JPS6120697B2 - - Google Patents

Info

Publication number
JPS6120697B2
JPS6120697B2 JP10353079A JP10353079A JPS6120697B2 JP S6120697 B2 JPS6120697 B2 JP S6120697B2 JP 10353079 A JP10353079 A JP 10353079A JP 10353079 A JP10353079 A JP 10353079A JP S6120697 B2 JPS6120697 B2 JP S6120697B2
Authority
JP
Japan
Prior art keywords
valve body
water
annular
circuit
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10353079A
Other languages
Japanese (ja)
Other versions
JPS5629017A (en
Inventor
Shigeru Sato
Tetsuo Seki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Thomson Co Ltd
Original Assignee
Fuji Thomson Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Thomson Co Ltd filed Critical Fuji Thomson Co Ltd
Priority to JP10353079A priority Critical patent/JPS5629017A/en
Publication of JPS5629017A publication Critical patent/JPS5629017A/en
Publication of JPS6120697B2 publication Critical patent/JPS6120697B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Temperature-Responsive Valves (AREA)

Description

【発明の詳細な説明】 この発明は、自動車エンジンの冷却水をラジエ
ータ回路、力ーヒータ回路およびバイパス回路に
循環させる冷却水循環回路を制御するための熱応
動弁の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a thermally responsive valve for controlling a cooling water circulation circuit that circulates cooling water of an automobile engine to a radiator circuit, a power heater circuit, and a bypass circuit.

ラジエータ回路、カーヒータ回路およびバイパ
ス回路ならびにラジエータ回路を開閉制御する熱
応動弁を備えている自動車エンジン冷却水循環回
路においては、カーヒータ回路の通水抵抗が比較
的大きいので、バイパス回路の通水抵抗を大きく
するとカーヒータ回路に自動車エンジンからの温
水を送ることができなくなる。
In an automobile engine coolant circulation circuit that is equipped with a radiator circuit, a car heater circuit, a bypass circuit, and a heat-responsive valve that controls opening and closing of the radiator circuit, the water flow resistance of the car heater circuit is relatively large, so the water flow resistance of the bypass circuit is increased. This prevents hot water from the car engine from being sent to the car heater circuit.

このため従来は、バイパス回路を冷却水循環用
ポンプの手前で常時直径6.4mmの円の面積に相当
する断面に絞つている。
For this reason, in the past, the bypass circuit was always narrowed down to a cross section equivalent to the area of a circle with a diameter of 6.4 mm before the cooling water circulation pump.

しかし、熱応動弁が閉じられてラジエータ回路
の循環が停止しているときもバイパス回路が絞ら
れていると、バイパス回路の流水量が不足して自
動車エンジンに温度斑が生じ易くなり、またポン
プ入口側が負圧になつて気泡が発生し、そのため
キヤビテーシヨンが発生し、かつポンプのケース
やインペラ等が腐食し易くなるという問題があ
る。
However, if the bypass circuit is throttled even when the heat-responsive valve is closed and circulation in the radiator circuit is stopped, the amount of water flowing through the bypass circuit will be insufficient, easily causing temperature unevenness in the automobile engine, and the pump There is a problem in that the inlet side becomes negative pressure and bubbles are generated, which causes cavitation and makes the pump case, impeller, etc. more likely to corrode.

この発明は、前述の問題を有利に解決した自動
車エンジン冷却水循環回路制御用熱応動弁を提供
することを目的とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a heat-responsive valve for controlling an automobile engine coolant circulation circuit that advantageously solves the above-mentioned problems.

次にこの発明を図示の例によつて詳細に説明す
る。
Next, the present invention will be explained in detail using illustrated examples.

