JPS62216389A - Manufacture of semiconductor light emitting device - Google Patents

Manufacture of semiconductor light emitting device

Info

Publication number
JPS62216389A
JPS62216389A JP61059722A JP5972286A JPS62216389A JP S62216389 A JPS62216389 A JP S62216389A JP 61059722 A JP61059722 A JP 61059722A JP 5972286 A JP5972286 A JP 5972286A JP S62216389 A JPS62216389 A JP S62216389A
Authority
JP
Japan
Prior art keywords
layer
light emitting
emitting device
semiconductor light
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61059722A
Other languages
Japanese (ja)
Other versions
JPH07105550B2 (en
Inventor
Jiro Okazaki
岡崎 二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5972286A priority Critical patent/JPH07105550B2/en
Publication of JPS62216389A publication Critical patent/JPS62216389A/en
Publication of JPH07105550B2 publication Critical patent/JPH07105550B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Weting (AREA)

Abstract

PURPOSE:To ensure the excellent controllability of a semiconductor light emitting device and improve its characteristics by executing a selective anisotropic etching processing and a nonselective isotropic etching processing depending on the composition of a semiconductor layer when an active region is stripewise formed. CONSTITUTION:A diffraction grating is formed in a direction [011] on the plane (100) of an n-type InP substrate 1 and an InGaAsP waveguide layer 2, an InGaAsP active layer 3, a p-type InP confining layer 4 and a p-type InGaAsP contact layer 5 are sequentially formed on the same plane as above by epitaxial growth. A mask 6 is formed in the direction [011] on the surface of a semiconductor substrate and a selective anisotropic etching is sequentially applied to the contact layer 5, active layer 3, waveguide layer 2 and confinement layer 4. Then, a nonselective and isotropic etching processing is conducted to form a mesa section configuration wherein planes (111)A and (111)B do not appear. A p-type InP sequentially formed by embedding growth, the mask 6 is removed and an SiO2 insulative film 9, a p-side electrode 10 and an n-side electrode 11 are formed on the semiconductor substrate. Thus, a mesa etching can be performed without leaving the plane (111)A and the characteristics of a semiconductor light emitting device, such as threshold current, efficiency and the like, are improved.

Description

【発明の詳細な説明】 〔概要〕 この発明は、埋め込み構造の半導体発光装置の活性領域
をストライプ状に成形するに際して、半導体層の組成に
よる選択的異方性エツチング処理と、非選択的等方性エ
ツチング処理とを実施することにより、 良好な制御性を確保して、半導体発光装置の特性を向上
するようにしたものである。
[Detailed Description of the Invention] [Summary] The present invention utilizes a selective anisotropic etching process depending on the composition of a semiconductor layer and a non-selective isotropic etching process when forming an active region of a semiconductor light emitting device with a buried structure into a stripe shape. By performing a chemical etching process, good controllability is ensured and the characteristics of the semiconductor light emitting device are improved.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体発光装置の製造方法にかかり、特に埋め
込み構造の半導体発光装置のストライプ領域と埋め込み
層との界面における漏れ電流等の問題を抑止して、閾値
電流の低減、効率の向上環を実現する製造方法の改善に
関する。
The present invention relates to a method for manufacturing a semiconductor light emitting device, and in particular, suppresses problems such as leakage current at the interface between the striped region and the buried layer of a semiconductor light emitting device with a buried structure, thereby reducing threshold current and improving efficiency. This invention relates to improvements in manufacturing methods.

光を情報信号の媒体とする光通信その他のシステムにお
いて、光信号を発生ずる光源として半導体発光装置が撓
めて重要な役剖を果たし7(いる。
In optical communications and other systems that use light as a medium for information signals, semiconductor light emitting devices play an important role by bending as light sources that generate optical signals.

従ってこれらのシステムの高度化と多様化を進めるため
に、半導体発光装置特にレーデに−)い(閾値電流、効
率などの特性の一層の向1−が要望されている。
Therefore, in order to advance the sophistication and diversification of these systems, semiconductor light emitting devices, especially LEDs, are required to have even better characteristics (threshold current, efficiency, etc.).

