JPS61207006A - Permalloy thin film and vertical magnetic recording medium - Google Patents

Permalloy thin film and vertical magnetic recording medium

Info

Publication number
JPS61207006A
JPS61207006A JP4743985A JP4743985A JPS61207006A JP S61207006 A JPS61207006 A JP S61207006A JP 4743985 A JP4743985 A JP 4743985A JP 4743985 A JP4743985 A JP 4743985A JP S61207006 A JPS61207006 A JP S61207006A
Authority
JP
Japan
Prior art keywords
thin film
target
permalloy thin
permalloy
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4743985A
Other languages
Japanese (ja)
Other versions
JPH0370889B2 (en
Inventor
Masato Sugiyama
杉山 征人
Takashi Tomie
崇 冨江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP4743985A priority Critical patent/JPS61207006A/en
Publication of JPS61207006A publication Critical patent/JPS61207006A/en
Publication of JPH0370889B2 publication Critical patent/JPH0370889B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To reduce the moduration of the titled film by a method wherein the permalloy thin film, formed using the target having the crystal grain size number of 3 or less by performing a sputtering method, is formed into a double- layer film structure of low magnetic coersive force layer. CONSTITUTION:A low magnetic coersive force layer is a permalloy thin film, having Ni and Fe as the main components, formed by performing a sputtering using the targets T1 and T2 of crystal grain size of 3 or less. Accordingly, said low magnetic coersive force layer has low orientation magnetic anisotropy even on the region having small magnetic coersive force, modulation is small even in the case of a disc, and a regenerated output is relatively large. Besides, pertaining to the permeability of the permalloy thin film, a film having a large permeability is desirable from the view point of recording sensitivity and reproducing output.

Description

【発明の詳細な説明】 [利用分野] 本発明は、パーマロイ薄膜及び該パーマロイ薄膜を低保
磁力層とすると共に膜面に垂直方向の磁化容易軸を有す
る垂直磁化層を磁気記録層とした垂直磁気記録媒体の改
良に関する。
Detailed Description of the Invention [Field of Application] The present invention relates to a permalloy thin film and a permalloy thin film in which the permalloy thin film is used as a low coercive force layer and a perpendicular magnetic layer having an axis of easy magnetization perpendicular to the film surface is used as a magnetic recording layer. Related to improvements in magnetic recording media.

[従来技術] 上述の低保磁力層と垂直磁化層とからなる二層膜の磁気
記録媒体は、垂直磁気記録方式において単極型ヘッドに
よって効率良く記録できる垂直磁気記録媒体として特公
昭58−91号公報、特公昭58−10764公報等に
提案されている。この提案された二層膜構成の垂直磁気
記録媒体(以下“二層膜媒体”という)は、具体的には
RF2極スパッタ法で作成され、低保磁力層をパーマロ
イで垂直磁化層をGo  (コバルト)−Cr(クロム
)合金膜で構成したものであり、高い記録感度と大なる
再生出力を得られる優れたものであるが、記録感度面。
[Prior Art] The above-mentioned two-layer magnetic recording medium consisting of a low coercive force layer and a perpendicular magnetization layer was published in Japanese Patent Publication No. 58-91 as a perpendicular magnetic recording medium that can be efficiently recorded by a unipolar head in the perpendicular magnetic recording system. This method has been proposed in Japanese Patent Publication No. 58-10764, etc. This proposed perpendicular magnetic recording medium with a two-layer film structure (hereinafter referred to as a "dual-layer film medium") is specifically created by the RF bipolar sputtering method, with a low coercive force layer of Permalloy and a perpendicular magnetic layer of Go ( It is composed of a cobalt (cobalt)-Cr (chromium) alloy film, and is excellent in that it can obtain high recording sensitivity and large reproduction output, but it has poor recording sensitivity.

再生出力面等でより一層の改善が望まれている。Further improvements are desired in terms of playback output, etc.

[発明の目的] 本発明は上述の二層膜媒体の特性が低保磁力層すなわち
Ni  にッケル)、Fe(鉄)を主成分とするパーマ
ロイ薄膜の特性に左右されることに着目しなさ机たもの
で、電磁変換特性、とくにモジュレーションの小さいパ
ーマロイ薄膜及び垂直磁気記録媒体を目的としたもので
ある。
[Object of the Invention] The present invention focuses on the fact that the characteristics of the above-mentioned two-layer film medium are influenced by the characteristics of the low coercive force layer, that is, the permalloy thin film whose main components are Ni (nickel) and Fe (iron). It is aimed at permalloy thin films and perpendicular magnetic recording media with electromagnetic conversion characteristics, especially small modulation.

[発明の構成1作用効果] 上述の目的は、以下の本発明により達成される。[Configuration 1 of the invention: Effects] The above objects are achieved by the invention as follows.