第1図は自動車エンジン冷却水循環系統を示す
ものであつて、自動車エンジン12における冷却
室の出口およびラジエータ13の被冷却水入口を
接続する管路14とバイパス管路15の一端部と
の分岐接続部に、冷却水循環路制御用熱応動弁1
6が設けられ、ラジエータ13の冷却水出口に一
端部が接続されている戻り管路17の他端部と、
前記バイパス管路15の他端部とは、自動車エン
ジン12の冷却室の下部に送水する循環用ポンプ
18の吸入部に接続され、かつ自動車エンジン1
2の冷却室の温水出口とカーヒータ19の温水入
口とは温水供給管路20を介して接続され、さら
にカーヒータ19の使用済温水出口と前記バイパ
ス管路15とは環水管路21を介して接続されて
いる。
FIG. 1 shows an automobile engine cooling water circulation system, in which a branch connection is made between a pipe 14 connecting an outlet of a cooling chamber in an automobile engine 12 and an inlet of cooled water of a radiator 13 and one end of a bypass pipe 15. In the section, a heat-responsive valve 1 for controlling the cooling water circulation path is installed.
6 is provided, and the other end of the return pipe 17 has one end connected to the cooling water outlet of the radiator 13;
The other end of the bypass pipe 15 is connected to the suction part of the circulation pump 18 that supplies water to the lower part of the cooling chamber of the automobile engine 12, and
The hot water outlet of the cooling chamber No. 2 and the hot water inlet of the car heater 19 are connected via a hot water supply pipe 20, and the used hot water outlet of the car heater 19 and the bypass pipe 15 are connected via a ring water pipe 21. has been done.

第2図ないし第4図はこの発明の第1実施例の
熱応動弁を示すものであつて、上部および下部に
通水窓孔を有するフレーム1の中間部に、自動車
エンジン12の冷却室とラジエータ13の被冷却
水入口とを接続する管路14に固定される取付フ
ランジ22と環状弁座2とが設けられている。有
底筒状の容器5内にプランジヤ4を嵌挿したゴム
スリーブ23が収容されると共に、そのゴムスリ
ーブ23の上端側部分に固着された取付座金24
が容器5における大径端部に嵌合固定され、かつ
容器5とゴムスリーブ23との間の密閉室内にワ
ツクス25が充填されて熱応動伸縮装置3が構成
されている。
2 to 4 show a thermally-responsive valve according to a first embodiment of the present invention, in which a cooling chamber for an automobile engine 12 and a cooling chamber for an automobile engine 12 are provided in the middle part of a frame 1 having water passage holes in the upper and lower parts. A mounting flange 22 and an annular valve seat 2 are provided which are fixed to a conduit 14 that connects a cooled water inlet of a radiator 13. A rubber sleeve 23 in which the plunger 4 is inserted is housed in a cylindrical container 5 with a bottom, and a mounting washer 24 is fixed to the upper end side of the rubber sleeve 23.
is fitted and fixed to the large diameter end of the container 5, and a sealed chamber between the container 5 and the rubber sleeve 23 is filled with wax 25, thereby forming the thermally responsive expansion and contraction device 3.

プランジヤ挿通孔および円筒状外周面を有する
保持部材6の基端部が容器5の大径端部内に嵌入
され、その容器5の口縁部が内側に屈曲されて保
持部材6の基端部のフランジに押付けられること
により、保持部材6の基端部が前記取付座金24
と共に容器5の大径端部に固定されている。
The proximal end of the holding member 6, which has a plunger insertion hole and a cylindrical outer peripheral surface, is fitted into the large diameter end of the container 5, and the mouth edge of the container 5 is bent inward. By being pressed against the flange, the base end portion of the holding member 6 is attached to the mounting washer 24.
It is also fixed to the large diameter end of the container 5.