〔従来の技術〕[Conventional technology]

例えば光通信の石英系ファイバによる伝送に適する波長
1.3〜1.6μm程度の帯域の半導体レーザとして、
第2図に模式側断面図を示すインジウム燐/インジウム
ガリウJ、砒素g(InP/ 1nG8八sP)系BH
(Buried l!eterosLructure)
レーザが知CIれている・分布帰還形1nP/ 1nG
aAsP系111ル−ザの゛1′、導体基体は、例えば
n型1nP基机211−に回折48r(本断面図には周
期構造が現れない)を形成し3、二の基板面上にエピタ
キシャル成長したn型1nGaAsP 導波層22、I
nGaAsP活性層23、p型1nl’閉し込め層24
及びp型1nGaAsPコンタクト層25からなるー・
テロ接合積層構造をメサエッチングしてストライプ領域
域を形成し、このエツチングした領域に埋め込め成長し
たp型1nP電流狭窄層27及びn型1nPブロック層
28により、レーザ光の横モードを制御する屈折率ガイ
ディングと電流狭窄を行っ°ζいる。
For example, as a semiconductor laser with a wavelength band of about 1.3 to 1.6 μm, which is suitable for transmission using a silica fiber for optical communication,
Indium phosphorus/indium galliu J, arsenic g (InP/1nG88sP) system BH whose schematic side sectional view is shown in Figure 2
(Buried l! eteros Architecture)
The laser is known as CI/distributed feedback type 1nP/1nG
The conductor substrate 1' of the aAsP-based 111 router is, for example, formed with a diffraction 48r (periodic structure does not appear in this cross-sectional view) on the n-type 1nP substrate 211-, and epitaxially grown on the substrate surface of 3 and 2. n-type 1nGaAsP waveguide layer 22, I
nGaAsP active layer 23, p-type 1nl' confinement layer 24
and a p-type 1nGaAsP contact layer 25.
The telojunction stacked structure is mesa-etched to form a stripe region, and the p-type 1nP current confinement layer 27 and n-type 1nP blocking layer 28 grown by filling the etched region provide a refractive index that controls the transverse mode of the laser beam. Guiding and current constriction are performed.

なお29は絶縁膜、30はn側電極、31はn側電極で
ある。
Note that 29 is an insulating film, 30 is an n-side electrode, and 31 is an n-side electrode.

本従来例において、半導体層のエピタキシャル成長は半
導体基板21の(100)面上に行い、かつストライプ
領域の長さ方向を(011)方向としζいる。
In this conventional example, the epitaxial growth of the semiconductor layer is performed on the (100) plane of the semiconductor substrate 21, and the length direction of the stripe region is the (011) direction.

これはこの結晶方向にマスクを設け、臭素(Br) −
メタノール(CI+3011)溶液等によりメサ形にエ
ツチングを行えば、図示の如< (11+)A面がエツ
チング面に現れて活性層23近傍の幅が最も狭くなる断
面形状となり、レーザの横モード制御のために重要であ
る活性層23の幅の制御が容易となるごとによる。
This provides a mask in this crystal direction and bromine (Br) −
If etching is performed in a mesa shape using a methanol (CI+3011) solution, etc., the <(11+)A plane appears on the etched surface as shown in the figure, resulting in a cross-sectional shape in which the width near the active layer 23 is the narrowest, which is useful for laser transverse mode control. This is because the width of the active layer 23, which is important for this purpose, can be easily controlled.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述のメサ形ストライプ領域を形成する異方性エツチン
グ方法ではメサ側面に(III)A面が現れ、埋め込み
成長に際してはこの(III)A面」−に、前記p型1
nP電流狭窄層27及びn型1nPブロック層2Bを例
えば液相エビタ、1−ンヤル成長方法により成1くさセ
ることとなる。
In the above-mentioned anisotropic etching method for forming the mesa-shaped stripe region, the (III)A plane appears on the side surface of the mesa, and during buried growth, the p-type 1
The nP current confinement layer 27 and the n-type 1nP block layer 2B are grown using, for example, a liquid phase Evita or 1-N-Y growth method.

゛   然るにこの(111)A面はlnQの111族
川lr−で構成される面であり、エツチング処理の際に
IAI囲の酸素(0,)と化合し汚染を受は易いこと、
埋め込めエピタキシャル成長工程において熱変成を受は
易いこと、他の面に比較して成長が遅いことなどの問題
がある。なおこの熱変成により闇値電流の増大、効率の
低下が現れるが、これはストライプ領域と埋め込み層と
の界面に過剰のInによる導電経路が形成されることに
よると考えられる。
゛However, this (111) A surface is a surface composed of lr- of the 111 group of lnQ, and is easily susceptible to contamination by combining with oxygen (0,) surrounding IAI during the etching process.
In the buried epitaxial growth process, there are problems such as easy thermal transformation and slow growth compared to other surfaces. Note that this thermal metamorphosis causes an increase in dark value current and a decrease in efficiency, but this is thought to be due to the formation of a conductive path by excess In at the interface between the striped region and the buried layer.

