JPS61204544A - Quantitative determination method for free carbon in silicon carbide - Google Patents

Quantitative determination method for free carbon in silicon carbide

Info

Publication number
JPS61204544A
JPS61204544A JP60044727A JP4472785A JPS61204544A JP S61204544 A JPS61204544 A JP S61204544A JP 60044727 A JP60044727 A JP 60044727A JP 4472785 A JP4472785 A JP 4472785A JP S61204544 A JPS61204544 A JP S61204544A
Authority
JP
Japan
Prior art keywords
sic
sample
free carbon
determined
obtd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60044727A
Other languages
Japanese (ja)
Inventor
Makoto Tsuji
誠 辻
Masabumi Sato
正文 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP60044727A priority Critical patent/JPS61204544A/en
Publication of JPS61204544A publication Critical patent/JPS61204544A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor

Abstract

PURPOSE:To analyze the free carbon of ultrafine powder as well with good accuracy by determining the wavenumber absorbance curve of a sample contg. silicon carbide powder by an IR transmission method and determining the ratio between the angle of inclination in the straight part of a base line and the angle of inclination of the curve of silicon carbide having a known free carbon content under prescribed conditions as a reference value. CONSTITUTION:The powder obtd. by weighing precisely pulverous SiC powder having a known free carbon content (assumed as C0wt%), mixing the same with KBr and molding the mixture into a disk shape is used as a standard sample. A disk consisting of KBr alone is separately used as a reference sample. The IR absorption spectra of the standard sample and reference sample are then measured by taking wavenumber (cm<-1>) in a 4,000-500cm<-1> range at the axis of abscissa and absorbance at the axis of ordinate. The angle theta of inclination from the carbon content of the sample and the base line is determined and a regression line is obtd. by calculation from the data obtd. in the above-mentioned manner. The grade of the straight line is designated as A0. A0/C0 obtd. by dividing the A0 by the carbon concn. C0 in SiC is determined as a reference value. The Ax value corresponding to the A0 is obtd. with the SiC to be examined (the free carbon content thereof is determined as Cxwt%) is determined and the Cx content is quantitatively determined by the equation therefrom.

Description

【発明の詳細な説明】 (a)産業上の利用分野 −k n [18i+  w& fキ舎  rQil’
り出ryz ’M 麿鉗It’ 査θ)中 Il辻に関
する。  Sacの高密度焼結体を得るには少量の遊離
炭素が必要とされ、その量によって焼結体の特性が変る
ので、炭素の定量化は重要である。
[Detailed description of the invention] (a) Industrial application field-k n [18i+ w&fkisha rQil'
Ride ryz 'M Marowari It' investigation θ) middle Il Tsuji related. Quantification of carbon is important because a small amount of free carbon is required to obtain a high-density sintered body of SAC, and the properties of the sintered body change depending on the amount.

(b)従来技術 従来SiC中の遊lll炭素、S + 02の分析はJ
ISR8124に従い化学分析で実施されている。この
JIS法はSiCが粗い粒の場合はis炭素(以下f−
cという)の定量として問題ないが、焼結体原料のよう
に、tli微粉(例えばlpm以下)となると JIS
法では誤差が大きくなる。この誤差はJISではSiC
を酸素気流中850℃で処理し、f−cを燃焼させるこ
とにより求めているが、SiCが1gm以下の超微粉の
場合、f−cのみならず1部SiCも燃焼することに起
因する。
(b) Prior art Conventional analysis of free carbon, S + 02, in SiC was conducted using J
Chemical analysis has been carried out according to ISR8124. This JIS method uses is carbon (hereinafter f-
However, when it comes to tli fine powder (e.g. lpm or less), such as raw materials for sintered bodies, JIS
method, the error will be large. This error is defined as SiC in JIS.
It is determined by treating FC at 850° C. in an oxygen stream and burning f-c. However, in the case of ultrafine powder containing SiC of 1 gm or less, not only f-c but also a portion of SiC is combusted.

