JPS61200339A - Internal-combustion engine with mechanical supercharger - Google Patents

Internal-combustion engine with mechanical supercharger

Info

Publication number
JPS61200339A
JPS61200339A JP3892085A JP3892085A JPS61200339A JP S61200339 A JPS61200339 A JP S61200339A JP 3892085 A JP3892085 A JP 3892085A JP 3892085 A JP3892085 A JP 3892085A JP S61200339 A JPS61200339 A JP S61200339A
Authority
JP
Japan
Prior art keywords
cylinder
valve
intake
engine
supercharger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3892085A
Other languages
Japanese (ja)
Other versions
JPH0544544B2 (en
Inventor
Hidemi Onaka
大仲 英巳
Toyoichi Umehana
豊一 梅花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP3892085A priority Critical patent/JPS61200339A/en
Publication of JPS61200339A publication Critical patent/JPS61200339A/en
Publication of JPH0544544B2 publication Critical patent/JPH0544544B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D17/00Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
    • F02D17/02Cutting-out

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To enable to smooth the rising of torque by making to carry out reduced cylinder, reduced cylinder supercharged, all cylinder and all cylinder supercharged operation successively according to the increase of load in that which the reduced cylinder operation is enabled by providing a mechanical supercharger in the intake passage and making the intake valve of a part of cylinders stop. CONSTITUTION:In that which a supercharger 28 driven by an engine is provided in an intake passage 14, and that which a valve stopping mechanism including a twofold type rocker arm 56 is provided on an intake valve 18, the engine load L is compared with the first prescribed value L1 by a control means 50, and, when L<L1, reduced cylinder operation is made to be carried out by opening a bypass valve 44, and bringing the intake valve 18 of a part of cylinders in stopped state. When L>=L1, reduced cylinder supercharged operation is made to be carried out by closing the bypass valve 44 and turning an electromagnetic clutch 38 ON. And according to the increase of engine load comparison judgment is carried out with regard to the second and third prescribed values L2 and L3 (L3>L2>L1), and all cylinder operation in which the bypass valve 44 is opened and the said intake valve 18 is brought in operating condition, and all cylinder supercharged operation in which the bypass valve 44 is closed and the electromagnetic clutch 38 is turned ON is made successively to carry out.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は吸気通路に機械式過給機を備え、且つ一部の気
筒の吸気弁を停止させることにより減筒運転を可能にし
た内燃機関に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides an internal combustion engine that is equipped with a mechanical supercharger in the intake passage and that enables cylinder reduction operation by stopping the intake valves of some of the cylinders. Regarding.

〔従来の技術〕[Conventional technology]

機関の回転軸に電磁クラッチを介して連結された機械式
過給機を備え過給機をバイパスするバイパス通路を形成
した内燃機関は、例えば特開昭56一167817号公
報等により知られている。バイパス通路に設けられたバ
イパス制御弁を負荷に応じて開閉することにより、低負
荷時には過給機の駆動損失をなくし、高負荷時には過給
による高出力を得ることができ、然もバイパス制御弁の
切換が瞬間的にできるので加速時の応答性が優耗ている
機関を提供できる。
An internal combustion engine that includes a mechanical supercharger connected to the rotating shaft of the engine via an electromagnetic clutch and has a bypass passage that bypasses the supercharger is known, for example, from Japanese Patent Laid-Open No. 56-167817. . By opening and closing the bypass control valve installed in the bypass passage according to the load, it is possible to eliminate driving loss of the turbocharger at low loads, and to obtain high output due to supercharging at high loads. Since the switching can be done instantaneously, it is possible to provide an engine with excellent responsiveness during acceleration.

又、運転状態に応じて一部の気筒の吸気弁を停止させ、
従ってその一部の気筒の作用を実質的に停止させること
も公知であり、そのような弁停止機構は数多く見られる
が例えば特公昭55−42248号公報、同55−42
249号公報、同55−42250号公報等に記載され
ている。さらに、本願出願人は実願昭59−12091
6において二分割ニラ折れ弐ロッカーアームからなる弁
停止機構を提案している。
Also, depending on the operating condition, the intake valves of some cylinders are stopped,
Therefore, it is also known to substantially stop the operation of some of the cylinders, and there are many such valve stop mechanisms, such as those disclosed in Japanese Patent Publications No. 55-42248 and No. 55-42.
It is described in Publication No. 249, Publication No. 55-42250, etc. Furthermore, the applicant of the present application
6 proposes a valve stop mechanism consisting of a two-part split rocker arm.

