JPS61220291A - Structure of zns-mn mixed pellet - Google Patents

Structure of zns-mn mixed pellet

Info

Publication number
JPS61220291A
JPS61220291A JP60061682A JP6168285A JPS61220291A JP S61220291 A JPS61220291 A JP S61220291A JP 60061682 A JP60061682 A JP 60061682A JP 6168285 A JP6168285 A JP 6168285A JP S61220291 A JPS61220291 A JP S61220291A
Authority
JP
Japan
Prior art keywords
pellet
concentration
zns
mixed
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60061682A
Other languages
Japanese (ja)
Inventor
琢也 吉見
遠藤 鉄郎
雅行 脇谷
佐藤 精威
三浦 照信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60061682A priority Critical patent/JPS61220291A/en
Publication of JPS61220291A publication Critical patent/JPS61220291A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔概要〕 本発明は、ZnS;M%混合ペレットを用いて電子ビー
ム蒸着によJ) ff552M%薄膜を形成する際に、
該薄膜に垂直方向のMn濃直分布を一定にすることので
きる2%SUN%混合ペレットを提供するもので、混合
ペレットの高さ方向の濃度分布に勾配をもたせることに
よ)問題の解決を図っている。
[Detailed Description of the Invention] [Summary] The present invention provides the following method when forming a ZnS; M% thin film by electron beam evaporation using a ZnS;
This method provides a 2% SUN% mixed pellet that can make the Mn concentration distribution in the vertical direction constant in the thin film, and solves the problem by creating a gradient in the concentration distribution in the vertical direction of the mixed pellet. I'm trying.

〔産業上の利用分野〕[Industrial application field]

本発明は1Ins K Mnを混合、焼結してなるZn
S:M%混合ペレットの構造に関するものである。
The present invention is made by mixing and sintering 1Ins K Mn.
This relates to the structure of S:M% mixed pellets.

この2%J +&s混合ペレットは、例えばML (エ
レクトロルミネッセンス)ハネルの発光層(jigs 
;J/s薄膜)形成に用いられる。この場合のZ%J 
r us薄膜形成は、電子ビーム蒸着により行われる。
This 2% J+&s mixed pellet can be used, for example, in the luminescent layer (jigs) of ML (electroluminescence) Hanel.
;J/s thin film) formation. Z%J in this case
rus thin film formation is performed by electron beam evaporation.

〔従来の技術〕[Conventional technology]

この種の用途に使用される従来のZnS;M%混合ペレ
ットは、M%がg%Sペレット中に均一に分布した構造
となっている。
Conventional ZnS; M% mixed pellets used for this type of application have a structure in which M% is uniformly distributed in g%S pellets.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、このような構造の従来のZnSUN%混合ペ
レットを用いて電子ビーム蒸着によJ) ZsS ;M
n薄膜を形成する場合、ZnSとhではZsS(D方が
M%に比べて昇華し易いため、蒸着初期の膜ではMn濃
直が低く、蒸着の進行につれて、ペレットにおけるhの
相対濃度が高くなることにより蒸着された薄膜中のMn
濃直が高くなシ、2%S;M%薄膜の薄膜面と垂直方向
のh濃度分布が異なるという欠点がおった。第3図はこ
の薄膜中のMn濃直分布を示すグラフで、膜厚が2倍に
なるとム濃度も約2倍になることを示している。
However, using conventional ZnSUN% mixed pellets with such a structure, J) ZsS ; M
When forming an n thin film, between ZnS and h, ZsS (D is easier to sublime than M%, so the Mn concentration is low in the film at the initial stage of evaporation, and as the evaporation progresses, the relative concentration of h in the pellet increases. Mn in the thin film deposited by
There were disadvantages in that the density was high and the h concentration distribution in the direction perpendicular to the thin film surface of the 2% S; M% thin film was different. FIG. 3 is a graph showing the Mn concentration distribution in this thin film, showing that as the film thickness doubles, the Mn concentration also approximately doubles.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上述の問題点を解決するためのもので、第1
図に例示したように、ペレット高さ方向のMn濃直分布
に勾配を設けている。
The present invention is intended to solve the above-mentioned problems.
As illustrated in the figure, a gradient is provided in the Mn concentration distribution in the pellet height direction.