(C)発明が解決しようとする問題点 本発明は微粉の5iC1特にIJLm以下のような超微
粉の場合でも誤差の少いf−c定量ができる分析法を提
供するものである。
(C) Problems to be Solved by the Invention The present invention provides an analytical method that can perform f-c quantification with little error even in the case of ultrafine powders such as 5iC1 or less, especially IJLm or less.

(d)問題を解決するための手段 本発明においては赤外分光光度計、望ましくは測定デー
タの解析が容易なフーリエ変換赤外分光光度計(以下F
T−IRという)を用い、透過法によって定量分析を行
う。
(d) Means for solving the problem In the present invention, an infrared spectrophotometer, preferably a Fourier transform infrared spectrophotometer (hereinafter F
Quantitative analysis is performed using a transmission method (referred to as T-IR).

FT−IR透過法は周知のように赤外線に対して透明な
KBr粉末に分析しようとするSiC粉末を所定量混合
し、ディスク状に成形し、測定試料とする。
In the FT-IR transmission method, as is well known, a predetermined amount of SiC powder to be analyzed is mixed with KBr powder, which is transparent to infrared rays, and the mixture is formed into a disk shape and used as a measurement sample.

この測定試料のFT−IRの測定例を第1図に示す。図
で横軸は波数(cIll−−1)、縦軸は吸光度(2吸
光度)である。各曲線は測定試料中のSiC(f−c一
定)の量を変えたときの吸光度曲線の変化を示し、ビー
ク1はSiCによる吸収を示し、波数約3000〜15
00間の直線部分2はベースラインでθはその傾き角度
である。上の曲線程SiCの量が多い0図かられかるよ
うにSiCの量が多くなるに従ってθは大きくなってい
る。又、試料中のf−cの量を一定にしてSiCの量を
変えてもθは変らず、ベースラインが変るだけであるの
でθはf−c量に依存することがわかる。
An example of FT-IR measurement of this measurement sample is shown in FIG. In the figure, the horizontal axis is the wave number (cIll--1), and the vertical axis is the absorbance (2 absorbance). Each curve shows the change in the absorbance curve when the amount of SiC (constant f-c) in the measurement sample is changed, and peak 1 shows absorption by SiC, with a wave number of about 3000 to 15.
The straight line portion 2 between 00 and 00 is the baseline, and θ is its inclination angle. As can be seen from Figure 0, where the upper curve shows a larger amount of SiC, θ increases as the amount of SiC increases. Further, even if the amount of SiC is changed while keeping the amount of f-c in the sample constant, θ does not change, but only the baseline changes, so it can be seen that θ depends on the amount of f-c.

今、実験を容易にするため、  f−c一定のSiCを
用い、そのffi:(W)を変えることによってf−c
ヲ変化させ、Wとθの関係を調べてみると第2図のよう
に直線関係になることがわかった。従ってこの関係を利
用し、予じめf−c既知のSiCについてθとSiCの
闇との直線関係を調べておき、その勾配と f−c未知
のSiCについて求めた勾配とを比較することにより、
SiC中のf−c含有量が求まる。
Now, in order to facilitate the experiment, we use SiC with constant f-c, and by changing its ffi: (W), we can obtain f-c
When we varied wo and investigated the relationship between W and θ, we found that it was a linear relationship as shown in Figure 2. Therefore, by using this relationship, we first investigate the linear relationship between θ and the darkness of SiC for SiC with known f-c, and then compare its slope with the slope determined for SiC with unknown f-c. ,
The fc content in SiC is determined.

