 8 by the manufacturing method described later. 2 and an ohmic layer 1 are grown. Further, current blocking layers 6, 5 and a cap layer 4 as a buried layer are grown.

次に、このような埋め込み凰半導体レーデの製造方法に
つき、第2図及び第3図を参照して説明する。
Next, a method for manufacturing such a buried-hole semiconductor radar will be described with reference to FIGS. 2 and 3.

即ち、第2図(a)に示すように、−n型(100)I
nP基板8上に、バッファ一層7、活性層3、クラッド
層2及びオーミック層1を成長させ、5102膜などを
堆積させ(011)方向のストライプ状マスク9を形成
した後、InPに対しては塩酸系エツチング液(4HC
t+H20)、InGaAsPに対してはKCH+ K
、F’・(CN)6+H20溶液を用いて活性層上部ま
でほぼ垂直にエツチングを行なう。更に、0.2%ブロ
ムメタノールを用いて活性層3をエツチングする。但し
、この時マスク90幅が所望の活性層幅よシもかなり広
い場合は、予め0.2%ブロムメタノール溶液で、逆メ
サのくびれがP−InPクラッド層2内に位置するよう
に、逆メサ上にエツチングして狭幅化を図る。その後、
4HC1+H20溶液で活性層3までエツチングすると
、この逆メサのくびれが規定された幅W以下の活性層幅
を得ることが出来る。この時、マスク9の幅は約6μm
であシ、活性層化3の幅を2μm以下に規定出来た。上
記最後のブロムメタノールによるエツチングでは、逆メ
サのくびれの位置下方に移動、狭幅化し、HC1系エッ
チャントによる垂直の側面をなまらせながらエツチング
が進行した。この形状を第2図(b)に示す。
That is, as shown in FIG. 2(a), -n type (100) I
After growing a buffer layer 7, an active layer 3, a cladding layer 2, and an ohmic layer 1 on an nP substrate 8 and depositing a 5102 film or the like to form a striped mask 9 in the (011) direction, Hydrochloric acid etching solution (4HC)
t+H20), KCH+K for InGaAsP
, F'.(CN)6+H20 solution is used to perform etching almost vertically to the top of the active layer. Furthermore, the active layer 3 is etched using 0.2% bromethanol. However, if the width of the mask 90 is considerably wider than the desired active layer width, use a 0.2% bromine methanol solution to invert the mesa in advance so that the constriction of the inverted mesa is located within the P-InP cladding layer 2. Etch onto the mesa to narrow the width. after that,
By etching up to the active layer 3 with the 4HC1+H20 solution, it is possible to obtain an active layer width that is less than the specified width W of the constriction of this inverted mesa. At this time, the width of the mask 9 is approximately 6 μm.
Finally, the width of the active layer 3 could be defined to 2 μm or less. In the last etching process using bromo-methanol, the constriction of the inverted mesa was moved downward and narrowed, and the etching progressed while smoothing the vertical sides of the mesa using the HC1-based etchant. This shape is shown in FIG. 2(b).

逆メサのくびれの下の円弧状の裾部は垂直部をなまらせ
ているため、くびれの位置での円弧の接線は垂直となシ
、ブロムメタノールにより表出した(111)A面のな
す角は約145°となった。メサ側面へのインジウム融
液の接触角は、成長初期の濡れの悪い状態では、90°
〈θ’ (180’である。
The arc-shaped skirt below the constriction of the inverted mesa has a rounded vertical part, so the tangent to the arc at the constriction is not perpendicular, and the angle formed by the (111) A plane exposed by bromo-methanol was approximately 145°. The contact angle of the indium melt on the side surface of the mesa is 90° in the poorly wetted state at the initial stage of growth.
<θ'(180').

実際には、界面張力、融液に加わる圧力、温度等に影響
されるため正確には求められないが、接触角を1456
よシ大きくすれば、メサの側面は第3図に示すように完
゛全に密着し濡れることとなった。融液が濡れない部分
が存在する第5図の場合では、濡れない部分での結晶成
長は、濡れた部分の成長が進んで融液が濡れていなかっ
た部分に浸透し、濡れるまで成長が起らない。
In reality, it cannot be determined accurately because it is affected by interfacial tension, pressure applied to the melt, temperature, etc., but the contact angle is 1456
If it was made larger, the sides of the mesa would be completely covered and wet, as shown in Figure 3. In the case of Figure 5, where there are areas that are not wetted by the melt, crystal growth in the unwetted areas progresses as the growth of the wetted areas progresses and the melt penetrates into the unwetted areas, causing growth to occur until they become wet. No.