又、排気過給機を備えた内燃機関において一部の気筒へ
空気が供給されないようにした例が特公昭55−164
739号公報に記載されている。又、排気過給機と複吸
気弁を組み合せた例が特公昭58−172422号公報
に記載されている。
In addition, an example of preventing air from being supplied to some cylinders in an internal combustion engine equipped with an exhaust supercharger was published in Japanese Patent Publication No. 55-164.
It is described in Publication No. 739. Further, an example in which an exhaust supercharger and a multiple intake valve are combined is described in Japanese Patent Publication No. 172422/1983.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

排気過給機ではほぼ常時過給された状態にあるが加速時
にタービンの回転数が上昇して十分な過 、給効率が得
られるまでに時間がかかることが認められているが、機
械式過給機では上述したようにバイパス制御弁の開閉に
より任意に過給と無過給状態に切換えることができると
いう利点があり、しかも切換え後のレスポンスが非常に
良いという利点がある。このために、無過給状態から過
給状態に切換える場合に急激なトルクの変化によってシ
ョックを生じ、運転感覚が悪くなることがある。
With an exhaust turbocharger, the engine is in a supercharged state almost all the time, but it is recognized that during acceleration the turbine rotational speed rises and it takes time to obtain sufficient supercharging efficiency. As mentioned above, the charger has the advantage of being able to switch between supercharging and non-supercharging states at will by opening and closing the bypass control valve, and has the advantage that the response after switching is very good. For this reason, when switching from a non-supercharged state to a supercharged state, a sudden change in torque may cause a shock, resulting in poor driving sensation.

一方、通常走行時に相当する機関部分負荷域における燃
費の改善は今日の重要な課題の一つであり、このために
一部の気筒の吸気弁を休止させてその気筒の作用を休止
させ、或いは複吸気弁機関の一方の吸気弁を休止させた
りする技術が開発されるに至ったものである。このよう
に過給領域を制御できる機械式過給機と吸気弁休止機構
とを組み合わせれば、部分負荷域において大きな燃費の
改善を図ることができるとともに加速時や全負荷時には
応答性よく高出力を得ることができる。ところが、簡便
に考えられるように、吸気弁休止状態から一気に全吸気
弁作動且つ過給状態にすると、トルク変化が急激になり
すぎてショックが大きくなりすぎるという問題が発生し
た。従って、加速に際してはトルクの立上りは急でなけ
ればならないが、然もトルクの立上りは滑らかでなけれ
ばならない。
On the other hand, improving fuel efficiency in the engine partial load range, which corresponds to normal driving, is one of the important issues today, and for this purpose, it is necessary to deactivate the intake valves of some cylinders to stop the operation of that cylinder, or to This led to the development of a technique for stopping one intake valve of a dual intake valve engine. By combining a mechanical supercharger that can control the supercharging range with an intake valve deactivation mechanism, it is possible to significantly improve fuel efficiency in the partial load range, while also providing high output with good responsiveness during acceleration and full load. can be obtained. However, as can be easily considered, if the intake valve is brought into full operation and the supercharging state at once from the intake valve rest state, a problem arises in that the torque change becomes too rapid and the shock becomes too large. Therefore, during acceleration, the torque must rise sharply, but the torque must also rise smoothly.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するために、本発明による内燃機関は
、吸気通路に機械式過給機を備え、一部の吸気弁を休止
させる機構を備え、さらに前記過給機及び前記吸気弁休
止機構のための制御手段を備え、機関の負荷の増大に応
じて順に部分休部、部分休筒過給、全筒、全筒過給とな
るようにしたことを特徴とする。
In order to solve the above problems, an internal combustion engine according to the present invention includes a mechanical supercharger in an intake passage, a mechanism for stopping some of the intake valves, and further includes the supercharger and the intake valve stopping mechanism. The present invention is characterized in that the engine is equipped with a control means for the engine, and is configured to sequentially perform partial cylinder deactivation, partial cylinder deactivation supercharging, all cylinder deactivation, and all cylinder supercharging in accordance with an increase in engine load.