第2図においてSiC量とθの直線が3のように原点を
通らないのはSiCの粒径が大きい場合であり、これは
光散乱の影響を受けるためと考えられる。実験によると
SiCの粒径が1gm以下であれば4のように直線はほ
ぼ原点を通る。直線が原点を通らない場合でも直線の勾
配は殆んど変らないので定量に支障はないが、原点を通
れば一点の測定で勾配が求まるので操作が容易である。
In FIG. 2, the straight line between the amount of SiC and θ does not pass through the origin as shown in 3 when the particle size of SiC is large, and this is thought to be due to the influence of light scattering. According to experiments, if the particle size of SiC is 1 gm or less, a straight line as shown in 4 almost passes through the origin. Even if the straight line does not pass through the origin, the slope of the straight line will hardly change, so there is no problem in quantitative determination, but if it passes through the origin, the slope can be determined by measuring one point, making the operation easier.

従ってSiCの粉末は1鉢−以下が望ましい、  Si
Cの粒度度は数ル鵬以下が望、ましい。
Therefore, it is desirable that the amount of SiC powder is less than one pot.
The particle size of C is desirably less than a few microns.

上記したようにベースラインの傾きは試料中の遊g1炭
素に依存するが、これはさらに炭素の形態、例えば黒鉛
かあるいは非晶質炭素によっても変るので、基準値とし
て比較すべきSiCは同じ製法によるものを選ぶ必要が
ある0例えばアチソン法、気相法(Si含有有機化合物
の熱分解)、金属Siの炭化性等製法毎に基準値を設け
ておき、これと同−製法内において基準値と測定しよう
とする試料とを比較する 次に本発明の操作手順を具体的に説明する。
As mentioned above, the slope of the baseline depends on the free g1 carbon in the sample, but this also changes depending on the form of carbon, such as graphite or amorphous carbon. For example, a standard value is established for each manufacturing method, such as the Acheson method, the gas phase method (thermal decomposition of Si-containing organic compounds), and the carbonization of metal Si, and the standard value within the same manufacturing method is set. Next, the operating procedure of the present invention will be specifically explained.

f−c既知(Go重量%とする。)のSiC微粉を0.
1〜5mgの範囲で精科し1例えばめのう乳鉢中でKB
r約700mgとよく混合し、プレスしてディスクとし
たものを f−c測定用標準試料とする。別にKBrの
みのディスクを作成し、これを対照試料として横軸に波
数4000cm−” 〜500c+r’の範囲で波数(
cm″l)をとり、縦軸を吸光度として標準試料の赤外
吸収スペクトルを測定する。対照試料は空気でもよいが
KBrを用いた方がバックグラウンドが相殺され、精度
が向上する。またKBr以外でも赤外線に透明なもので
あれば他のものも使用できる。
SiC fine powder with f-c known (Go weight %) was added to 0.
Extract 1 to 5 mg of KB in an agate mortar, for example.
Mix well with about 700 mg of r and press to form a disc, which is used as a standard sample for f-c measurement. Separately, a disk containing only KBr was prepared, and this was used as a control sample, and the wave number (
cm''l) and measure the infrared absorption spectrum of the standard sample with absorbance as the vertical axis. Air may be used as the control sample, but using KBr cancels out the background and improves accuracy. However, other materials can also be used as long as they are transparent to infrared rays.

測定は前記した試料の量W(従って炭素量)とベースラ
インの傾き角度441tθの関係を求めるものであるか
ら、直線が原点を通ることが明らかである場合は一点の
測定でも可能であるが、最も望ましくは何点かについて
行なう。そしてこのデータから計算によって回帰直線を
求める。その直線の勾配をAnとする。 Aoは単位S
iC重量当りのベースラインの傾きに相当する。このA
oをSiC中の炭素濃度Goで除したAo/Coを基準
値とする。
The measurement is to find the relationship between the amount W of the sample (therefore, the amount of carbon) and the baseline inclination angle 441tθ, so if it is clear that the straight line passes through the origin, it is possible to measure at one point. Most preferably, this is done for several points. A regression line is then calculated from this data. Let the slope of the straight line be An. Ao is unit S
Corresponds to the slope of the baseline per iC weight. This A
The reference value is Ao/Co, which is obtained by dividing o by the carbon concentration Go in SiC.