熱応動伸縮装置3におけるプランジヤ4の突出
端部に設けられた雄ねじ部26は、フレーム1の
上部中央に回転自在に係合された調節用ナツト2
7に螺合され、かつ前記環状弁座2に対向する環
状の主弁体7は保持部材6に摺動自在に嵌合さ
れ、その主弁体7の内周側部分にはゴム製シール
リング28が固定され、さらに主弁体7とフレー
ム1の下部との間には、その主弁体7を環状弁座
2に向かつて押圧するように働く閉塞用ばね8が
介在されている。
The external threaded portion 26 provided at the protruding end of the plunger 4 in the thermally responsive expansion/contraction device 3 connects to the adjustment nut 2 rotatably engaged in the center of the upper part of the frame 1.
An annular main valve body 7 which is screwed into the holding member 6 and which faces the annular valve seat 2 is slidably fitted into the holding member 6, and a rubber seal ring is provided on the inner peripheral side of the main valve body 7. 28 is fixed, and a closing spring 8 is interposed between the main valve body 7 and the lower part of the frame 1, and acts to press the main valve body 7 toward the annular valve seat 2.

保持部材6の先端側には、環状のばね受部材1
0が嵌合されると共に、そのばね受部材10を係
止するスナツプリング29が嵌設され、かつばね
受部材10と主弁体7との間には、前記閉塞用ば
ね8よりも低ばね定数の支承ばね11が介在さ
れ、さらに容器5の他端部には、バイパス管路1
5に挿入される筒状の絞り弁体9が取付けられ、
その絞り弁体9の周囲には通水孔30が設けら
れ、また補助弁体9の外周面とバイパス管路15
の内周面との間には間隙δが設けられている。
An annular spring bearing member 1 is provided on the tip side of the holding member 6.
0 is fitted, and a snap spring 29 that locks the spring receiving member 10 is fitted, and a spring constant lower than that of the closing spring 8 is fitted between the spring receiving member 10 and the main valve body 7. A support spring 11 is interposed between the container 5 and a bypass pipe 1 at the other end of the container 5.
A cylindrical throttle valve body 9 inserted into 5 is attached,
A water passage hole 30 is provided around the throttle valve body 9, and the outer peripheral surface of the auxiliary valve body 9 and the bypass pipe 15
A gap δ is provided between the inner circumferential surface and the inner peripheral surface.

この間隙δによる環状通路は直径6.4mmの円の
面積に相当する面積を有し、また絞り弁体9が開
放位置に置かれているときは、前記環状通路と各
通水孔30とにより直径16.0mmの円の面積に相当
する面積の通路が形成される。
The annular passage formed by this gap δ has an area equivalent to the area of a circle with a diameter of 6.4 mm, and when the throttle valve body 9 is placed in the open position, the annular passage and each water passage hole 30 have a diameter A passage with an area corresponding to the area of a 16.0 mm circle is formed.

主弁体7に大径円筒部の周囲には多数の透孔が
設けられ、かつその大径円筒部付近の内面および
外面には、前記透孔部分で相互に一体的につなが
つているゴムパツキング7Aが加硫接着により固
着され、そのゴムパツキング7Aは環状弁座2の
内周面に接触して、環状弁座2と主弁体7との間
からの漏水を防止する。
A large number of through holes are provided around the large diameter cylindrical portion of the main valve body 7, and rubber packings 7A are provided on the inner and outer surfaces near the large diameter cylindrical portion and are integrally connected to each other at the through hole portions. The rubber packing 7A contacts the inner peripheral surface of the annular valve seat 2 to prevent water from leaking between the annular valve seat 2 and the main valve body 7.