すなわち本発明は、前述のパーマロイ薄膜において、ス
パッタリング法により結晶粒度番号が3以下のターゲッ
トを用いて形成したパーマロイ薄膜を第一発明とし、第
一発明のパーマロイ薄膜を低保磁力層とした二層膜構成
の垂直磁気記録媒体を第二発明とするものである。
That is, the present invention has a permalloy thin film formed by a sputtering method using a target with a crystal grain size number of 3 or less as a first invention, and a two-layer structure in which the permalloy thin film of the first invention is a low coercive force layer. A second invention is a perpendicular magnetic recording medium having a film structure.

上述の本発明は、以下のようにしてなされたものである
。二層膜媒体の低保磁力層の保磁力は小さい程記録感度
等の面で有利と云われている。そこで50e (エルス
テッド)以下の小さな保磁力のパーマロイ薄膜を低保磁
力層とした磁気記録媒体でディスクを作成し評価したと
ころ、その再生出力のエンベロープが変化して、安定な
再生という点からは、結局その最低点に制約され、再生
出力はあまり向上しない問題に遭遇し、種々検討の結果
、その原因が低保磁力層を構成するパーマロイ薄膜の面
内磁気異方性にあることを見出しなされたものである。
The above-mentioned present invention was made as follows. It is said that the smaller the coercive force of the low coercive force layer of a two-layer film medium, the more advantageous it is in terms of recording sensitivity and the like. Therefore, when we created and evaluated a magnetic recording medium using a permalloy thin film with a low coercive force of 50e (Oersted) or less as a low coercive force layer, we found that the envelope of the playback output changed, and from the point of view of stable playback, In the end, they encountered the problem that they were restricted to the lowest point and the reproduction output did not improve much. After various studies, they discovered that the cause of this problem was the in-plane magnetic anisotropy of the permalloy thin film that constitutes the low coercive force layer. It is something.

すなわち、パーマロイ薄膜を低保磁力層とした上述の磁
気記録媒体は、パーマロイ[1の磁化困難軸の方向に走
行させて記録・再生した時の方が磁化容易軸の方向の時
に比べて、再生出力が大きく、特に高密度記録の高周波
領域で良好な特性を −示す。
In other words, the above-mentioned magnetic recording medium in which a permalloy thin film is used as a low coercive force layer has a higher reproduction rate when recording and reproducing is performed while running in the direction of the hard axis of magnetization of Permalloy [1] than when it is running in the direction of the easy axis of magnetization. It has a large output and exhibits good characteristics, especially in the high-frequency range of high-density recording.

すなわち、面内の再生出力を一様にするためには、いい
かえればモジュレーションを小さくするためには低保磁
力層全体としての面内磁気異方性を減少させ、再生出力
の最低点を上昇させエンベロープを面内で一様とするこ
とが必要であると考えられていた。その結果記録密度が
高く、記録再生特性が面内で一様なディスク方式に適し
た磁気記録媒体が得られる。
In other words, in order to make the in-plane reproduction output uniform, or in other words, to reduce the modulation, the in-plane magnetic anisotropy of the low coercive force layer as a whole must be decreased, and the lowest point of the reproduction output must be raised. It was considered necessary to make the envelope uniform within the plane. As a result, a magnetic recording medium suitable for the disk system with high recording density and uniform recording/reproducing characteristics in the plane can be obtained.

なお、面内磁気異方性とは膜面に平行な面内での磁気異
方性のことである。
Note that in-plane magnetic anisotropy refers to magnetic anisotropy in a plane parallel to the film surface.

しかしながら、面内の磁気異方性を一様にすることは通
常の方法では困難であり、とくに基板を一方向に移送し
て低保磁力層を形成するような場合には異方性が大きく
発現するのが普通であった。
However, it is difficult to make the in-plane magnetic anisotropy uniform using normal methods, and especially when the substrate is transferred in one direction to form a low coercive force layer, the anisotropy is large. It was common for this to occur.

本発明者らは以上の知見にもとづき鋭意研究した結果、
前記パーマロイ薄膜の形成を結晶粒度番号が3以下のタ
ーゲットを用いて行えば、磁気異方性が必ずしも一様に
ならなくてもモジュレーションが小さくなることを見出
し本発明に想到した。
As a result of intensive research based on the above findings, the present inventors found that
The inventors have found that if the permalloy thin film is formed using a target with a crystal grain size number of 3 or less, the modulation can be reduced even if the magnetic anisotropy is not necessarily uniform, and the present invention has been conceived.

本発明のパーマロイ薄膜においては、その保磁力は結晶
粒度番号が大きいターゲットを用いた場合に比べて若干
大きくなるのが普通であるが、モジュレーションが面内
で一様な優れた軟磁性膜が得られる。
In the permalloy thin film of the present invention, the coercive force is normally slightly larger than when a target with a large grain size number is used, but an excellent soft magnetic film with uniform in-plane modulation can be obtained. It will be done.