〔実施例〕〔Example〕

以下本発明の実施例について説明する。 Examples of the present invention will be described below.

機関本体2は公知のようにビス1〜ン4を有し、ピスト
ン4はコネクティングロッド6に−よりクランクシャフ
ト8に結合されている。クランクシャフト8にはクラン
クプーリ10が取付けられている。機関本体2の燃焼室
12には、吸気通路14及び排気通路16が連通され、
それぞれに吸気弁18及び排気弁20が配置される。又
、図に示されていないが点火栓が設けられる。
The engine body 2 has screws 1 to 4 in a known manner, and the piston 4 is connected to a crankshaft 8 by a connecting rod 6. A crank pulley 10 is attached to the crankshaft 8. An intake passage 14 and an exhaust passage 16 are communicated with the combustion chamber 12 of the engine body 2,
An intake valve 18 and an exhaust valve 20 are arranged respectively. Although not shown in the figure, a spark plug is also provided.

吸気通路14は公知のように吸気管、吸気マニホールド
、吸気ボートにより形成され、本発明においてはその上
流側から順にエアクリーナ22、エアフローメータ24
、スロットル弁26、過給機28、サージタンク30、
燃料噴射弁32が配置される。過給機28は二葉状ロー
タ34を有するルーツポンプにより構成され、一方のロ
ータ34のロータシャフト36には電磁クラッチ38が
取付けられる。電磁クラッチ38のプーリ部とクランク
プーリ10とがタイミングベルト40により連結され、
従って過給機28が機関により機械的に駆動される。過
給機28はベーンポンプ等により構成されることもでき
る。
As is well known, the intake passage 14 is formed by an intake pipe, an intake manifold, and an intake boat, and in the present invention, an air cleaner 22 and an air flow meter 24 are formed in this order from the upstream side.
, throttle valve 26, supercharger 28, surge tank 30,
A fuel injection valve 32 is arranged. The supercharger 28 is constituted by a roots pump having a bilobal rotor 34, and an electromagnetic clutch 38 is attached to a rotor shaft 36 of one of the rotors 34. The pulley portion of the electromagnetic clutch 38 and the crank pulley 10 are connected by a timing belt 40,
Therefore, the supercharger 28 is mechanically driven by the engine. The supercharger 28 can also be configured by a vane pump or the like.

制御手段50は中央処理装置(CPU) 、リードオン
リメモリ(ROM) 、ランダムアクセスメモリ(RA
M)を備えた公知のデジタルコンピュータにより構成さ
れ、これらはバスにより相互に連結されるとともに、A
/Dコンバータ及び入力インターフェースを介して検出
入力値を取り入れ、その検出入力値を処理して出力イン
ターフェースを介して燃料噴射弁32及び電磁クラッチ
38へ制御信号を送る。このために、CPUが演算、制
御機能を有し、ROMにプログラムが記憶され、RAM
に検出入力値その他が記憶されることは公知の通りであ
る。
The control means 50 includes a central processing unit (CPU), a read-only memory (ROM), and a random access memory (RA).
M), which are interconnected by a bus, and are connected to each other by a bus.
A detected input value is taken in via a /D converter and an input interface, the detected input value is processed, and a control signal is sent to the fuel injection valve 32 and the electromagnetic clutch 38 via an output interface. For this purpose, the CPU has calculation and control functions, the ROM stores programs, and the RAM
It is well known that detected input values and the like are stored in the .

制御手段50は後述するバイパス制御弁44及び吸気弁
休止機構の電磁弁52も制御する。
The control means 50 also controls a bypass control valve 44 and a solenoid valve 52 of an intake valve stop mechanism, which will be described later.