この問題に対して、活性層をメサの最もくびれた位置或
いはその下に置き、活性層側面は(il1)へ面から外
す製造方法が試みられているが、この場合にも上側の閉
じ込め層側面には(III)A面が現ねるのみならず、
この活性層の位置制御は安定性が乏しい。
To solve this problem, a manufacturing method has been attempted in which the active layer is placed at the narrowest position of the mesa or below it, and the side surface of the active layer is removed from the plane (il1), but in this case also, the side surface of the upper confinement layer Not only does side (III) A appear in
This position control of the active layer has poor stability.

上述の如き現状から、メサ形ストライブ領域の断面形状
の制御性を確保して前記問題点を解決する製造方法が強
く要望されている。
Under the current situation as described above, there is a strong demand for a manufacturing method that solves the above problems by ensuring controllability of the cross-sectional shape of the mesa-shaped strip region.

〔問題点を解決するための手段〕[Means for solving problems]

前記問題点は、化合物半導体基板の(100)面」二に
、2元化合物半導体層と混晶化合物半導体層とからなる
ヘテロ接合構造を形成し、 該2元化合物半導体層と該混晶化合物半導体層とに順次
選択的異方性エツチング処理を行って、長辺が[011
)方向のストライプ状をなずメサ領域を形成し、 更に非選択的等方性エツチング処理を行って該メサ領域
を所要の形状に成形し、 次いで該メサ領域を埋め込む半導体層を成長する本発明
による半導体発光装置の製造方法により解決される。
The problem is that a heterojunction structure consisting of a binary compound semiconductor layer and a mixed crystal compound semiconductor layer is formed on the (100) plane of a compound semiconductor substrate, and the binary compound semiconductor layer and the mixed crystal compound semiconductor The layers are sequentially subjected to selective anisotropic etching treatment so that the long sides are [011
In the present invention, a mesa region is formed in a stripe shape in the ) direction, the mesa region is further formed into a desired shape by performing a non-selective isotropic etching process, and then a semiconductor layer is grown to fill the mesa region. The problem is solved by a method of manufacturing a semiconductor light emitting device according to the present invention.

〔作 用〕[For production]

本発明の半導体発光装置の製造方法では、化合物半導体
基板の(100)面上のへテロ接合構造の半導体層をス
トライプ状のメサ領域に成形するに際し、まず2元化合
物層と混晶化層′1シJ層との伺相が1方のみに選択的
に作用する異方性エツチング法により、長辺が(011
)ソノ向のストライプ状を八ずメサ領域を良好な制御性
をもって形成し、更に非選択的等方性エツチング処理を
行って、メサ領域を結晶面が表出しない所要の形状、寸
法とする。
In the method for manufacturing a semiconductor light emitting device of the present invention, when forming a semiconductor layer having a heterojunction structure on the (100) plane of a compound semiconductor substrate into a striped mesa region, first a binary compound layer and a mixed crystal layer ' The long side is (011
) A mesa region having a striped shape in the sono direction is formed with good controllability, and then a non-selective isotropic etching process is performed to give the mesa region a required shape and size in which no crystal plane is exposed.

この本発明の製造方法によれば、活171領域の形状、
寸法の制御性は従来方法以」二に良好であり、かつ(1
11)へ面が除去されるために先に述べた問題点が解決
され、特性の良好な半導体発光装置を得ることができる
According to the manufacturing method of the present invention, the shape of the active 171 region,
The controllability of dimensions is better than the conventional method, and (1)
11) Since the surface is removed, the above-mentioned problems are solved, and a semiconductor light emitting device with good characteristics can be obtained.

〔実施例〕〔Example〕

以下本発明を実施例により具体的に説明する。 The present invention will be specifically explained below using examples.

第1図fal〜fd+は本発明の実施例を示すL稈順模
式側断面図である。
FIG. 1 fal to fd+ are schematic side sectional views in the order of L culm showing an embodiment of the present invention.