上述の点から本発明の第2発明の垂直磁気記録媒体は、
その低保磁力層が、上述の結晶粒度番号が3以下と小さ
いターゲットを用いて形成したパーマロイ(MO(モリ
ブデン)、Cu(銅)等の第3成分を含んで良い)IW
Aであるので、保磁力の小さい領域でも面内磁気異方性
が小さく、ディスクの場合にモジューレーションが小さ
く、再生出力が比較的大きいという大きな効果を奏する
In view of the above points, the perpendicular magnetic recording medium of the second invention of the present invention has the following features:
The low coercive force layer is permalloy (which may contain a third component such as MO (molybdenum), Cu (copper), etc.) IW formed using the above-mentioned target with a small crystal grain size number of 3 or less.
Since it is A, the in-plane magnetic anisotropy is small even in a region where the coercive force is small, and in the case of a disk, the modulation is small and the reproduction output is relatively large, which is a great effect.

なお、パーマロイ薄膜の透磁率については大きいものが
記録感度・再生出力面から好ましく用いられる。
It should be noted that a permalloy thin film with a high magnetic permeability is preferably used from the viewpoint of recording sensitivity and reproduction output.

また、磁気記録層としては実施例のGo −Or合金膜
らなる垂直磁化層は勿論、W(タングステン)Ta(タ
ンタル)等の第3元素を添加したC0−Cr合金、その
他公知の垂直磁化層が適用できることは本発明の趣旨か
ら明らかである。
In addition, the magnetic recording layer may include the perpendicular magnetization layer made of the Go-Or alloy film of the embodiment, a C0-Cr alloy added with a third element such as W (tungsten), Ta (tantalum), or other known perpendicular magnetization layers. It is clear from the spirit of the present invention that the following can be applied.

ここでターゲットの結晶粒度番号とはJISGO551
−1977、GO552−1977で規定されている鋼
の結晶粒度試験方法を準用して以下のように測定したも
のとする。すなわち、塩酸1重量部に過酸化水素水4重
量部を混合した溶液で測定するパーマロイターゲットの
表面を腐蝕させ、露出した新しい表面を前記JIS規定
の判定方法に従って顕微鏡で観察し、その表1の粒度番
号で表示したものである。
Here, the grain size number of the target is JISGO551
-1977, GO552-1977, the following measurement was made by applying the steel grain size test method specified in GO552-1977. That is, the surface of the permalloy target to be measured is corroded with a solution containing 1 part by weight of hydrochloric acid and 4 parts by weight of hydrogen peroxide, and the exposed new surface is observed with a microscope according to the determination method specified by JIS. It is expressed by particle size number.

またターゲットの結晶粒度番号は、ターゲット作成時の
条件、例えば鍛造比、アニール条件(温度9時間等)、
少量の不純物(S、Mn 、・・・)を“添加すること
によって制御できる。
In addition, the grain size number of the target depends on the conditions at the time of target creation, such as forging ratio, annealing conditions (temperature for 9 hours, etc.),
It can be controlled by adding small amounts of impurities (S, Mn,...).

パーマロイターゲットは組成が同じであれば磁気特性も
ほぼ同じであるが、スパッタリングで形成されたパーマ
ロイ膜の特性は驚くべきことにはターゲットの結晶粒度
により前述の如くその磁気特性が異る。
Permalloy targets have almost the same magnetic properties if they have the same composition, but surprisingly, the magnetic properties of a permalloy film formed by sputtering differ depending on the crystal grain size of the target, as described above.

またスパッタリングのパーマロイターゲットの表面はほ
ぼ結晶粒度番号の大きさに対応し、粒度番号の大きいも
のほど、すなわち結晶粒が細いものほど清らかであり、
粒度番号の小さいもの、すなわち結晶粒の大きいものは
粗である。又スパッタリングの進行とともにこの差は顕
著となり、粒度番号が小さい(結晶粒が大きい)ターゲ
ットの表面はかなりの凹凸を示すようになる。
In addition, the surface of a permalloy target for sputtering roughly corresponds to the size of the grain size number, and the larger the grain size number, that is, the thinner the crystal grains, the clearer it is.
Those with a small grain size number, that is, those with large crystal grains, are coarse. Moreover, as sputtering progresses, this difference becomes more noticeable, and the surface of a target with a smaller grain size number (larger crystal grains) begins to exhibit considerable irregularities.

かかるパーマロイターゲットの表面の凹凸とスパッタリ
ングにより得られたパーマロイ膜の磁気特性は対応する
が、スパッタされた粒子がターゲット時代の記憶を保持
したまま膜形成に寄与する理由については今のところ明
らかでない。
Although the surface irregularities of such permalloy targets correspond to the magnetic properties of permalloy films obtained by sputtering, it is currently unclear why sputtered particles contribute to film formation while retaining the memory of the target era.

以下、上述の本発明の詳細を実施例に基いて説明する。Hereinafter, the details of the above-mentioned present invention will be explained based on examples.

なお、この発明は、対向ターゲット式スパッタ法により
なされたものであるが、発明の主旨からして、明らかに
他のスパッタリング法にも適用で′きることは明らかで
ある。
Although this invention was made using a facing target sputtering method, it is obvious that it can be applied to other sputtering methods in view of the gist of the invention.