検出入力値は、エアフローメータ24、機関冷却水温セ
ンサ、スロットル弁26の位置を検出するスロットルセ
ンサ、フロントアクスルに取付けられた車速センサ、機
関回転数及びクランクシャフトの位置を表すディストリ
ビュータ内のセンサ、トランスミッションの位置を表す
シフトスイッチ等からの検出信号として与えられる。こ
れらの検出値信号は電子制御燃料噴射機関においてよく
用いられるものであり、又、燃料噴射制御自体もよく知
られているのでこれらの詳細な説明は省略する。
The detected input values include an air flow meter 24, an engine cooling water temperature sensor, a throttle sensor that detects the position of the throttle valve 26, a vehicle speed sensor attached to the front axle, a sensor in the distributor that indicates the engine speed and the position of the crankshaft, and the transmission. It is given as a detection signal from a shift switch etc. that indicates the position of. These detection value signals are often used in electronically controlled fuel injection engines, and the fuel injection control itself is well known, so a detailed explanation thereof will be omitted.

本発明においては、過給機28をバイパスして、吸気通
路14にバイパス通路42が接続される。
In the present invention, a bypass passage 42 is connected to the intake passage 14, bypassing the supercharger 28.

このバイパス通路42の上流側の接続部はスロットル弁
26と過給機28との間にあり、下流側の接続部は過給
機28とサージタンク30との間にある。バイパス通路
42の途中にはバイパス制御弁44が配置され、これは
負圧作動ダイヤフラムアクチュエータ46により作動さ
れる。即ち、バイパス制御弁44が連結されたダイヤフ
ラム46aの両側に負圧室46bと大気圧室46cとが
形成され、負圧室46b内のばね46dがダイヤフラム
46aを付勢している。よって、負圧室46bに負圧を
導入することによりバイパス制御弁44を開くことがで
きる。負圧の導入は図示しないチェック弁を介して吸気
通路14に連結されたバキュームタンク48から、三方
電磁弁50を介して行われ、三方電磁弁50が制御手段
50により通電を制御される。三方電磁弁50及びアク
チュエータ46により、バイパス制御弁44は機関の負
荷に応じて負荷が予め定められた値より大きいときに閉
じられ、電磁クラッチ38はバイパス制御弁44が閉じ
られる前に所定の負荷で継がれている。従って、バイパ
ス制御弁44と閉じることにより過給機28の実質的な
過給が開始され、バイパス制御弁44が開かれていると
きは、電磁クラッチ38が継がれて過給機28が駆動さ
れていてもバイパス通路42から圧力が逃げるので過給
機28には実質的な負荷はかからないことになる。一方
、バイパス通路42がない場合には、電磁クラッチ38
を継ぐことにより過給が開始される。
The upstream connection of this bypass passage 42 is between the throttle valve 26 and the supercharger 28, and the downstream connection is between the supercharger 28 and the surge tank 30. A bypass control valve 44 is disposed in the middle of the bypass passage 42 and is operated by a negative pressure operated diaphragm actuator 46 . That is, a negative pressure chamber 46b and an atmospheric pressure chamber 46c are formed on both sides of a diaphragm 46a to which the bypass control valve 44 is connected, and a spring 46d in the negative pressure chamber 46b biases the diaphragm 46a. Therefore, the bypass control valve 44 can be opened by introducing negative pressure into the negative pressure chamber 46b. Negative pressure is introduced from a vacuum tank 48 connected to the intake passage 14 via a check valve (not shown) through a three-way solenoid valve 50, and the three-way solenoid valve 50 is energized by a control means 50. The three-way solenoid valve 50 and the actuator 46 cause the bypass control valve 44 to close when the load is greater than a predetermined value depending on the engine load, and the electromagnetic clutch 38 closes the bypass control valve 44 when the load is greater than a predetermined value before the bypass control valve 44 is closed. It has been inherited by Therefore, when the bypass control valve 44 is closed, substantial supercharging of the supercharger 28 is started, and when the bypass control valve 44 is open, the electromagnetic clutch 38 is engaged and the supercharger 28 is driven. Even if the engine is running, pressure will escape from the bypass passage 42, so no substantial load will be placed on the supercharger 28. On the other hand, if there is no bypass passage 42, the electromagnetic clutch 38
Supercharging is started by inheriting.