第1実施例の熱応動弁において、容器5の周囲
の水温が一定以下例えば60℃以下であるときは、
第2図に示すように、熱応動伸縮装置3が短縮し
ているので、主弁体7により管路14が閉じら
れ、かつ絞り弁体9における通水孔30の部分が
バイパス管路15から突出しているので、バイパ
ス管路15は全開になり、そのため自動車エンジ
ン12の冷却水は、ラジエータ13を通ることな
く、通水孔30および間隙δによる環状通路によ
つて設定される量の冷却水がバイパス回路を循環
する。またこのようにバイパス回路が全開されて
いるときは、バイパス回路の通水抵抗がカーヒー
タ回路の通水抵抗よりも相当大きいので、自動車
エンジン12の冷却水はカーヒータ19に殆んど
送られることなくバイパス回路を通つて循環され
る。
In the thermally responsive valve of the first embodiment, when the water temperature around the container 5 is below a certain level, for example below 60°C,
As shown in FIG. 2, since the thermally responsive expansion and contraction device 3 is shortened, the main valve body 7 closes the pipe 14, and the water passage hole 30 in the throttle valve body 9 is separated from the bypass pipe 15. Because of the protrusion, the bypass line 15 is fully opened, so that the cooling water of the automobile engine 12 does not pass through the radiator 13, but instead flows through the water passage hole 30 and the amount of cooling water set by the annular passage formed by the gap δ. circulates through the bypass circuit. Furthermore, when the bypass circuit is fully opened in this manner, the water flow resistance of the bypass circuit is considerably greater than the water flow resistance of the car heater circuit, so that almost no cooling water from the automobile engine 12 is sent to the car heater 19. It is circulated through a bypass circuit.

次に容器5の周囲の水温が例えば60℃〜80℃に
なると、第3図に示すように熱応動伸縮装置3の
伸長により、支承ばね11が圧縮されると共に絞
り弁体9における通水孔30の部分がバイパス管
路15内に挿入され、前記間隙δによる小断面積
の環状通路によつて設定される少量の冷却水がバ
イパス回路を循環する。すなわち絞り弁体9によ
つてバイパス回路の両量が絞られる。
Next, when the water temperature around the container 5 reaches, for example, 60°C to 80°C, as shown in FIG. 30 is inserted into the bypass line 15, and a small amount of cooling water is circulated through the bypass circuit, defined by an annular passage of small cross-sectional area due to the gap δ. That is, both volumes of the bypass circuit are throttled by the throttle valve body 9.

このようにバイパス回路の流量が絞られると、
その通水抵抗が大きくなるので、自動車エンジン
12の温水がカーヒータ回路を循環する。
When the flow rate of the bypass circuit is reduced in this way,
Since the water flow resistance increases, hot water from the automobile engine 12 circulates through the car heater circuit.

また前述のように60℃〜82℃程度の水温で主弁
体7が閉じられているときでも、バイパス回路に
少量の循環流を確保しておくことにより、自動車
エンジンの焼付事故を防止することができる。
Furthermore, as mentioned above, even when the main valve body 7 is closed at a water temperature of about 60°C to 82°C, by ensuring a small amount of circulation flow in the bypass circuit, it is possible to prevent a seizure accident in the automobile engine. I can do it.

次に容器5の周囲の水温が例えば82℃を越えて
上昇すると、第4図に示すように、熱応動伸縮装
置3の伸長により、ばね受部材10、支承ばね1
1を介して主弁体7が開放移動される。したがつ
て、自動車エンジンの温水は、カーヒータ回路の
他にラジエータ回路をも循環し、さらにバイパス
回路をも少量の温水が循環する。
Next, when the water temperature around the container 5 rises above 82° C., for example, as shown in FIG.
1, the main valve body 7 is moved open. Therefore, hot water from the automobile engine circulates through the radiator circuit in addition to the car heater circuit, and a small amount of hot water also circulates through the bypass circuit.

第5図の特性線は水温と熱応動伸長装置3の
伸長量との関係を示すものであつて、A点で絞り
弁体の絞り開放移動が開始され、次いでB点で主
弁体7の開放移動が開始される。第5図の特性線
は水温と絞り弁体9によるバイパス流量との関
係を示している。第5図の特性線は従来の冷却
水循環回路における水温とバイパス流量との関係
を示している。
The characteristic line in FIG. 5 shows the relationship between the water temperature and the amount of expansion of the thermally responsive expansion device 3. At point A, the throttle opening movement of the throttle valve body starts, and then at point B, the main valve body 7 starts moving. Opening movement is started. The characteristic line in FIG. 5 shows the relationship between the water temperature and the bypass flow rate by the throttle valve body 9. The characteristic line in FIG. 5 shows the relationship between water temperature and bypass flow rate in a conventional cooling water circulation circuit.