なお、上述の対向ターゲット式スパッタ法は、特開昭5
7−158380号公報等で公知のスパッタ法で、一対
の対向配置されたターゲットの側方に基板を配し、ター
ゲット間に垂直方向にプラズマ捕捉用の磁界を印加して
スパッタし、基板上に膜を形成するスパッタ法を云う。
Note that the above-mentioned facing target sputtering method is
Using a sputtering method known in Japanese Patent No. 7-158380, etc., a substrate is placed on the side of a pair of opposing targets, and a magnetic field for plasma trapping is applied perpendicularly between the targets to perform sputtering, thereby sputtering onto the substrate. Refers to the sputtering method for forming a film.

第1図は本発明の実施に用いた対向ターゲット式スパッ
タ装置の構造図である。
FIG. 1 is a structural diagram of a facing target type sputtering apparatus used in carrying out the present invention.

図から明らかな通り、本装置は前述の特開昭57゜−1
58380号公報で公知の対向ターゲット式スパッタ装
置と基本的に同じ構成となっている。
As is clear from the figure, this device is compatible with the above-mentioned Japanese Patent Application Laid-Open No.
It has basically the same configuration as the facing target type sputtering apparatus known in Japanese Patent No. 58380.

すなわち、図において10は真空槽、20は真空槽10
を排気する真空ポンプ等からなる排気系、30は真空槽
10内に所定のガスを導入して真空槽10内の圧力を1
0−1〜10→T Orr程度の所定のガス圧力に設定
するガス導入系である。
That is, in the figure, 10 is a vacuum chamber, and 20 is a vacuum chamber 10.
An exhaust system 30 is composed of a vacuum pump, etc. for evacuating the air, and the exhaust system 30 introduces a predetermined gas into the vacuum chamber 10 to reduce the pressure inside the vacuum chamber 10 to 1.
This is a gas introduction system that is set to a predetermined gas pressure of about 0-1 to 10→T Orr.

そして、真空槽10内には、図示の如く真空槽10の側
板11.12に絶縁部材13.14を介して固着された
ターゲットホルダー15.16により1対のターゲット
T+ 、T2が、そのスパッタされる面T +s rT
2Sを空間を隔てて平行に対面するように配設しである
。そして、ターゲットT+ 、T2を取着するターゲッ
トホルダーIs、 16は、冷水パイプ151゜161
を介して冷却水が循環し、ターゲットT+。
In the vacuum chamber 10, a pair of targets T+ and T2 are sputtered by a target holder 15.16 fixed to the side plate 11.12 of the vacuum chamber 10 via an insulating member 13.14 as shown in the figure. surface T +s rT
2S are arranged so as to face each other in parallel across a space. The target holder Is, 16, which attaches the targets T+ and T2, has a cold water pipe 151°161.
Cooling water is circulated through the target T+.

T2、永久磁石152,162が冷却される。磁石15
2゜162はターゲットT+ 、T2を介してN極、S
極が対向するように設けてあり、従って磁界はターゲッ
トT+ 、T2に垂直な方向に、かつターゲット間のみ
に形成される。なお、17.18は、絶縁部材13.1
4及びターゲットホルダー15.16をスパッタリング
時のプラズマ粒子から保護するためとターゲット表面以
外の部分の異常放電を防止するためのシールドである。
T2, permanent magnets 152, 162 are cooled. magnet 15
2゜162 is the target T+, N pole through T2, S
The poles are arranged to face each other, so that a magnetic field is formed only between the targets and in a direction perpendicular to the targets T+ and T2. In addition, 17.18 is the insulating member 13.1
4 and target holders 15 and 16 from plasma particles during sputtering and to prevent abnormal discharge in areas other than the target surface.

また、磁性薄膜が形成される基板40を保持する基板保
持手段41は、真空槽10内のターゲットT+。
Further, the substrate holding means 41 that holds the substrate 40 on which the magnetic thin film is formed is a target T+ in the vacuum chamber 10 .

T2の側方に設けである。基板保持手段41は、図示省
略した支持ブラケットにより夫々回転自在かつ互いに軸
平行に支持された繰り出しロール41a。
It is provided on the side of T2. The substrate holding means 41 is a feed-out roll 41a supported rotatably and parallel to each other by support brackets (not shown).

支持ロール41b9巻取ロール41Cの3個のO−ルか
らなり、基板40をターゲラ)T+、Tz間の空間に対
面するようにスパッタ面TIS、T2!3に対して略直
角方向に保持するように配置しである。従って基板40
は基板保持手段41によりスパッタ面TIS、T2Sに
対して直角方向に移動可能である。
It consists of three rollers, a support roll 41b9 and a take-up roll 41C, and holds the substrate 40 in a direction substantially perpendicular to the sputtering surfaces TIS, T2!3 so as to face the space between the target rollers) T+ and Tz. It is placed in Therefore, the substrate 40
is movable by the substrate holding means 41 in a direction perpendicular to the sputtering surfaces TIS, T2S.