次に f−cを測定しようとするSiC(f−cの量を
Cx重量%とする)について、上記と同様にAoに対応
するA冨を求める0以上により からC1が定量できる。
Next, for SiC whose f-c is to be measured (the amount of f-c is Cx weight %), C1 can be quantified from 0 or more to obtain the A-value corresponding to Ao in the same manner as above.

Cxが定量できれば、SiC中の総炭素量はJIS法で
ほぼ正確に定量できるから、これらよりSiと結合して
いるCが定量でき、従って本発明方法により Sicの
総量も計算できる。
If Cx can be quantified, the total amount of carbon in SiC can be almost accurately quantified using the JIS method, and from this, the amount of C bonded to Si can be quantified, and therefore the total amount of Sic can also be calculated using the method of the present invention.

(e)実施例 (1)標準試料の分析 アチソン法で製造した次のSiC微粉を標準試料として
用いた。定量はJISの化学分析による。
(e) Example (1) Analysis of standard sample The following SiC fine powder produced by the Acheson method was used as a standard sample. Quantification is based on JIS chemical analysis.

平均粒径  1.7  ル諺 f−c      O,33%(重量%以下間)遊離S
i0   0.04% SiC98,71% 全Fe     O,03% このSiC粉末を表1に示す量精秤し、夫々KBr粉末
約700mgとよく混合し、ディスクに成形し、FT−
IR(バイオラッド社製FTS15E型)により、横軸
に波数(am−1)、縦軸に吸光度(%吸光度)をとり
、波数4000cm″’ 〜500c+s−’における
吸光度曲線を求めた。その結果ベースラインの傾き角度
θを表1に示す。
Average particle size 1.7% free S
i0 0.04% SiC 98.71% Total Fe O. 03% This SiC powder was accurately weighed in the amount shown in Table 1, mixed well with about 700 mg of KBr powder, molded into a disk, and FT-
Using IR (Model FTS15E manufactured by Bio-Rad), the horizontal axis represents the wave number (am-1) and the vertical axis represents the absorbance (% absorbance), and an absorbance curve at a wave number of 4000 cm'' to 500 c+s-' was determined.Based on the results. Table 1 shows the inclination angle θ of the line.

表   1 これを直線で表すと θ= 25W + 18、 相関係数= 0.998従
って基準値はAo=25として、 2510.33($) =78(%吸光度/g−駕)(
2)未知試料の分析 ■同じアチソン法でつくった未知試料について同様に吸
光度曲線を求め、その結果Wとθの関係を表2に示す、
(平均粒径は5.7 p、ra ) 。
Table 1 If this is expressed as a straight line, θ = 25W + 18, correlation coefficient = 0.998. Therefore, the reference value is Ao = 25, 2510.33 ($) = 78 (% absorbance / g-g) (
2) Analysis of unknown sample ■Absorbance curve was determined in the same way for an unknown sample prepared by the same Acheson method, and the resulting relationship between W and θ is shown in Table 2.
(Average particle size is 5.7 p, ra).

表   2 これより  θ= 19W + IB、 相関係数= 
0.97となる。従って未知試料中のf−c量は、19
/7B= 0.25%である。
Table 2 From this, θ = 19W + IB, correlation coefficient =
It becomes 0.97. Therefore, the amount of f-c in the unknown sample is 19
/7B=0.25%.

この試料の化学分析によるf−cは0.23%であった
。この試料は平均粒径が比較的大きいのでJIS分析で
も正しい値がでているものと思われる。
Chemical analysis of this sample showed f-c to be 0.23%. Since this sample has a relatively large average particle size, it seems that the JIS analysis also gave correct values.

■上記未知試料を粉砕し、平均粒径0.44 p、 m
として測定した。結果を表3に示す。
■Crush the unknown sample above to obtain an average particle size of 0.44 p, m.
It was measured as The results are shown in Table 3.