本発明においては、機関本体2の吸気弁18を休止させ
る機構が設けられており、弁休止機構は第2図及び第3
図を参照して次に説明される電磁弁52を介して制御手
段50により制御される。
In the present invention, a mechanism for stopping the intake valve 18 of the engine body 2 is provided, and the valve stopping mechanism is shown in FIGS.
It is controlled by control means 50 via a solenoid valve 52 which will be explained next with reference to the figures.

尚、第1図に示す実施例においては弁休止機構は例えば
4気筒機関の2気筒の吸気弁18に適用され、残りの2
気筒の吸気弁は機関に同期して常時駆動される。吸気弁
18が休止されたときにはその吸気弁は閉じ続けられる
ことになり、そのときに関連する燃料噴射弁32からの
燃料供給も停止され、従ってその気筒では燃焼作用が行
われなくなり、機関の運転は残りの気筒のみによって行
われる。この明細書ではこの状態を減筒運転という。
In the embodiment shown in FIG. 1, the valve stop mechanism is applied to the intake valves 18 of two cylinders of a four-cylinder engine, for example, and the remaining two
The cylinder intake valves are constantly driven in synchronization with the engine. When an intake valve 18 is deactivated, it remains closed, and the fuel supply from the associated fuel injector 32 is also stopped, so that no combustion occurs in that cylinder and engine operation is interrupted. is performed only by the remaining cylinders. In this specification, this state is referred to as cylinder reduction operation.

これに対して、全ての吸気弁18が機関に同期して作動
され、同様に全ての気筒に燃料が供給される運転状態を
全筒運転という。又、吸気弁休止機構は各気筒に吸気弁
を2個備えた多吸気弁機関に適用されることもでき、こ
の場合、各気筒の一方の吸気弁が休止されることができ
る。この状態と前記減筒運転を含めて、この明細書では
部分休部運転と呼ぶ。以下は主に減筒運転について説明
されているが、これは部分休部運転についてあてはまる
On the other hand, an operating state in which all intake valves 18 are operated in synchronization with the engine and fuel is similarly supplied to all cylinders is called all-cylinder operation. Further, the intake valve deactivation mechanism can be applied to a multi-intake valve engine in which each cylinder has two intake valves, and in this case, one intake valve of each cylinder can be deactivated. In this specification, this state and the cylinder reduction operation described above are referred to as partial rest operation. Although the following explanation mainly refers to reduced-cylinder operation, this also applies to partial-removal operation.

第2図及び第3図において、18aは休止されるべき吸
気弁18のパルプステムを示し、バルブステム18aは
ロッカシャフト54に回動可能に支持されたロッカアー
ム56により駆動されるようになっている。18bはバ
ルブリターンスプリング、18Cはスプリングリテーナ
、58は公知のカムである。ロッカアーム56は共通の
連結ピン60に回動可能に取付けられた2つのアーム部
分56a。
2 and 3, 18a indicates the pulp stem of the intake valve 18 to be deactivated, and the valve stem 18a is adapted to be driven by a rocker arm 56 rotatably supported on a rocker shaft 54. . 18b is a valve return spring, 18C is a spring retainer, and 58 is a known cam. The rocker arm 56 has two arm portions 56a rotatably attached to a common connecting pin 60.

56bからなる。第1のアーム部分56aと第2のアー
ム部分56bとの対向表面を貫通してロック手段が形成
される。即ち、第1のアーム部分56aにはシリンダボ
ア62が形成されてそこに段付ピストン64が挿入され
、第2のアーム部分56bにはシリンダボア66が形成
されてそこにロックピン68が挿入されるとともにばね
70によって第1のアーム部分56aの方向に付勢され
ている。第1のアーム部分56aのシリンダボア62は
連通路72により中空ロッカシャフト54内の油圧通路
74に連通され、この油圧通路74は前述した電磁弁5
2を介してポンプを含む圧油供給源76に接続される。
Consisting of 56b. A locking means is formed through the opposing surfaces of the first arm portion 56a and the second arm portion 56b. That is, a cylinder bore 62 is formed in the first arm portion 56a, into which a stepped piston 64 is inserted, and a cylinder bore 66 is formed in the second arm portion 56b, into which a lock pin 68 is inserted. It is biased toward the first arm portion 56a by a spring 70. The cylinder bore 62 of the first arm portion 56a is communicated with a hydraulic passage 74 in the hollow rocker shaft 54 by a communication passage 72, and this hydraulic passage 74 is connected to the above-mentioned solenoid valve 5.
2 to a pressure oil supply source 76 including a pump.