なお、支持ロール41bはその表面温度が調節可能とな
っている。
Note that the surface temperature of the support roll 41b can be adjusted.

一方、スパッタ電力を供給する直流電源からなる電力供
給手段50はプラス側をアースに、マイナス側をターゲ
ットT+ 、T2に夫々接続する。従りて電力供給手段
50からのスパッタ電力は、アースをアノードとし、タ
ーゲラhT+ 、T2をカソードとして、アノード、カ
ンード間に供給される。
On the other hand, a power supply means 50 consisting of a DC power source for supplying sputtering power has its positive side connected to ground and its negative side connected to targets T+ and T2, respectively. Accordingly, the sputtering power from the power supply means 50 is supplied between the anode and the cand, with the ground as the anode and Targetera hT+ and T2 as the cathode.

なお、プレスパッタ時基板40を保護するため、基板4
0とターゲットT+ 、T2との間に出入するシャッタ
ー(図示省略)が設けである。
Note that in order to protect the substrate 40 during pre-sputtering, the substrate 4
A shutter (not shown) is provided between the target T+ and T2.

以上の通り、前述の特開昭57−158380号公報の
ものと基本的には同じ構成であり、公知の通り高速低温
スパッタが可能となる。すなわち、ターゲットT+ 、
 T2 finの空間に、磁界の作用によりスパッタガ
スイオン、スパッタにより放出されたγ電子等が束縛さ
れ高密度プラズマが形成される。
As described above, the structure is basically the same as that of the above-mentioned Japanese Patent Application Laid-Open No. 57-158380, and high-speed low-temperature sputtering is possible as is known. That is, target T+,
In the space of the T2 fin, sputtering gas ions, γ electrons emitted by sputtering, etc. are bound by the action of the magnetic field, and a high-density plasma is formed.

従って、ターゲットT+ 、T2のスパッタが促進され
て前記空間より析出鏝が増大し、基板40上への堆積速
度が増し高度スパッタが出来る上、基板40がターゲッ
トT+ 、T2の側方にあるので低温スパッタも出来る
Therefore, the sputtering of the targets T+ and T2 is promoted, and the amount of precipitation increases from the space, and the deposition rate on the substrate 40 increases, making it possible to perform high-level sputtering. Sputtering is also possible.

なお、本発明の対向ターゲット式スパッタ法は、前述の
装置の゛ものに限定されるものでなく、前述の通り一対
の対面させたターゲットの側方に基板を配し、ターゲッ
ト間に垂直方向の磁界を印加してスパッタし、基板上に
膜を形成するスパッタ法を云う。従って、磁界発生手段
も永久磁石でなく、電磁石を用いても良い。また、磁界
もターゲット間の空間にγ電子等を閉じ込めるものであ
れば良く、従ってターゲット全面でなく、ターゲット周
囲のみに発生させた場合も含む。
Note that the facing target sputtering method of the present invention is not limited to the above-mentioned apparatus, but as mentioned above, the substrate is arranged on the side of a pair of facing targets, and a vertical direction is formed between the targets. A sputtering method in which a magnetic field is applied to perform sputtering to form a film on a substrate. Therefore, the magnetic field generating means may also be an electromagnet instead of a permanent magnet. Further, the magnetic field may be one that confines γ electrons and the like in the space between the targets, and therefore includes the case where it is generated not over the entire surface of the target but only around the target.

次に上述の対向ターゲット式スパッタ装置により実施し
た本発明に係わるパーマロイ薄膜及び垂直磁気記録媒体
の実施例を説明する。
Next, an example of a permalloy thin film and a perpendicular magnetic recording medium according to the present invention, which were carried out using the above-mentioned facing target type sputtering apparatus, will be described.

なお、得られた合金膜の結晶構造は理学電機製計数X1
a回析装置を用いて同定し、垂直配向性は六方最密構、
造かつ(002)面ビークのロッキングカーブを前記X
線回折装置で求め、その半値幅Δθ団で評価した。
The crystal structure of the obtained alloy film was determined by Rigaku Denki Co., Ltd.
Identified using a diffraction device, the vertical orientation is a hexagonal close-packed structure,
The rocking curve of the (002) plane beak is
It was determined using a line diffraction device and evaluated using its half-width Δθ group.

膜厚及び組成については、螢光X線装置を用いて予め較
正した曲線から求めた。
The film thickness and composition were determined from a curve calibrated in advance using a fluorescent X-ray device.

媒体の磁気特性は振動試料型磁力計で測定して求めた。The magnetic properties of the medium were determined using a vibrating sample magnetometer.

二1llII媒体の記録・再生特性は、前述の特公昭5
8−91号公報等で公知のものと同様な垂直型磁気ヘッ
ドを用いて評価した。
The recording and playback characteristics of the 21llII medium are as follows.
Evaluation was carried out using a vertical magnetic head similar to that known in Publication No. 8-91.