表   3 これより θ=17W+2  相関係数=0.98従っ
て f−c量 17/ 7[1= O,’t1%この粉
砕試料についてJIS法で測定すると1.83%となっ
た。本発明によれば試料の粒度に関係なくほぼ正しい値
が得られるが、JIS法では粒度が細かくなるとSiC
の一部がf−cの測定のための燃焼条件下で酸化するた
め、f−cが高くなっている。
Table 3 From this, θ=17W+2 Correlation coefficient=0.98 Therefore, f-c amount 17/7[1=O,'t1% When this pulverized sample was measured by JIS method, it was 1.83%. According to the present invention, almost correct values can be obtained regardless of the particle size of the sample, but in the JIS method, when the particle size becomes fine, SiC
f-c is high because a part of it is oxidized under the combustion conditions for f-c measurement.

(f)効果 本発明によれば超微粉のSiCでも精度よく遊離炭素を
定量分析することができる。しかもFT−IRを使用す
ればデータ処理は容易であり、短時間で結果が得られる
(f) Effect According to the present invention, free carbon can be quantitatively analyzed with high precision even in the case of ultrafine SiC powder. Moreover, if FT-IR is used, data processing is easy and results can be obtained in a short time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は赤外分光光度計による波数吸光度曲線であり、
第2図は試料中のSiC量と前記曲線のベースラインの
傾き角度との関係を示すグラフである。 2・・・・・・ベースライン、 θ・・・・・・ベースラインの傾き角度。
Figure 1 is a wave number absorbance curve measured by an infrared spectrophotometer.
FIG. 2 is a graph showing the relationship between the amount of SiC in the sample and the slope angle of the baseline of the curve. 2...Baseline, θ...Inclination angle of the baseline.

Claims (1)

【特許請求の範囲】 次の(イ)、(ロ)、(ハ)、(ニ)の操作よりなる炭
化珪素中の遊離炭素定量法 (イ)赤外線透過法により炭化珪素粉末含有試料の波数
吸光度曲線を求め、波数(cm^−^1)4000〜5
00におけるベースラインの直線部分の傾き角度をθ(
%吸光度/cm^−1)とする。 (ロ)試料中の遊離炭素既知(Co%)のSiCについ
て、そのSiC量Wに対する前記傾き角度θを測定し、
θとWの直線よりその勾配Aoを求め、これよりAo/
Coを算出し、これを基準値とする。 (ハ)遊離炭素未知(Cx%)のSiCについて、(ロ
)と同様にAoに対応するAxを求める。 (ニ)Cx=Ax/(Ao/Co)よりCxを算出する
[Claims] A method for determining free carbon in silicon carbide comprising the following operations (a), (b), (c), and (d) (a) Wavenumber absorbance of a sample containing silicon carbide powder by infrared transmission method Find the curve, wave number (cm^-^1) 4000~5
The inclination angle of the straight line part of the baseline at 00 is θ(
% absorbance/cm^-1). (b) For SiC with known free carbon (Co%) in the sample, measure the tilt angle θ with respect to the SiC amount W,
Find the slope Ao from the straight line between θ and W, and from this Ao/
Calculate Co and use this as a reference value. (c) For SiC with unknown free carbon (Cx%), find Ax corresponding to Ao in the same way as in (b). (d) Calculate Cx from Cx=Ax/(Ao/Co).
JP60044727A 1985-03-08 1985-03-08 Quantitative determination method for free carbon in silicon carbide Pending JPS61204544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60044727A JPS61204544A (en) 1985-03-08 1985-03-08 Quantitative determination method for free carbon in silicon carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60044727A JPS61204544A (en) 1985-03-08 1985-03-08 Quantitative determination method for free carbon in silicon carbide

Publications (1)

Publication Number Publication Date
JPS61204544A true JPS61204544A (en) 1986-09-10

Family

ID=12699472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60044727A Pending JPS61204544A (en) 1985-03-08 1985-03-08 Quantitative determination method for free carbon in silicon carbide

Country Status (1)