第6図はこの発明の第2実施例の熱応動弁を示
すものであつて、容器5における絞り弁側の端部
にバイパス閉塞用環状弁体31が摺動自在に嵌設
され、かつその環状弁体31と容器5における大
径部との間にばね32が介在され、そのばね32
の弾力により環状弁体31が絞り弁9の上端面に
押付けられているが、その他の構成は第1実施例
の熱応動弁の場合と同様である。
FIG. 6 shows a heat-responsive valve according to a second embodiment of the present invention, in which a bypass closing annular valve body 31 is slidably fitted into the end of the container 5 on the throttle valve side. A spring 32 is interposed between the annular valve body 31 and the large diameter portion of the container 5, and the spring 32
The annular valve body 31 is pressed against the upper end surface of the throttle valve 9 by the elasticity of the valve, but the other structure is the same as that of the thermally responsive valve of the first embodiment.

第2実施例の熱応動弁の場合は、主弁体7が所
定位置まで開放されたのち、水温がさらに上昇す
ると、環状弁体31のフランジがバイパス管路1
5の端面に押付けられるので、バイパス回路がほ
ぼ完全に閉じられ、したがつて自動車エンジンの
温水はラジエータ回路およびカーヒータ回路にの
み循環される。また環状弁体31のフランジがバ
イパス管路15の端面に突き当たつたのち、さら
に熱応動伸縮装置3が伸長した場合は、その伸長
移動によつてばね32が圧縮されながら絞り弁体
9がさらにバイパス管路内に挿入されていく。
In the case of the heat-responsive valve of the second embodiment, when the water temperature further increases after the main valve body 7 is opened to a predetermined position, the flange of the annular valve body 31 opens to the bypass pipe 1.
5, the bypass circuit is almost completely closed, so that hot water from the car engine is circulated only to the radiator circuit and the car heater circuit. Furthermore, if the thermally responsive expansion and contraction device 3 is further extended after the flange of the annular valve body 31 abuts against the end face of the bypass conduit 15, the spring 32 is compressed by the expansion movement, and the throttle valve body 9 is compressed. It is further inserted into the bypass pipeline.

第2実施例の場合は、例えば水温が60℃〜85℃
の範囲において通水孔30がバイパス管路15の
中に入つてバイパス回路が絞られ、水温が85℃を
越えて上昇するとバイパス回路がほぼ完全に閉じ
られる。
In the case of the second embodiment, for example, the water temperature is 60°C to 85°C.
In this range, the water passage hole 30 enters the bypass pipe 15 and the bypass circuit is throttled, and when the water temperature rises above 85° C., the bypass circuit is almost completely closed.