[実施例1〜4および比較例1.2] 下記条件により基板上にパーマロイ薄膜をターゲットの
結晶粒度番号を変えて作成し、その磁気異方性を評価す
ると共に、夫々のパーマロイ薄膜上にCo−Qrからな
る垂直磁化層を順次形成して二層膜媒体を作成し、その
再生特性を評価した。
[Examples 1 to 4 and Comparative Example 1.2] Permalloy thin films were created on a substrate under the following conditions by changing the crystal grain size number of the target, and their magnetic anisotropy was evaluated. A two-layer film medium was prepared by sequentially forming perpendicular magnetization layers of -Qr, and its reproduction characteristics were evaluated.

A、装置条件 A−1,低保磁力層 a、ターゲットT+ 、Tz材:T1.T2共MO−4
W【%、 N+ −78wt%、 Fe −18wt%
のパーマロイ(但、結晶粒度番号は8例で異る)b、基
板4G:50μm厚のポリエチレンテレフタレ゛ −ト
(PET)フィルム C,ターゲットT+ 、T2間隔:120履d、ターゲ
ット表面の磁界:100〜200ガウスe、ターゲット
T+ 、T2形状 :100履しX 150imWX12ms+tの矩形t
、基板40とターゲットT+ 、Tz端部の距離: 2
0aw+ A−2,C@−Cr垂直磁化日 a、ターゲット材:T+ 、T2共にGo −80wt
%。
A, device conditions A-1, low coercive force layer a, target T+, Tz material: T1. T2 MO-4
W[%, N+ -78wt%, Fe -18wt%
permalloy (however, the grain size number is different in each case) b, Substrate 4G: 50 μm thick polyethylene terephthalate (PET) film C, Target T+, T2 spacing: 120 d, Magnetic field on target surface: 100-200 Gauss e, target T+, T2 shape: 100 shoes x 150imW x 12ms+t rectangle t
, distance between substrate 40 and target T+, Tz end: 2
0aw+ A-2, C@-Cr perpendicular magnetization day a, target material: T+, T2 both Go -80wt
%.

CrCr−2o%の合金ターゲット b、ターゲットTI、’T2間隔:  160jw+C
,ターゲット表面の磁界:100〜200ガウスd、タ
ーゲットT+ 、T2形状 :  1G0s L X 150aw WX 12aw
 tの矩形e、基板40とターゲットT+、Tz端部の
距離: 20am B、操作手順 A−1,A−2の条件のもとて順次次の如く行なった。
CrCr-2o% alloy target b, target TI, 'T2 spacing: 160jw+C
, Target surface magnetic field: 100-200 Gauss d, Target T+, T2 shape: 1G0s L X 150aw WX 12aw
Rectangle e of t, distance between substrate 40 and target T+, Tz end: 20 am B, operating procedure The following operations were carried out under the conditions of A-1 and A-2.

a、基板を設置後、真空槽10内を到達真空度が1 x
 10’ T orr以下まで排気する。
a. After installing the substrate, the degree of vacuum reached in the vacuum chamber 10 is 1 x
Evacuate to below 10' Torr.

b、ガスを所定の圧力まで導入し、3〜5分間のプレス
パツタを行ない、シャッターを開き、基板40を図示の
通りターゲラhT+ 、T2の対向方向に移送しつつ膜
形成を行なった。なお、スパッタ時のガス圧は4 X 
1G−3T orrとした。
b. Gas was introduced to a predetermined pressure, press sputtering was performed for 3 to 5 minutes, the shutter was opened, and film formation was performed while the substrate 40 was transferred in the opposite direction of the Targetera hT+ and T2 as shown. The gas pressure during sputtering was 4
It was set to 1G-3T orr.

ガスはAr  (アルゴン)100%を用いた。The gas used was 100% Ar (argon).

C,スパッタ時投入電力はA−1,A−2ともに3KW
で行なった。
C. The power input during sputtering is 3KW for both A-1 and A-2.
I did it.

C8実施結果 第2図に比較例のパーマロイIIIの特徴的な磁化特性
を示す。基板の走行方向(MD力方向と基板の幅方向(
TD力方向それぞれの磁化特性が異なり、面内で磁気異
方性が生じており、MD力方向磁化容易軸、TD力方向
磁化困難軸であった。
C8 results Figure 2 shows the characteristic magnetization characteristics of Permalloy III as a comparative example. The running direction of the board (MD force direction and the width direction of the board (
The magnetization characteristics in each TD force direction were different, and magnetic anisotropy occurred in the plane, with an easy axis of magnetization in the MD force direction and a difficult axis of magnetization in the TD force direction.

なお、第2図でHは印加磁界の強さを示し、Bは低保磁
力層の磁化を示す。
In FIG. 2, H indicates the strength of the applied magnetic field, and B indicates the magnetization of the low coercive force layer.

得られた各パーマロイWImの保磁力の測定結果を表−
1に示す。
The measurement results of the coercive force of each permalloy WIm are shown in the table below.
Shown in 1.

なお、表−1でHCE、HCHは磁化容易軸、磁化困難
軸方向のそれぞれの保磁力である。
In Table 1, HCE and HCH are coercive forces in the directions of the easy axis of magnetization and the axis of hard magnetization, respectively.