第1図+al参照: n型1nP基板1の(100)而
1゜で(011)方向(紙面に垂直方向)に例えば周期
Δ!30.2μmの回折格子を形成し、この面」二に厚
さ例えば0.15声、ノンドープでルミネセンスビーク
波長1.2μmの1nGaAsP導波層2、厚さ例えば
0.12μm。
Refer to Figure 1 + al: For example, the period Δ! of the n-type 1nP substrate 1 is (100) at 1° in the (011) direction (perpendicular to the plane of the paper). A 30.2 μm diffraction grating is formed on this surface, and a 1nGaAsP waveguide layer 2, undoped and having a luminescence peak wavelength of 1.2 μm, has a thickness of, for example, 0.15 μm.

ノンドープでルミネセンスピーク波長1.3μmの1n
GaAsP活性層3、厚さ例えば1.5μm、キャリア
濃度7×1017cffI−3程度のp型1nP閉じ込
め層4、厚さ例えば0.5μm、キャリア濃度] XI
O”cm−3程度のp型1nGaAsPコンタクト層5
を順次エピタキシャル成長する。
Non-doped 1n with a luminescence peak wavelength of 1.3μm
GaAsP active layer 3, thickness, e.g., 1.5 μm, carrier concentration of about 7×10 17 cffI-3, p-type 1nP confinement layer 4, thickness, e.g., 0.5 μm, carrier concentration] XI
P-type 1nGaAsP contact layer 5 of about O"cm-3
are sequentially grown epitaxially.

ストライプ領域形成のためのマスク6を、例えば二酸化
シリコン(SiO□)、窒化シリコン(SiN、)、酸
化アルミニウム(^1J3)等によって、この半導体基
体面上(Ol1)方向に、例えば幅2.5〜3−1厚さ
100面程度に形成する。
A mask 6 for forming a stripe region is made of, for example, silicon dioxide (SiO□), silicon nitride (SiN, ), aluminum oxide (^1J3), etc., in the direction of the semiconductor substrate surface (Ol1), and has a width of, for example, 2.5 mm. ~3-1 Form to a thickness of about 100 sides.

第1図(bl参照: この半導体基体にストライプ領域
を形成するための第1のエツチング処理として、InG
aAsPからなるコンタクト層5、活性層3及び導波層
2は硝酸(IINO3)で、InPからなるp型閉じ込
め層4は臭化水素酸(IIBr)又は塩酸(IICI)
で、順次それぞれ選択的にエツチングする。
FIG. 1 (see BL: InG
The contact layer 5, active layer 3, and waveguide layer 2 made of aAsP are made of nitric acid (IINO3), and the p-type confinement layer 4 made of InP is made of hydrobromic acid (IIBr) or hydrochloric acid (IICI).
Then, each layer is selectively etched in turn.

この第1のエツチング処理は異方性で、メサ断面はIn
GaAsP層5.3.2では(III)A面、InPl
i4では(III)8面が側面に現、1′する図示の!
Illき形状となる。
This first etching process is anisotropic and the mesa cross section is In
In GaAsP layer 5.3.2, (III) A plane, InPl
In i4, (III) 8 sides appear on the side, and 1' as shown in the figure!
The shape becomes Ill.

第1図tC)参照二 次いで第2のエツチング処理を行
う。この処理は非選択付かつ等方性で勺イ1−エツチン
グが比較的に大きいエツチング方υ1、例えばllBr
と過酸化水素水(lho、t)との1(合液によるウェ
ットエツチングなどによる。この処理により(111)
A面、(111)I(面が現れない図示の如きメサ断面
形状となる。
See Figure 1 tC) 2. Next, a second etching process is performed. This process is performed using a non-selective and isotropic etching method υ1 where the etching is relatively large, such as llBr.
and hydrogen peroxide solution (lho, t) (by wet etching with a mixed solution. By this treatment, (111)
A-plane, (111)I (the mesa cross-sectional shape as shown in the figure does not appear).

第1図(dl参照: この半導体基体に、jvさ例えば
1.5pm、キャリア濃度1 ×101101Ba程度
のp型InP電流狭窄層7、厚さ例えば1.5μl、キ
ャリア濃度7 XIQ”cm−’程度のn型1nP電流
ブロック層8を順次埋め込み成長する。
FIG. 1 (See dl: On this semiconductor substrate, a p-type InP current confinement layer 7 with a jv size of, for example, 1.5 pm and a carrier concentration of about 1 × 101101 Ba, a thickness of, for example, 1.5 μl, and a carrier concentration of about 7 An n-type 1nP current blocking layer 8 is sequentially buried and grown.