〔作用〕[Effect]

ペレット高さ方向のh濃度分布を適当に設定すれば、仁
のZnSUN%混合ペレットを用いて形成される2%S
UN%薄膜の薄膜面に垂直方向のM%分布を一定にする
ことができる。すなわち、ff5S;Mn混混合ペッツ
+2)電子ビーム蒸着初期に使用する部分のMn濃直を
高く、蒸着の進行に従って使用する部分のMn濃直を低
くすればM%分布を一定にすることができる。
If the h concentration distribution in the pellet height direction is set appropriately, 2%S
The M% distribution in the direction perpendicular to the thin film surface of the UN% thin film can be made constant. That is, ff5S; Mn mixed PET+2) The M% distribution can be made constant by increasing the Mn concentration in the part used at the beginning of electron beam evaporation and lowering the Mn concentration in the part used as the evaporation progresses. .

〔実施例〕〔Example〕

以下、第1図及び第2図に関連して本発明の詳細な説明
する。
The present invention will now be described in detail with reference to FIGS. 1 and 2.

前述のように、従来構造のZnS;M%混合ペレットを
使用した場合は、形成される薄膜の膜厚が2倍になると
Mn濃直も約′2倍になる。このことから、ペレット中
のh濃度の分布を、設定膜厚の力蒸着したときにもとの
濃度OAとなるようにすれば良−ことが分る。このMn
濃直分布を実現するためには、 −M− C=a0・2  jl) 但し、CAM外濃度 6口;基準Mn濃直 Lo;ペレットの高さ 2;ペレット表面からの距離 なる関係をもつようにペレット中のh濃度に勾配をつけ
れば良い。
As mentioned above, when a ZnS;M% mixed pellet having a conventional structure is used, when the thickness of the formed thin film is doubled, the Mn concentration also becomes approximately 2 times as large. From this, it can be seen that the h concentration distribution in the pellet can be adjusted so that it becomes the original concentration OA when the predetermined film thickness is force-deposited. This Mn
In order to realize the concentration distribution, -M- C=a0・2 jl) However, the following relationship should be established: CAM outside concentration 6; reference Mn concentration Lo; pellet height 2; distance from the pellet surface. It is sufficient to create a gradient in the h concentration in the pellet.

本発明はこの原理金具体化することによシ問題の解決を
図るもので、次に実施例について説明する。
The present invention aims to solve this problem by embodying this principle in metal.Examples will now be described.

第1図は本発明に係るZnS;M%混合ペレット1の正
面図で、該ZsS:M%混合ペレット1は、それぞれM
n濃直の異なる同一外形の5つのペレットIA、 IB
、ICを高さ方向に積み重ねて1体化してなる。各ペレ
ットのZtIiに対するM%のwt%は、ペレット1A
が[L5wt%、ペレット1Bが1.0w4%。
FIG. 1 is a front view of a ZnS;M% mixed pellet 1 according to the present invention, and the ZsS:M% mixed pellet 1 is
Five pellets IA, IB with the same external shape and different concentrations
, ICs are stacked in the height direction and integrated into one. The wt% of M% with respect to ZtIi of each pellet is pellet 1A
is [L5wt%, pellet 1B is 1.0w4%.

ペレット1CがzvptToとなっている。このような
三段階Mn濃直分布の採用によシ、形成薄膜のMn濃直
分布(薄膜面と垂直方向の)t−近似的に一定とするこ
とができ、実用上支障のない効果が得られる。
Pellet 1C is zvptTo. By adopting such a three-stage Mn concentration distribution, it is possible to make the Mn concentration distribution (in the direction perpendicular to the thin film surface) approximately constant in the formed thin film, and an effect that does not cause any practical problems can be obtained. It will be done.