又、垂直磁気記録媒体を得るために表−1の特性を有す
る各パーマロイ薄膜上にA−2の条件で形成されたGo
−Cr層からなる垂直磁化層の特性を表−2に示す。
In addition, in order to obtain a perpendicular magnetic recording medium, Go was formed under the conditions of A-2 on each permalloy thin film having the characteristics shown in Table-1.
Table 2 shows the characteristics of the perpendicular magnetization layer made of -Cr layer.

表−1パーマロイ薄膜の特性   ゛ 表−2垂直磁化層の特性 表−2において保磁力の垂直とは媒体膜面と垂直方向の
保磁力を、水平とは媒体膜面と平行方向の保磁力を示す
。なお、保磁力の測定は二層膜媒体の低保磁力層を分離
して行った。半値幅Δθ団は、二層膜媒体のまま測定し
た。
Table 1 Characteristics of permalloy thin film Table 2 Characteristics of perpendicular magnetic layer In Table 2, perpendicular to the coercive force refers to the coercive force in the direction perpendicular to the medium film surface, and horizontal refers to the coercive force in the direction parallel to the medium film surface. show. Note that the coercive force was measured by separating the low coercive force layer of the two-layer film medium. The half-width Δθ group was measured as is in the double-layered film medium.

D、電磁変換特性 表−1の特性を有する各パーマロイ薄膜を低保磁力層と
する前述の二層膜媒体について、第3因に示すように、
MD力方向TD力方向長方形のサンプルを切り出して、
記録密度50KFRPIにおいてそれぞれの電磁変換特
性を評価した。
D. Electromagnetic Conversion Characteristics Regarding the above-mentioned two-layer media in which each permalloy thin film having the characteristics shown in Table 1 is used as a low coercive force layer, as shown in the third factor,
MD force direction TD force direction Cut out a rectangular sample,
The electromagnetic conversion characteristics of each were evaluated at a recording density of 50 KFRPI.

表−3及び第4図に測定結果を示す。The measurement results are shown in Table 3 and Figure 4.

なお、電磁変換特性は記録時にはテープ走行を4.75
α/秒、再生時には9,5.7秒で行なった。
In addition, the electromagnetic conversion characteristics are 4.75 when the tape runs during recording.
α/second, 9.5.7 seconds during playback.

又、測定値は実施例1を基準とした相対値で示しである
Furthermore, the measured values are relative values based on Example 1.

表−3及び第4図の実施例1〜4に示したように結晶粒
度番号が小さいターゲットを用いてスパッタして形成し
たパーマロイ薄膜を低保磁力層としてもつ二層媒体は磁
化容易軸方向および磁化困離軸方向の再生出力の大きさ
の比が1に近く、したがってフロッピーディスク形状に
したとぎにモジュレーションが比較例に比べて大巾に改
良されていることが判る。
As shown in Examples 1 to 4 in Table 3 and FIG. It can be seen that the ratio of the magnitude of the reproduction output in the direction of the magnetization dissociation axis is close to 1, and that the modulation is greatly improved compared to the comparative example when the floppy disk shape is used.

(以下余白) 表−3電磁変換特性 (相対値) (以下余白) また、表−11表−3よりパーマロイslI形成時のタ
ーゲットの結晶粒度番号の増加に伴ない再生出力比が低
下することがわかる。従って、前記結晶粒度番号は再生
出力比が大巾に低下しない範囲、実用的には3以下であ
ることが好ましく、更には、再生出力比が0.95以上
となり、モジュレーションのJIS規格を十分満足する
2以下とすることが好ましい。
(Space below) Table 3 Electromagnetic conversion characteristics (Relative values) (Space below) Also, from Table 11 and Table 3, it can be seen that the reproduction output ratio decreases as the grain size number of the target increases during permalloy slI formation. Recognize. Therefore, it is preferable that the grain size number is within a range where the reproduction output ratio does not decrease significantly, practically 3 or less.Furthermore, the reproduction output ratio is 0.95 or more and satisfies the JIS standard for modulation. It is preferable to set it to 2 or less.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施に用いた対向ターゲット式スパッ
タ装置の説明図、第2図は比較例の磁気特性の説明図、
第3図はサンプル切り出しの説明図、第4図はパーマロ
イターゲットの結晶粒度番号と再生出力のMO力方向T
D右方向比を示すグラフである。 T+ 、T2  :ターゲット  10:真空槽20:
排気系   30:ガス導入系 40:基板    50ニスバッタ電源才+呪
FIG. 1 is an explanatory diagram of the facing target type sputtering apparatus used in the implementation of the present invention, FIG. 2 is an explanatory diagram of the magnetic characteristics of a comparative example,
Figure 3 is an explanatory diagram of sample cutting, Figure 4 is the crystal grain size number of the permalloy target and the MO force direction T of the reproduction output.
It is a graph which shows D right direction ratio. T+, T2: Target 10: Vacuum chamber 20:
Exhaust system 30: Gas introduction system 40: Board 50 Nisbatta power supply + curse