この発明によれば、熱応動弁における主弁体7
によりラジエータ回路が閉じられている状態で、
しかも水温が比較的低いときは、絞り弁体9が開
放位置に置かれているので、前記主弁体7により
ラジエータ回路が閉じられているときでも、バイ
パス回路の流量を大きく確保することができ、そ
のため自動車エンジンに温度斑が生じるのを殆ん
ど無くすることができ、かつ水温が比較的低いと
き循環用ポンプの入口側が負圧になることはない
ので、キヤビテーシヨンおよび気泡発生によるポ
ンプのケースやインペラ等の腐食を防止するかあ
るいは殆んど無くすることができ、さらに主弁体
7によりラジエータ回路が閉じられている状態
で、水温が比較的高くなつたときは、絞り弁体9
によりバイパス回路が絞られてその通水抵抗が増
大するので、主弁体7によりラジエータ回路が開
かれる温度よりも少し低い比較的高温の水を、カ
ーヒータに循環させて有効に利用することができ
る等の効果が得られる。
According to this invention, the main valve body 7 in the thermally responsive valve
With the radiator circuit closed,
Moreover, when the water temperature is relatively low, the throttle valve body 9 is placed in the open position, so even when the radiator circuit is closed by the main valve body 7, a large flow rate in the bypass circuit can be secured. Therefore, it is possible to almost eliminate temperature unevenness in the automobile engine, and when the water temperature is relatively low, there is no negative pressure on the inlet side of the circulation pump, which prevents cavitation and air bubbles from forming in the pump. It is possible to prevent or almost eliminate corrosion of the valve and impeller, etc., and when the water temperature becomes relatively high with the radiator circuit closed by the main valve body 7, the throttle valve body 9
This narrows the bypass circuit and increases its water flow resistance, so relatively high temperature water, which is slightly lower than the temperature at which the radiator circuit is opened by the main valve body 7, can be circulated to the car heater and used effectively. Effects such as this can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は自動車エンジン冷却水循環系統図であ
る。第2図ないし第4図はこの発明の第1実施例
を示すものであつて、第2図は主弁体が閉塞位置
に置かれると共に絞り弁体が開放位置に置かれて
いる状態を示す縦断側面図、第3図は主弁体が閉
塞位置に置かれると共に絞り弁体が絞り位置に置
かれている状態を示す縦断側面図、第4図は主弁
体が開放位置に置かれると共に絞り弁体が絞り位
置に置かれている状態を示す縦断側面図である。
第5図は水温と熱応動伸縮装置の伸長量およびバ
イパス流量との関係を示す特性線図、第6図はこ
の発明の第2実施例に係る熱応動弁を示す縦断側
面図である。 図において、1はフレーム、2は環状弁座、3
はワツクス式熱応動伸縮装置、4はプランジヤ、
5は容器、6は保持部材、7は主弁体、8は閉塞
用ばね、9は絞り弁体、10はばね受部材、11
は支承ばね、12は自動車エンジン、13はラジ
エータ、30は通水孔、31は環状弁体、32は
ばねである。
FIG. 1 is an automobile engine cooling water circulation system diagram. 2 to 4 show a first embodiment of the present invention, and FIG. 2 shows a state in which the main valve body is placed in the closed position and the throttle valve body is placed in the open position. FIG. 3 is a vertical side view showing the main valve body in the closed position and the throttle valve body in the throttle position; FIG. 4 shows the main valve body in the open position and the throttle valve body in the throttle position. FIG. 3 is a longitudinal sectional side view showing a state in which the throttle valve body is placed in the throttle position.
FIG. 5 is a characteristic diagram showing the relationship between water temperature, the amount of expansion of the thermally responsive expansion device, and the bypass flow rate, and FIG. 6 is a longitudinal sectional side view showing a thermally responsive valve according to a second embodiment of the present invention. In the figure, 1 is a frame, 2 is an annular valve seat, 3
is a wax-type thermal expansion/contraction device, 4 is a plunger,
5 is a container, 6 is a holding member, 7 is a main valve body, 8 is a closing spring, 9 is a throttle valve body, 10 is a spring receiving member, 11
12 is a support spring, 12 is an automobile engine, 13 is a radiator, 30 is a water hole, 31 is an annular valve body, and 32 is a spring.

Claims (1)