即ち、成長が遅れることとなυ、欠陥等の導入を許して
いた。融液の圧力等が低くて、接触角が1456よシ小
さい場合、若しくは裾部を完全な円弧に出来ない場合に
は、メルトの濡れの悪い領域が存在するが、活性層3の
側面をくびれ付近から離し、第2図(b)のようにくび
れの下方に位置させることにより、結晶性の影響を大幅
に少なくすることが出来た。
In other words, growth was delayed and defects were allowed to be introduced. If the pressure of the melt is low and the contact angle is smaller than 1456, or if the skirt cannot be made into a perfect circular arc, there will be areas where the melt wetting is poor, but the sides of the active layer 3 may be narrowed. By separating it from the vicinity and positioning it below the constriction as shown in FIG. 2(b), we were able to significantly reduce the influence of crystallinity.

活性層3の幅は最大で2μmであったが、ブロムメタノ
ールの最終エツチングによって、更に狭い幅に出来、約
1.5μmであった。活性層3の幅はエツチング工程中
のHC1系エツチングで決定されるため、面内での厚み
むらの影響を少なくすることが出来、均一性良くウェフ
ァ内での狭幅化を達成出来た。
The maximum width of the active layer 3 was 2 .mu.m, but by final etching with bromo-methanol, the width was made even narrower to about 1.5 .mu.m. Since the width of the active layer 3 is determined by HC1-based etching during the etching process, the influence of in-plane thickness unevenness can be reduced, and the width can be narrowed within the wafer with good uniformity.

又、第1図は既述のように、電流阻止層6゜5及び埋め
込み層であるキャップ層4を成長させた断面図であるが
、上記メサ側面が円弧上で融液10が第2図に示すよう
に密着するため、第1の電流阻止層6がメサ側面に沿っ
て盛り上がシ、第1図に示した形状になる。即ち、上記
メサ側面での第1の電流阻止層6が厚くなシ、特にIn
P基板8、バッファ一層7及び第2の電流阻止層5がN
型半導体で、第1の電流阻止層6がP型半導体で形成さ
れるN−P−N)ランジスタのペースが厚いため、逆バ
イアス電圧に対する耐圧が高くなる。以上、低しきい値
電流でかつ高出力の半導体レーデ素子が得られた。
As already mentioned, FIG. 1 is a cross-sectional view showing the growth of the current blocking layer 6°5 and the cap layer 4 which is a buried layer. Because of the close contact as shown in FIG. 1, the first current blocking layer 6 swells along the side surface of the mesa, forming the shape shown in FIG. That is, if the first current blocking layer 6 on the side surface of the mesa is thick, especially if it is made of In
The P substrate 8, the buffer layer 7 and the second current blocking layer 5 are N
Since the first current blocking layer 6 is formed of a P-type semiconductor and has a thick pad, the transistor has a high breakdown voltage against reverse bias voltage. As described above, a semiconductor radar device with low threshold current and high output was obtained.

デバイスとしての代表的特性例は、活性層幅1.5μm
1共振器300μm、P−サイドアップでしきい値電流
約20 mA 、片面スロープ効率30%、20mWま
でキンクのない直線的な電流−光出力特性を持つ素子が
、再現性良く得られた。
A typical characteristic example of a device is an active layer width of 1.5 μm.
A device with one resonator of 300 μm, P-side up, threshold current of about 20 mA, single-sided slope efficiency of 30%, and linear current-optical output characteristics without kink up to 20 mW was obtained with good reproducibility.