Country Link
JP (1) JPS61204544A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039607A (en) * 2006-08-07 2008-02-21 Horiba Ltd Quantitative analyzing method, quantitative analyzer and program
WO2012117601A1 (en) * 2011-03-01 2012-09-07 大日本スクリーン製造株式会社 Carbon-content-percentage acquisition device and carbon-content-percentage acquisition method
CN104359907A (en) * 2014-11-17 2015-02-18 山西新华化工有限责任公司 Evaluation method of oxygen-containing functional group on surface of active carbon
JP2021004856A (en) * 2019-06-27 2021-01-14 三菱重工業株式会社 Spectroscopic analysis device and spectroscopic analysis method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039607A (en) * 2006-08-07 2008-02-21 Horiba Ltd Quantitative analyzing method, quantitative analyzer and program
JP4733589B2 (en) * 2006-08-07 2011-07-27 株式会社堀場製作所 Quantitative analysis method, quantitative analysis apparatus and program
WO2012117601A1 (en) * 2011-03-01 2012-09-07 大日本スクリーン製造株式会社 Carbon-content-percentage acquisition device and carbon-content-percentage acquisition method
JPWO2012117601A1 (en) * 2011-03-01 2014-07-07 大日本スクリーン製造株式会社 Carbon content acquisition apparatus and carbon content acquisition method
CN104359907A (en) * 2014-11-17 2015-02-18 山西新华化工有限责任公司 Evaluation method of oxygen-containing functional group on surface of active carbon
JP2021004856A (en) * 2019-06-27 2021-01-14 三菱重工業株式会社 Spectroscopic analysis device and spectroscopic analysis method

Similar Documents

Publication Publication Date Title
Slavin et al. The possibility of standardless furnace atomic absorption spectroscopy
Tyler et al. Reactivity of petroleum coke to carbon dioxide between 1030 and 1180 K
JPS61204544A (en) Quantitative determination method for free carbon in silicon carbide
Ahlers et al. The determination of hydroxyl, ketone and ester groups in autoxidised fatty esters and related compounds by infra-red spectroscopy
Christy et al. Effect of particle size on diffuse reflectance infrared spectra of polystyrene spheres
D'ulivo et al. Simultaneous determination of arsenic, selenium, tin and mercury by non-dispersive atomic fluorescence spectrometry
Bumsted Determination of Alpha-Quartz in the Respirable Portion of Airborne Participates by X-ray Diffraction
Kuehl et al. The quantitative analysis of a model fermentation broth
Maruta et al. Arsine generation and determination of trace amounts of arsenic by atomic absorption spectrometry
KR102085612B1 (en) Method of analyzing silicon reducer using fourier transform infrared spectroscopy
Gebhardt Rapid methods for chemical analysis of hydraulic cement
Fredericks et al. Rapid characterization of iron ore by Fourier transform infrared spectrometry
Rabatin et al. Determination of Particle Size with Simple Recording Sedimentation Balance
Ahsan et al. Direct determination of cadmium in calcium drug samples using electrothermal atomic absorption spectrometry with a metal tube atomizer and thiourea as a matrix modifier
Burylin Specific features of the determination of arsenic in soils by electrothermal atomic absorption spectrometry with the injection of suspensions
Grune et al. Development of a continuous gas chromatographic analyzer for sludge digestion studies
JP2000074858A (en) Method for quantitating palladium palladium catalyst
Grainger et al. Direct analysis of solid cadmium mercury telluride by flameless atomic absorption using interactive computer processing
Dennen Spectrographic determination of carbon in sedimentary rocks, using direct-current arc excitation
Key et al. Spectrographic Method for Analysis of Cracking Catalysts
Ball et al. Determination of nitrogen in shale oil and petroleum application of established methods
Rose et al. Spectrochemical determination of lead in zircon for lead-alpha age measurements
Garlock Jr et al. The quantitative determination of crystalline penicillin G by infrared analysis
Hood Standardization of Mass Spectra by Means of Total Ion Intensity
Johnson et al. Ultraviolet Spectrophotometry of Tellurium Sols