Claims (1)

【特許請求の範囲】 1)Ni、Feを主成分とし、スパッタリング法により
形成されたパーマロイ薄膜において、結晶粒度番号が3
以下のターゲットを用いて形成したことを特徴とするパ
ーマロイ薄膜。 2)前記スパッタリング法が対向ターゲット式スパッタ
リング法である特許請求の範囲第1項記載のパーマロイ
薄膜。 3)非磁性の基板上にパーマロイ薄膜からなる低保磁力
層と膜面に垂直方向の磁化容易軸を有する磁気記録層を
有する垂直磁気記録媒体において、前記低保磁力層のパ
ーマロイ薄膜が、結晶粒度番号3以下のターゲットを用
いたスパッタリング法により形成されたパーマロイ薄膜
であることを特徴とする垂直磁気記録媒体。 4)前記パーマロイ薄膜が対向ターゲット式スパッタ法
により形成された特許請求の範囲第3項記載の垂直磁気
記録媒体。
[Claims] 1) In a permalloy thin film containing Ni and Fe as main components and formed by a sputtering method, the crystal grain size number is 3.
A permalloy thin film characterized by being formed using the following targets. 2) The permalloy thin film according to claim 1, wherein the sputtering method is a facing target sputtering method. 3) In a perpendicular magnetic recording medium having a low coercive force layer made of a permalloy thin film on a nonmagnetic substrate and a magnetic recording layer having an axis of easy magnetization perpendicular to the film surface, the permalloy thin film of the low coercive force layer has a crystalline structure. A perpendicular magnetic recording medium characterized in that it is a permalloy thin film formed by a sputtering method using a target with a particle size number of 3 or less. 4) The perpendicular magnetic recording medium according to claim 3, wherein the permalloy thin film is formed by a facing target sputtering method.
JP4743985A 1985-03-12 1985-03-12 Permalloy thin film and vertical magnetic recording medium Granted JPS61207006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4743985A JPS61207006A (en) 1985-03-12 1985-03-12 Permalloy thin film and vertical magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4743985A JPS61207006A (en) 1985-03-12 1985-03-12 Permalloy thin film and vertical magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS61207006A true JPS61207006A (en) 1986-09-13
JPH0370889B2 JPH0370889B2 (en) 1991-11-11

Family

ID=12775181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4743985A Granted JPS61207006A (en) 1985-03-12 1985-03-12 Permalloy thin film and vertical magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS61207006A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6289862A (en) * 1985-10-16 1987-04-24 Hitachi Metals Ltd Target member
WO2004001779A1 (en) * 2002-06-21 2003-12-31 Seagate Technology Llc Method of producing nife alloy films having magnetic anisotropy and magnetic storage media including such films

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933629A (en) * 1982-08-17 1984-02-23 Matsushita Electric Ind Co Ltd Manufacture of vertical magnetic recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933629A (en) * 1982-08-17 1984-02-23 Matsushita Electric Ind Co Ltd Manufacture of vertical magnetic recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6289862A (en) * 1985-10-16 1987-04-24 Hitachi Metals Ltd Target member
WO2004001779A1 (en) * 2002-06-21 2003-12-31 Seagate Technology Llc Method of producing nife alloy films having magnetic anisotropy and magnetic storage media including such films

Also Published As

Publication number Publication date
JPH0370889B2 (en) 1991-11-11

Similar Documents

Publication Publication Date Title
JPH0142047B2 (en)
US4407894A (en) Method for producing a perpendicular magnetic recording medium
JP3229718B2 (en) Soft magnetic alloys, soft magnetic thin films and multilayer films
EP0584768B1 (en) Method for making soft magnetic film
JP2005190538A (en) Magnetic recording medium, and its manufacturing method and apparatus
US5147734A (en) Magnetic recording media manufactured by a process in which a negative bias voltage is applied to the substrate during sputtering
JPH0542052B2 (en)
US4990361A (en) Method for producing magnetic recording medium
JPH0669033A (en) Cobalt platinum magnetic film and its manufacture
JPS61207006A (en) Permalloy thin film and vertical magnetic recording medium
JP2009026394A (en) Magnetic recording medium and magnetic recording and reproduction apparatus
JPH0572733B2 (en)
JPS6363969B2 (en)
JPH031810B2 (en)
JPS6151814A (en) Permalloy thin film and vertical magnetic recording medium
JPH0652569B2 (en) Method of manufacturing magnetic recording medium
JP2853923B2 (en) Soft magnetic alloy film
JPH0263249B2 (en)
JPS59193529A (en) Magnetic recording medium and its production
JPS6233321A (en) Vertical magnetic recording medium
JPS59193528A (en) Magnetic recording medium and its production
JPS63291213A (en) Magnetic recording medium and its production
JP2834359B2 (en) Soft magnetic alloy film
JPS62287410A (en) Thin film magnetic head
JPS63124213A (en) Perpendicular magnetic recording medium