又、活性層3の厚さは0.15μmであり、その遠視野
像はθ′=38°、θ“=26°のものが得られ、活性
層ストライプ幅の均一性を反映して、横モードは極めて
安定であった。又、低しきい値電流の再現性は、融液が
メサ側面に密着し結晶性を損わないようにしたことに起
因している。
The thickness of the active layer 3 is 0.15 μm, and its far-field patterns are θ' = 38° and θ'' = 26°, reflecting the uniformity of the active layer stripe width. The mode was extremely stable.Also, the reproducibility of the low threshold current was due to the fact that the melt adhered closely to the sides of the mesa so as not to impair crystallinity.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、メサ形状のメサを形成した後、液相
結晶成長法によシ埋め込み層を成長させる場合、第2図
に示すように融液10がメサ側面に密着するため、メサ
側面の結晶性を損うことなく、逆バイアスに対する耐圧
の高い埋め込み層を形成することが出来、信頼性が高く
、低しきい値電流かつ高出力の半導体レーデ素子が得ら
れた。又、上記垂直エツチングの時に活性層幅がほとん
ど決まってしまうため、ブロムメタノールのみを用いる
逆メサエツチングのように、結晶層厚によシ表面のスト
ライブ9の幅を変化させる必要がなく、活性層の幅の制
御が容易であり、横モードの安定化を再現性良く達成出
来る。そして、実施例に示したように素子化の歩留りが
著しく向上した。更に、メサのくびれが活性層3の上方
に位置しているため、埋め込み層を成長させるとき、活
性層3にかかるストレスも少なかった。又、層流による
不均一性が起り易いブロムメタノールのエツチング時間
が少ないため、ウェハー内でのエツチングむらが少なく
、大面積のウェハーを使用することが可能で、量産性に
優れている。
According to this invention, when a buried layer is grown by the liquid phase crystal growth method after forming a mesa-shaped mesa, the melt 10 adheres to the side surfaces of the mesa as shown in FIG. It was possible to form a buried layer with a high breakdown voltage against reverse bias without impairing the crystallinity of the crystal, and a semiconductor radar device with high reliability, low threshold current, and high output was obtained. Furthermore, since the width of the active layer is almost fixed during the vertical etching, there is no need to change the width of the stripes 9 on the surface depending on the thickness of the crystal layer, unlike reverse mesa etching using only bromethanol. It is easy to control the width of the lateral mode, and stabilization of the transverse mode can be achieved with good reproducibility. As shown in the examples, the yield of device fabrication was significantly improved. Furthermore, since the constriction of the mesa was located above the active layer 3, less stress was applied to the active layer 3 when growing the buried layer. Furthermore, since the etching time of bromo-methanol, which tends to cause non-uniformity due to laminar flow, is short, there is little etching unevenness within the wafer, making it possible to use large-area wafers, and providing excellent mass productivity.

この発明は、以上のような利点を有し、信頼性の高い埋
め込み型半導体レーデを歩留シ良く得ることに、甚大な
効果を有しているものである。
The present invention has the above-mentioned advantages and has a significant effect on obtaining a highly reliable embedded semiconductor radar at a high yield.

尚、この発明は、この発明の趣旨を逸脱しない限り、種
々の変形応用が可能である。
Note that this invention can be modified and applied in various ways without departing from the spirit of the invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の製造方法で得られた半導体レーデを
示す断面図、第2図及び第3図はこの発明の一実施例に
係る半導体レーデの製造方法を示す断面図、第4図は従
来の製造方法で得られた半導体レーデを示す断面図、第
5図及び第6図は従来の半導体レーザの製造方法を示す
断面図である。 1・・・オーミックキャップ層、2・・・クラッド層、
3・・・活性層、4・・・キャップ層、5.6・・・電
流阻止層、7・・・バッフ7層、8・・・基板、9・・
・5102膜、10・・・液相成長用融液。 出願人代理人  弁理士 鈴 江 武 彦第1図 第2m (a) 第4図 第5図 第6図
FIG. 1 is a cross-sectional view showing a semiconductor radar obtained by the manufacturing method of the present invention, FIGS. 2 and 3 are cross-sectional views showing a semiconductor radar manufacturing method according to an embodiment of the present invention, and FIG. 5 and 6 are cross-sectional views showing a conventional semiconductor laser manufacturing method. FIGS. 1... Ohmic cap layer, 2... Clad layer,
3... Active layer, 4... Cap layer, 5.6... Current blocking layer, 7... Buffer 7 layer, 8... Substrate, 9...
・5102 film, 10...melt for liquid phase growth. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 2m (a) Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 基板が少なくとも(100)InP基板よりなり、この
基板上に該基板と同様な第1の導電型のInPクラッド
層、GaInAsP四元混晶よりなる活性層、続いて第
2の導電型のInPクラッド層が成長されることにより
構成されるダブルヘテロ構造のウエファにおいて、 上記ウエファの(011)方向にメサエッチングするに
際し、上記活性層を所定の幅に制御するために適当なる
幅のエッチングマスクを用いて、上記活性層まではエッ
チングが進まない程度の深さまで(111)A面が表出
して逆メサが形成されるエッチャントを用いてエッチン
グする工程と、適当なる選択エッチャントを用いて上記
逆メサのくびれで規定された幅を保ちながらほぼ垂直に
活性層まで選択的にエッチングする工程と、選択性のな
いエッチャントで円弧状裾を形成する工程とを具備した
メサエッチング工程を含み、その後に埋め込み成長を行
なうことを特徴とする半導体レーザ素子の製造方法。
[Claims] The substrate is made of at least a (100) InP substrate, and on this substrate, an InP cladding layer of a first conductivity type similar to that of the substrate, an active layer made of a GaInAsP quaternary mixed crystal, and then a second In a double heterostructure wafer formed by growing an InP cladding layer of a conductivity type, when mesa-etching the wafer in the (011) direction, a suitable method is used to control the active layer to a predetermined width. A step of etching using an etchant that exposes the (111) A plane and forms an inverted mesa to a depth that does not allow etching to reach the active layer using a wide etching mask, and etching with an appropriate selective etchant. A mesa etching process comprising a process of selectively etching almost vertically up to the active layer while maintaining the width defined by the constriction of the inverted mesa using an etchant, and a process of forming an arcuate foot with a non-selective etchant. 1. A method of manufacturing a semiconductor laser device, the method comprising the steps of: forming a semiconductor laser device, and then performing buried growth.
JP6231885A 1985-03-27 1985-03-27 Manufacture of semiconductor laser Pending JPS61220489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6231885A JPS61220489A (en) 1985-03-27 1985-03-27 Manufacture of semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6231885A JPS61220489A (en) 1985-03-27 1985-03-27 Manufacture of semiconductor laser