このような構成の2%S;Mn混合ペレットは、第2図
に示す工程によシ形成することができる。
A 2% S:Mn mixed pellet having such a structure can be formed by the process shown in FIG.

すなわち、M、濃度2.Owt % (D ZsS ;
 M*粉末2C。
That is, M, concentration 2. Owt% (DZsS;
M*Powder 2C.

h濃度1.0−一のZnS:M%粉末2E、及びMn濃
直a、5vt%のZnSUN%粉末2Aを第2図(a)
に示すよりに下W2O3内に三重構造となるように挿入
し、該下型101に対向する土星102を第2図(&)
に示すように下降させて加圧成形(圧力5トンで10秒
間程度)を行なった後、成形品を取シ出して真空中(I
 X 1O−sPa以下)で450℃、1時間程度の加
熱を行い、次にA?ガス中で1100°C2時間程度の
焼時間性うことによF)*JlsS:M%混合ペレット
1を得ることができる。
Figure 2 (a)
The Saturn 102 facing the lower mold 101 is inserted into the lower W2O3 as shown in FIG.
As shown in Figure 2, after lowering the product and performing pressure molding (approximately 10 seconds at a pressure of 5 tons), the molded product was taken out and placed in a vacuum (I
Heating was performed at 450°C for about 1 hour at a temperature of A? F)*JlsS:M% mixed pellets 1 can be obtained by baking at 1100° C. for about 2 hours in gas.

〔発明の効果〕 以上述べたように、本発明によれば、電子ビーム蒸着で
形成した!;外SrM%薄膜内の垂直方向の地分布を均
一にすることが可能で、ELパネルの発光層形成等に適
用した場合発光特性の良いELパネルを得ることができ
る。
[Effects of the Invention] As described above, according to the present invention, it is formed by electron beam evaporation! It is possible to make the vertical distribution within the outer SrM% thin film uniform, and when applied to the formation of a light-emitting layer of an EL panel, an EL panel with good light-emitting characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図状本発明の実施例のZnS;M%混合ペレットの
正面図、 第2図−)、(&)は同ZnS;M%混合ペレットの成
形工程図、 第5図は従来のZnS;M%混合ペレットを用いて形成
した薄膜のMn濃直分布図で、 図中、 1はZnS:M%混合ペレット、 IA、 111GはそれぞれM%m度の異なるペレット
で6る。
Figure 1 is a front view of the ZnS;M% mixed pellet of the embodiment of the present invention; Figure 2-) and (&) are the molding process diagrams of the same ZnS;M% mixed pellet; Figure 5 is the conventional ZnS; This is a Mn concentration distribution diagram of a thin film formed using M% mixed pellets. In the figure, 1 is a ZnS:M% mixed pellet, IA, 111G are pellets with different M% m degrees, respectively.

Claims (1)

