JPS61220321A - 選択気相成長方法 - Google Patents

選択気相成長方法

Info

Publication number
JPS61220321A
JPS61220321A JP6147485A JP6147485A JPS61220321A JP S61220321 A JPS61220321 A JP S61220321A JP 6147485 A JP6147485 A JP 6147485A JP 6147485 A JP6147485 A JP 6147485A JP S61220321 A JPS61220321 A JP S61220321A
Authority
JP
Japan
Prior art keywords
substrate
mask
crystal growth
raw material
selective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6147485A
Other languages
English (en)
Inventor
Masasue Okajima
岡島 正季
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6147485A priority Critical patent/JPS61220321A/ja
Publication of JPS61220321A publication Critical patent/JPS61220321A/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02395Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、気相成長方法に係わり、特に化合物半導体結
晶を選択的に成長する選択気相成長方法に関する。
〔発明の技術的背景とその問題点〕
化合物半導体基板上に選択的にエピタキシャル成長を行
う技術は、半導体レーザ、光導波路といった半導体光デ
バイス、及びそれらを集積化した集積化光デバイスを製
造する上で極めて重要な技術である。特に、大面積基板
上に均質な結晶成長の実現可能な気相成長方法において
選択的な結晶成長を行う技術が、量産性に優れる点で有
用である。
従来、気相成長方法における選択結晶成長法としては、
まず第3図(a)に示す如く、半導°体基板31上にS
iO2,SiN等の誘電体[132を形成してマスクと
し、結晶成長を行う部分のみ誘電体膜マスクを選択除去
して窓33を開ける。その後、半導体基板全面に結晶成
長を行い、M3図(b)に示す如く半導体結晶34を成
長形成する。
このとき、誘電体膜マスク32上にも半導体結晶層35
が成長する。次いで、誘電体膜マスク32上に成長した
結晶35及びyh電体躾マスク32をエツチング除去す
るという方法が行われてきた。
しかしながら、この種の方法にあっては次のような問題
があった。即ち、前記第3図(b)に示した如く結晶成
長の際に誘電体膜マスク32上にも半導体結晶35が成
長する。この部分は多結晶であるため、誘電体膜マスク
32の窓部の半導体基板31上にエピタキシャル成長し
た単結晶部分34よりもエツチング速度が大きいことを
利用して、これを選択除去している。しかし、この時本
来残されるべき単結晶部分34もエツチングされてしま
うと云う欠点がある。
また、一般にマスク部と窓部との境界部分では、所謂異
常成長が起こる。第3図(b)に示す如く、この異常成
長部分36は、通常厚さ方向へのせり上がりと、マスク
部分に向かってのオーバーハングという形で現われる。
このよ゛うな異常成長部分36が存在すると、選択結晶
成長後のフォトリソグラフィ一工程や、この境界部分を
横切って表面電極や配線を形成することが極めて困難に
なり、素子化プロセスに大きな制約を受ける。さらに・
選択成長マスクとして用いた誘電体膜は、結晶成長に伴
う高部熱処理効果によって緻密化したり、結晶成長の原
料である反応性ガスと反応して膜質が変化する。このた
め、選択結晶成長後のエツチング除去が困難となる場合
があり、これも従来方法の欠点であった。
〔発明の目的〕
本発明は上記事情を考慮してなされたもので、その目的
とするところは、結晶成長を行うべき半導体基板上に誘
電体膜マスクを形成することなく選択結晶成長を行うこ
とができ、マスク上の結晶成長、マスク・エツジ部の異
常成長及びマスクの変質といった従来のマスクを用いた
選択結晶成長方法の欠点の全くない、良好な選択結晶成
長を実現し得る選択気相成長方法を提供することにある
〔発明の概要〕。
本発明の骨子は、気相成長原料としてマスクをバターニ
ングした固体原料を用い、これを選択結晶成長を行おう
とする基板と密着・対向させて配置し、後者の方が濃度
が低くなるように濃度勾配を設−けることにより、基板
側には選択結晶成長マスクを形成することなく選択結晶
成長を可能にしたことにある。
半導体の気相成長方法として、平坦な表面を有する固体
原料と数[#]径程度距離を隔てて基板を対向させて配
置し、キャリアとなる反応性ガスを流しながら、基板側
が低温になるように濃度勾配を形成して基板上に結晶成
長を行なう方法が、近接法として知られている。本発明
者等は、固体原料表面と基板表面を鏡面研暦し、両者を
密着接触させて基板側が低温になるように濃度勾配をか
けると、特に反応性キャリアガスを流さなくても基板上
に結晶成長が起こることを見い出した。さらに、固体原
料表面上に誘電体膜等のマスクを形成すると、マスク部
分と対向した基板上には結晶成長が起こらず、マスクさ