この成長は通常液相エピタキシャル成長法により、かつ
成長直前にIn又は成長開始温度より低い飽和温度を持
つInP溶液を用いて、溶液溶解のための加熱により劣
化した半導体基体の表層部分をメルトハックすることが
望ましい。本実施例ではこのメルトバンク後の活性層3
0幅を例えば約1μmとしている。
This growth is usually carried out by liquid phase epitaxial growth, and immediately before the growth, an InP solution having a saturation temperature lower than the growth initiation temperature is used to melt-hack the surface layer of the semiconductor substrate, which has deteriorated due to heating to dissolve the solution. desirable. In this embodiment, the active layer 3 after this melt bank is
The zero width is, for example, approximately 1 μm.

次いでマスク6を除去して、例えばSin、絶縁膜9、
p側電極10及びn側電極11を形成し、チップ分割等
のプロセスを経て本実施例の素子が完成する。
Next, the mask 6 is removed and, for example, a Sin film, an insulating film 9,
A p-side electrode 10 and an n-side electrode 11 are formed, and the device of this example is completed through processes such as chip division.

本実施例では、闇値電流20mA以下、定格動作状態に
おける外部微分効率20%程度が得られ、これに相当す
る前記従来例では、例えば闇値電流約20〜30mA、
外部微分効率15%程度であるのに比較して明らかな向
」二が実証されている。
In this embodiment, a dark value current of 20 mA or less and an external differential efficiency of about 20% in the rated operating state are obtained.
Although the external differential efficiency is about 15%, a clear improvement has been demonstrated.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明によれば、旧ル−ザのストライ
ブ領域を良好な制御性をもって(III)へ面を残すこ
となくメサエツチングすることが可能となり、半導体発
光装置の闇値電流、効率などの特性が向上し、その結果
出力の増大、使用温度範囲の拡大等も可能となり、光応
用システムなどの進展に寄与することができる。
As explained above, according to the present invention, it is possible to perform mesa etching on the stripe region of the old router with good controllability without leaving a surface (III), thereby improving dark value current, efficiency, etc. of semiconductor light emitting devices. As a result, it becomes possible to increase output and expand the operating temperature range, contributing to the advancement of optical application systems.

【図面の簡単な説明】[Brief explanation of drawings]

第1図fa)〜+dlは本発明の実施例の■稈順模式側
断面図、 第2図は従来例の模式側断面図である。 図において、 1はn型1nP基板、 2はInGaAsP ’ill
波層、3はInGaAsP活性層、 4はp型TnP閉じ込め層、 5はp型1nGaAsPコンタクト層、6はマスク、 
   7はp型1nP電流狭窄層、8はn型1nP電流
ブロック層、 9は絶縁膜、    10はp側電極、11はn側電極
を示す。
FIG. 1 fa) to +dl are schematic side sectional views of the embodiment of the present invention in culm order, and FIG. 2 is a schematic side sectional view of the conventional example. In the figure, 1 is an n-type 1nP substrate, 2 is an InGaAsP 'ill
wave layer, 3 is an InGaAsP active layer, 4 is a p-type TnP confinement layer, 5 is a p-type 1nGaAsP contact layer, 6 is a mask,
7 is a p-type 1nP current confinement layer, 8 is an n-type 1nP current blocking layer, 9 is an insulating film, 10 is a p-side electrode, and 11 is an n-side electrode.

Claims (1)