【特許請求の範囲】 1、ZnSにMnを混合焼結してなり電子ビーム蒸着に
使用される混合ペレットにおいて、 該ペレットの高さ方向の濃度分布に勾配をもたせたこと
を特徴とするZnS;Mn混合ペレットの構造。 2、電子ビーム蒸着初期に使用する部分のMn濃直を高
く、該蒸着の進行に従って使用する部分のMn濃度を低
くした特許請求の範囲第1項記載のZnS;Mn混合ペ
レットの構造。 3、ペレットの高さ方向のMn濃度分布の勾配が、C=
a_0・2^2^−^2^x^/^1^_^0(C=M
n濃度,a_0=基準順Mn濃度,l_0=ペレットの
高さ,x=ペレット表面からの距離)である特許請求の
範囲第1項記載のZnS;Mn混合ペレットの構造。
[Claims] 1. A mixed pellet made by mixing and sintering ZnS with Mn and used for electron beam evaporation, characterized in that the pellet has a gradient in its concentration distribution in the height direction; Structure of Mn mixed pellet. 2. The structure of the ZnS;Mn mixed pellet according to claim 1, wherein the Mn concentration is high in the portion used in the initial stage of electron beam evaporation, and the Mn concentration is lowered in the portion used as the evaporation progresses. 3. The slope of the Mn concentration distribution in the pellet height direction is C=
a_0・2^2^-^2^x^/^1^_^0 (C=M
The structure of the ZnS;Mn mixed pellet according to claim 1, wherein n concentration, a_0=standard Mn concentration, l_0=height of the pellet, x=distance from the pellet surface.
JP60061682A 1985-03-26 1985-03-26 Structure of zns-mn mixed pellet Pending JPS61220291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60061682A JPS61220291A (en) 1985-03-26 1985-03-26 Structure of zns-mn mixed pellet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60061682A JPS61220291A (en) 1985-03-26 1985-03-26 Structure of zns-mn mixed pellet

Publications (1)

Publication Number Publication Date
JPS61220291A true JPS61220291A (en) 1986-09-30

Family

ID=13178277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60061682A Pending JPS61220291A (en) 1985-03-26 1985-03-26 Structure of zns-mn mixed pellet

Country Status (1)

Country Link
JP (1) JPS61220291A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004124252A (en) * 2002-04-22 2004-04-22 Snecma Moteurs Method of forming ceramic coating on substrate by electron-beam physical vapor deposition
JP2009149975A (en) * 2007-11-26 2009-07-09 Hoya Corp Method for forming vapor-deposition film, method for producing optical member, and optical member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004124252A (en) * 2002-04-22 2004-04-22 Snecma Moteurs Method of forming ceramic coating on substrate by electron-beam physical vapor deposition
JP2009149975A (en) * 2007-11-26 2009-07-09 Hoya Corp Method for forming vapor-deposition film, method for producing optical member, and optical member

Similar Documents

Publication Publication Date Title
Tsong Field penetration and band bending near semiconductor surfaces in high electric fields
DE69940837D1 (en) Oxide-based process for producing compound semiconductor films and making associated electronic devices
KR950703668A (en) HIGH MELTING POINT METALLIC SILICIDE TARGET AND METHOD FOR PRODUCING THE SAME, HIGH MELTING POINT METALLIC SILICIDE FILM AND SEMICOMDUCTOR DEVICE
US3291657A (en) Epitaxial method of producing semiconductor members using a support having varyingly doped surface areas
JPS61220291A (en) Structure of zns-mn mixed pellet
KR880003871A (en) Self-supporting ceramic structure and its manufacturing method
US3432262A (en) Method for the production of amorphous cadmium sulphide
US3353912A (en) Preparation of high-purity materials
Behar et al. Influence of He-vacancy complexes on the thermal behavior of nitrogen precipitates in Fe
JPS5476629A (en) Coating composition
Rouse et al. Interface reactions in II–VI compounds
JPH0259463A (en) Production of sintered body of zns, and source for vapor deposition with electron beam
JPH0635360B2 (en) Method for manufacturing single crystal aluminum nitride film
JPS54129867A (en) Cathode constituent of direct heating type
JPS5569204A (en) Production of germanium-gallium alloy particle
JPH0259461A (en) Production of cas sintered body and source for vapor deposition with electron beam
DE1564108A1 (en) Foreign material layer for semiconductor components and method for producing the same
GB1493825A (en) Semiconductors
JPS6421964A (en) Hetero-bipolar transistor
US3134699A (en) Method of manufacturing semiconductor devices
GB1267700A (en) Improvements in or relating to semiconductors
JPS56116842A (en) Manufacture of linear additive
JPS6293894A (en) Evaporation pellet
JPH01141867A (en) Production of target material for forming superconducting film having no residual strain
JPS51142270A (en) Method of manufacturing semiconductor device