れていない部分と対向した基板上にのみ選択的に結晶成
長が起こることを見出した。
本発明はこのような点に着目し、半導体基板上に半導体
結晶を選択的に成長する選択気相成長方法において、固
体原料表面上に誘導体膜等のマスクを選択的に形成し、
これを半導体基板表面と密着対向させて配置し、両者の
間に半導体基板側が低温となるように濃度勾配を設けて
熱処理するようにした方法である。
〔発明の効果〕
本発明によれば、結晶成長を行うべき半導体基板上に誘
電体膜等のマスクを形成することなく選択結晶成長が可
能になるため、マスク上の結晶成長、マスク・エツジ部
の異常成長及びマスクの変質といった問題が全く生じな
い。このため、選択結晶成長を含む素子化プロセスが容
易・簡略となり、プロセスの歩留りが向上する。この結
果、選択結晶成長を必要とする半導体素子のコスト低減
に有効である。また、マスク・エツジ部の異常成長が起
きないことから、この部分を横切っての電極配線が可能
となるため、デバイス設計の自由度を広げることができ
、デバイス特性の向上にも極めて有効である。
〔発明の実施例〕
以下、本発明の詳細を図示の実施例によって説明する。
第1図(a)〜(d)は本発明の一実施例に係わる選択
気相成長方法を説明するためのもので、光導波路製造工
程を示す断面図である。まず、第1図(a)に示す如く
鏡面研磨したGaAS単結晶原料(固体原料)11の表
面上に、SiN!からなるマスク12をプラズマCvD
法により800[人]形成した後、フォトリソグラフィ
ー法によって、幅10[μTrL]のストライブ状窓1
3を形成する。
次いで、第1図(b)に示す如く、鏡面研磨したGaA
s単結晶基板(半導体基板)14上にG ao、a6A
 j2o、ss  A Sクラッド層15を3〔μ77
L]形成し、これを上記マスク12を形成した単結晶原
料11と密着して対向配置する。なお、クラッド層15
の形成は、平坦な表面の得やすい有機金属気相成長法(
MOCVD法)或いは分子線エピタキシー法(MBE法
)を用いるのが望ましい。
次いで、上記のように密着対向して配置されたGaAS
原料11及びGaAS基板14を、第2図に示す如くグ
ラファイトホルダー20.21中に保持し、900 [
”C]の水素雰囲気中で2時間保持する。このとき、G
aAs基板14の濃度がGaAs原料11の濃度よりも
低くなるような濃度勾配を実現する。ここでは、2[℃
/α]とした。なお、基板14の保持濃度、保持時間及
び濃度勾配の大きさによって結晶成長速度を制御するこ
とができる。
上記の熱処理により、第1図(C)に示す如く単結晶原
料11の一部が消費され、GaAS基板14上にGaA
S光導波路層16が選択的に成長された。即ち、GaA
S単結晶原料11の表面に形成したSiNマスク12の
パターンに対応して、GaAnASクラッド層15上に
層幅5上[μm]、高さ3[μm]のストライブ状のG
aAS光導波路16が形成された。このストライブ状光
導波路16の両側面には、従来の選択結晶成長方法に見
られるような異常成長はなく、光導波路として好ましい
形状であった。
かくして本実施例方法によれば、GaAS基板14(実
際にはGaAβAsクラッド層15)上に1111体マ
スク等を形成することなく、GaAS光導波路1116
を選択的に成長させることができる。このため、マスク
上に結晶成長、マスク・エツジ部の異常成長及びマスク
の変質といった問題を招くことなく、良好な結晶成長を
行うことができる。また、誘電体膜マスクが基板14上
にないため、選択結晶成長後にマスクの変質が生じても
それを除去するプロセスの必要性はなく、先導波路製造
のプロセスが簡略になると同時に歩留りの向上をはかり
得る。
なお、本発明は上述した実施例方法に限定されるもので
はない。例えば、結晶成長高温熱処理時の各種条件は、
成長すべき半導体層その他の仕様により適宜変更可能で
ある。この時の雰囲気は水素以外のガスであっても、真
空中であってもがまわない。また、用いる材料は、Ga
As/GaAnAs系に限るものでな(、InP/In
GaAsp系等■−v族化合物半導体、zns、zns
e等■−■族化合物半導体、その他の材料に適用するこ
とも可能である。さらに、結晶成長原料を組成の異なる
多層構造としてお(ことにより、多層構造の選択結晶成
長を行うことが可能である。
また、固体原料の表面に形成するマスクはSiNに何等
限定されるものではなく、SiO2゜Affi20:+
等の誘電体を用いることができる。さらに、誘電体に限
らず、蒸気圧の十分低いもので、半導体基板や固体原料
を汚染しないものであれば用いることが可能である。そ
の他、本発明の要旨を逸脱しない範囲で、種々変形して
実施することができる。
【図面の簡単な説明】
第1図(a)〜(C)は本発明の一実施例に係わる選択
気相成長方法を説明するためのもので光導波m製造工程
を示す断面図、第2図は上記実施例方法に使用したグラ
ファイトホルダーの二側を示す断面図、第3図(a>(
b)は従来の選択気相成長方法を説明するための断面図
である。 11・・・GaAS単結晶原料(固体原料)、12・・
・SiN膜マスク、13・・・選択結晶成長窓、14・
G a A S基板、15 ・” G ao、as A
 Qo、ss A Sクラッド層、16−G a A 
s光導波路、20.21・・・グラフ7イト・ホルダー
、31・・・基板、32・・・誘電体膜マスク、33・
・・選択結晶成長窓、34・・・選択結晶成長層、35
・・・多結晶層、36・・・異常成長部分。 出願人代理人 弁理士 鈴江武彦 !A410