【特許請求の範囲】 1)化合物半導体基板の(100)面上に、2元化合物
半導体層と混晶化合物半導体層とからなるヘテロ接合構
造を形成し、 該2元化合物半導体層と該混晶化合物半導体層とに順次
選択的異方性エッチング処理を行って、長辺が〔011
〕方向のストライプ状をなすメサ領域を形成し、 更に非選択的等方性エッチング処理を行って該メサ領域
を所要の形状に成形し、 次いで該メサ領域を埋め込む半導体層を成長することを
特徴とする半導体発光装置の製造方法。 2)前記2元化合物半導体がインジウム燐化合物、前記
混晶化合物半導体がインジウムガリウム砒素燐化合物又
はインジウムガリウム砒素化合物であることを特徴とす
る特許請求の範囲第1項記載の半導体発光装置の製造方
法。
[Claims] 1) A heterojunction structure consisting of a binary compound semiconductor layer and a mixed crystal compound semiconductor layer is formed on the (100) plane of a compound semiconductor substrate, and the binary compound semiconductor layer and the mixed crystal A selective anisotropic etching process is sequentially performed on the compound semiconductor layer so that the long sides are [011
] forming a striped mesa region in the direction, further performing a non-selective isotropic etching process to shape the mesa region into a desired shape, and then growing a semiconductor layer to bury the mesa region. A method for manufacturing a semiconductor light emitting device. 2) The method for manufacturing a semiconductor light emitting device according to claim 1, wherein the binary compound semiconductor is an indium phosphorus compound, and the mixed crystal compound semiconductor is an indium gallium arsenide phosphorus compound or an indium gallium arsenide compound. .
JP5972286A 1986-03-18 1986-03-18 Method for manufacturing semiconductor light emitting device Expired - Lifetime JPH07105550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5972286A JPH07105550B2 (en) 1986-03-18 1986-03-18 Method for manufacturing semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5972286A JPH07105550B2 (en) 1986-03-18 1986-03-18 Method for manufacturing semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPS62216389A true JPS62216389A (en) 1987-09-22
JPH07105550B2 JPH07105550B2 (en) 1995-11-13

Family

ID=13121374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5972286A Expired - Lifetime JPH07105550B2 (en) 1986-03-18 1986-03-18 Method for manufacturing semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JPH07105550B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001144108A (en) * 1999-11-10 2001-05-25 Furukawa Electric Co Ltd:The Manufacturing method of field effect transistor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58114477A (en) * 1981-12-26 1983-07-07 Fujitsu Ltd Semiconductor light emitting device
JPS59152682A (en) * 1983-02-21 1984-08-31 Nippon Telegr & Teleph Corp <Ntt> Distributed reflection type semiconductor laser
JPS61220489A (en) * 1985-03-27 1986-09-30 Toshiba Corp Manufacture of semiconductor laser

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58114477A (en) * 1981-12-26 1983-07-07 Fujitsu Ltd Semiconductor light emitting device
JPS59152682A (en) * 1983-02-21 1984-08-31 Nippon Telegr & Teleph Corp <Ntt> Distributed reflection type semiconductor laser
JPS61220489A (en) * 1985-03-27 1986-09-30 Toshiba Corp Manufacture of semiconductor laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001144108A (en) * 1999-11-10 2001-05-25 Furukawa Electric Co Ltd:The Manufacturing method of field effect transistor

Also Published As

Publication number Publication date
JPH07105550B2 (en) 1995-11-13

Similar Documents

Publication Publication Date Title
JP2008227551A (en) Method for manufacturing semiconductor device, and semiconductor device
JPS62216389A (en) Manufacture of semiconductor light emitting device
JPH02156588A (en) Semiconductor laser and its manufacture
JP3317271B2 (en) Semiconductor optical device and method of manufacturing the same
JPS61288481A (en) Manufacture of semiconductor light emitting device
JPH05211372A (en) Manufacture of semiconductor laser
JP2542570B2 (en) Method for manufacturing optical integrated device
JP3255111B2 (en) Semiconductor laser and manufacturing method thereof
KR20000053604A (en) Method for fabricating a semiconductor optical device
JPH0677588A (en) Semiconductor laser and manufacture thereof
JP2000252587A (en) Semiconductor laser and its manufacturing method
JPS6124839B2 (en)
JP2917695B2 (en) Method for manufacturing optical semiconductor device
JPH05226774A (en) Semiconductor laser element and its production
JPH01192184A (en) Manufacture of buried type semiconductor laser
JP2875440B2 (en) Semiconductor laser device and method of manufacturing the same
JP2002252406A (en) Ribbon embedded semiconductor laser and its manufacturing method
JP2945568B2 (en) Semiconductor laser device and method of manufacturing the same
JPH0766992B2 (en) AlGaInP semiconductor laser and manufacturing method thereof
JPH02240988A (en) Semiconductor laser
JP2003086899A (en) Semiconductor laser element and its manufacturing method
JPH04105384A (en) Manufacture of semiconductor laser
JPH04303983A (en) Manufacture of ridge waveguide type semiconductor laser
JPH01161885A (en) Semiconductor laser
JPS5914912B2 (en) Manufacturing method of semiconductor laser

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term