Publications (1)

Publication Number Publication Date
JPS61220489A true JPS61220489A (en) 1986-09-30

Family

ID=13196667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6231885A Pending JPS61220489A (en) 1985-03-27 1985-03-27 Manufacture of semiconductor laser

Country Status (1)

Country Link
JP (1) JPS61220489A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62216389A (en) * 1986-03-18 1987-09-22 Fujitsu Ltd Manufacture of semiconductor light emitting device
JPH09167874A (en) * 1995-12-15 1997-06-24 Nec Corp Semiconductor laser and its manufacture
JP2004363373A (en) * 2003-06-05 2004-12-24 Sharp Corp Oxide semiconductor light emitting element and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62216389A (en) * 1986-03-18 1987-09-22 Fujitsu Ltd Manufacture of semiconductor light emitting device
JPH09167874A (en) * 1995-12-15 1997-06-24 Nec Corp Semiconductor laser and its manufacture
JP2004363373A (en) * 2003-06-05 2004-12-24 Sharp Corp Oxide semiconductor light emitting element and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US4567060A (en) Method of producing a semiconductor laser device
JP3791589B2 (en) End face non-injection type semiconductor laser and manufacturing method thereof
JP2863677B2 (en) Semiconductor laser and method of manufacturing the same
JPH0474877B2 (en)
JPS61220489A (en) Manufacture of semiconductor laser
CN110649465B (en) Novel ridge waveguide structure and manufacturing method
JP3108183B2 (en) Semiconductor laser device and method of manufacturing the same
JPH0834336B2 (en) Semiconductor laser device and manufacturing method thereof
JP2708949B2 (en) Method of manufacturing semiconductor laser device
JP2003110195A (en) Semiconductor light element and method for manufacturing the same
JPS6318874B2 (en)
JPS6234473Y2 (en)
JPS6372177A (en) Manufacture of semiconductor laser
JPS59181020A (en) Etching of semiconductor device
JPH0744312B2 (en) Method for manufacturing embedded semiconductor laser
JPH08316584A (en) Semiconductor optical element and fabrication thereof
JPS62147792A (en) Manufacture of semiconductor laser
JPH04326786A (en) Manufacture of semiconductor laser device
JPH04229682A (en) Manufacture of semiconductor laser
JPS6370474A (en) Manufacture of semiconductor laser element
JPH09283838A (en) Semiconductor laser device and its manufacturing method
JPH02291190A (en) Semiconductor laser device and its manufacture
JPH1012970A (en) Semiconductor device and its manufacture
JPH01185988A (en) Semiconductor light emitting element and manufacture thereof
KR19980084828A (en) Semiconductor laser diode and manufacturing method thereof