【特許請求の範囲】[Claims] 1 自動車エンジンの冷却室とラジエータの入口
とを接続する管路に固定されるフレーム1に、環
状弁座2が設けられると共にワツクス式熱応動伸
縮装置3におけるプランジヤ4の端部が固定さ
れ、熱応動伸縮装置3における容器5の一端部に
保持部材6の基端部が嵌入固定され、その保持部
材6には前記環状弁座2に対向する環状の主弁体
7が摺動自在に嵌合され、その主弁体7にはこれ
を環状弁座2に向かつて押圧するよう働く閉塞用
ばね8が係合され、前記容器5の他端部にはバイ
パス管路に間隙を介して挿入される絞り弁体9が
取付けられ、前記保持部材6の先端側に係止され
たばね受部材10と主弁体7との間には、前記閉
塞用ばね8よりも低ばね定数の支承ばね11が介
在されていることを特徴とする自動車エンジン冷
却水循環回路制御用熱応動弁。
1. An annular valve seat 2 is provided on a frame 1 fixed to a conduit connecting a cooling chamber of an automobile engine and a radiator inlet, and an end of a plunger 4 in a wax type thermally responsive expansion/contraction device 3 is fixed, A base end portion of a holding member 6 is fitted and fixed to one end portion of the container 5 in the responsive expansion/contraction device 3, and an annular main valve body 7 facing the annular valve seat 2 is slidably fitted into the holding member 6. A closing spring 8 is engaged with the main valve element 7 to press it toward the annular valve seat 2, and the other end of the container 5 is inserted into the bypass pipe through a gap. A support spring 11 having a spring constant lower than that of the closing spring 8 is provided between the main valve body 7 and the spring receiving member 10 which is secured to the distal end side of the holding member 6. 1. A heat-responsive valve for controlling an automobile engine coolant circulation circuit, characterized in that:
JP10353079A 1979-08-16 1979-08-16 Thermally actuated valve for controlling automotive engine cooling water circulation circuit Granted JPS5629017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10353079A JPS5629017A (en) 1979-08-16 1979-08-16 Thermally actuated valve for controlling automotive engine cooling water circulation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10353079A JPS5629017A (en) 1979-08-16 1979-08-16 Thermally actuated valve for controlling automotive engine cooling water circulation circuit

Publications (2)

Publication Number Publication Date
JPS5629017A JPS5629017A (en) 1981-03-23
JPS6120697B2 true JPS6120697B2 (en) 1986-05-23

Family

ID=14356438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10353079A Granted JPS5629017A (en) 1979-08-16 1979-08-16 Thermally actuated valve for controlling automotive engine cooling water circulation circuit

Country Status (1)

Country Link
JP (1) JPS5629017A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57141533A (en) * 1981-02-26 1982-09-01 Kobe Steel Ltd Method and device for compensation of measuring error of tire uniformity machine
JPS5913626U (en) * 1982-07-15 1984-01-27 本田技研工業株式会社 Internal combustion engine cooling system
JPS6059152A (en) * 1983-09-02 1985-04-05 東レ株式会社 Water applicator of cutter for water jet loom
JPS63219975A (en) * 1987-03-10 1988-09-13 Giichi Kuze Wax type thermostat
JP3928945B2 (en) 2002-09-05 2007-06-13 日本サーモスタット株式会社 Thermostat for dual cooling system
JP4400909B2 (en) * 2003-04-04 2010-01-20 日本サーモスタット株式会社 Thermostat device

Also Published As

Publication number Publication date
JPS5629017A (en) 1981-03-23

Similar Documents

Publication Publication Date Title
US5727729A (en) Combined bypass and thermostat assembly
US6289879B1 (en) Air eliminating return fuel recirculation valve
US4452213A (en) Diesel fuel control valve and system
US5628285A (en) Drain valve for a marine engine
KR0139481B1 (en) Automotive engine cooling system
JPS6120697B2 (en)
US2640138A (en) Heater for the coolant liquid of internal-combustion engines
GB2290123A (en) A combined bypass and thermostat assembly
US5813598A (en) Thermostat device for protecting an engine of a vehicle from overheating
US2816711A (en) Temperature control of coolant circulation
US2444130A (en) Combined pressure and temperature relief valve
US2327342A (en) Cooling system
CA2386935C (en) Air eliminating return fuel recirculation valve
JPS643813Y2 (en)
JPH0323792B2 (en)
JPH0330584Y2 (en)
JPS6228648Y2 (en)
US3616847A (en) Vacuum compensating device for engine cooling system
JPH08100654A (en) Radiator cap
GB2320552A (en) A combined bypass and thermostat assembly
JPH1193666A (en) Thermostat
JPH0544514Y2 (en)
US1421830A (en) Thermostatic device for cooling systems of internal-combustion engines
JPH0335857Y2 (en)
JPS6145349Y2 (en)