Claims (4)

    【特許請求の範囲】
  1. (1)固体原料表面上にマスクを選択形成する工程と、
    上記固体原料をその表面を半導体基板表面と密着対向さ
    せて配置する工程と、前記半導体基板が前記固体原料に
    対して低温になるように濃度勾配を設けて熱処理する工
    程とを含むことを特徴とする選択気相成長方法。
  2. (2)前記固体原料は、多層構造であることを特徴とす
    る特許請求の範囲第1項記載の選択気相成長方法。
  3. (3)前記固体原料は、III−V族化合物半導体である
    ことを特徴とする特許請求の範囲第1項記載の選択気相
    成長方法。
  4. (4)前記固体原料及び半導体基板の各対向面は、それ
    ぞれ鏡面研磨されていることを特徴とする特許請求の範
    囲第1項記載の選択気相成長方法。
JP6147485A 1985-03-26 1985-03-26 選択気相成長方法 Pending JPS61220321A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6147485A JPS61220321A (ja) 1985-03-26 1985-03-26 選択気相成長方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6147485A JPS61220321A (ja) 1985-03-26 1985-03-26 選択気相成長方法

Publications (1)

Publication Number Publication Date
JPS61220321A true JPS61220321A (ja) 1986-09-30

Family

ID=13172091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6147485A Pending JPS61220321A (ja) 1985-03-26 1985-03-26 選択気相成長方法

Country Status (1)

Country Link
JP (1) JPS61220321A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6481233A (en) * 1987-09-22 1989-03-27 Seiko Epson Corp Selective growing method of selectively growing thin film of ii-vi compound semiconductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6481233A (en) * 1987-09-22 1989-03-27 Seiko Epson Corp Selective growing method of selectively growing thin film of ii-vi compound semiconductor

Similar Documents

Publication Publication Date Title
US4837182A (en) Method of producing sheets of crystalline material
EP0331467B1 (en) Method of forming semiconductor thin film
EP1045431B1 (en) Method for producing a group III nitride compound semiconductor substrate
JPH076950A (ja) 電子、電光および光学的な構成要素に対する構造部品を作製する方法
JP3127624B2 (ja) ヘテロエピタキシャル層の成長方法
JPH06140346A (ja) ヘテロエピタキシアルの薄い層と電子デバイスの製造法
US5328549A (en) Method of producing sheets of crystalline material and devices made therefrom
EP0241204B1 (en) Method for forming crystalline deposited film
JP3602443B2 (ja) 半導体素子の製法
JPH05251339A (ja) 半導体基板およびその製造方法
KR19990016925A (ko) GaN 단결정 제조 방법
JPS61188927A (ja) 化合物半導体装置
JPH04260321A (ja) ヘテロエピタキシャル層の成長法
JPS61220321A (ja) 選択気相成長方法
JPH06291058A (ja) 半導体基板の製造方法
JPS60145625A (ja) 半導体装置の製造方法
JPH0419700B2 (ja)
JPH02105517A (ja) 半導体装置の製造方法
JPS6398120A (ja) 結晶成長方法
JPH01107515A (ja) 半導体素子の製造方法
JPH02152221A (ja) Soi基板の製造方法
JPS61198789A (ja) 光半導体素子の連続製造方法
JPS61241911A (ja) 化合物半導体装置
JPS62119939A (ja) 半導体用絶縁基板
JPH06232045A (ja) 結晶基板の製造方法