従って、電磁弁52の通電制御を行うことにより吸気弁
休止機構を制御することかできる。即ち、第1のアーム
部分56aのシリンダポア62に油圧を作用させること
によりピストン64が2つのアーム部分56a、56b
の接合面まで達し、従ってこれに押されて、ロックピン
68が前記接合面まで後退する。これらのアーム部分5
6a、56bにカム58の力が加わると、これらのアー
ム部分56a、56bは連結ピン60の回りで回動しつ
つニラ折れになり、従って、第2のアーム部分56bの
先端部がバルブステム18aを押下げるに至らない(吸
気弁18は閉じ続ける)。カム58のベース内部に係合
しているときには両アーム部分56a、56bを連結し
ているリターンスプリング78によりカム58に追従す
ることができる。
Therefore, by controlling the energization of the solenoid valve 52, the intake valve stop mechanism can be controlled. That is, by applying hydraulic pressure to the cylinder pore 62 of the first arm portion 56a, the piston 64 moves between the two arm portions 56a and 56b.
The locking pin 68 reaches the joint surface of the lock pin 68 and is pushed by the joint surface, thereby retracting the lock pin 68 to the joint surface. These arm parts 5
When the force of the cam 58 is applied to the arms 6a and 56b, these arm portions 56a and 56b rotate around the connecting pin 60 and are bent, so that the tip of the second arm portion 56b is attached to the valve stem 18a. (the intake valve 18 continues to close). When engaged inside the base of the cam 58, the return spring 78 connecting both arm portions 56a, 56b can follow the cam 58.

シリンダボア62の油圧が解除されているときには、第
2のアーム部分56bのシリンダボア66内のばね70
の力によりロックピン68が押され、これはカム58が
ベース内部にあるときにピストン64を押しつつ第1の
アーム部分56aのシリンダポア62に進入する。かく
して、第1のアーム部分56aと第2のアーム部分56
bとが連結ピン60及びロックピン68により一体化さ
れるのでもはやニラ折りになることはなく、カム58の
運動に追従してバルブリフト18aを押下げることがで
きる。このような吸気弁休止機構は前述した減筒運転機
関及び複吸気弁機関のいずれにも適用できるものであり
、又、図示した以外の吸気弁休止機構を用いることもで
きる。
When the hydraulic pressure in the cylinder bore 62 is released, the spring 70 in the cylinder bore 66 of the second arm portion 56b
The force pushes the locking pin 68, which enters the cylinder pore 62 of the first arm portion 56a while pushing the piston 64 when the cam 58 is inside the base. Thus, the first arm portion 56a and the second arm portion 56
b are integrated by the connecting pin 60 and the lock pin 68, so that the valve lift 18a can be pushed down following the movement of the cam 58 without any longer being folded. Such an intake valve stop mechanism can be applied to both the reduced cylinder operation engine and the multiple intake valve engine described above, and intake valve stop mechanisms other than those shown can also be used.

第4図はバイパス制御弁44及び吸気弁休止機構の電磁
弁52を制御するためのプログラムの流れを表したフロ
ーチャートであり、これは詳述しない燃料噴射の制御の
プログラムの中に例えば8m5ec毎に割込まれる処理
として実施される。尚、燃料噴射の制御のためには前述
した検出入力値がすでに取込まれており、第4図のフロ
ーチャートを実施するためにはそのような値が使用でき
るものとする。燃料噴射制御のためには、負荷を表すパ
ラメータとして吸入空気量(又は吸気負圧)が使用され
、これはQ/N(1回転当りの吸入空気量#/rev)
として使用されるのが一般的である。
FIG. 4 is a flow chart showing the flow of a program for controlling the bypass control valve 44 and the solenoid valve 52 of the intake valve stop mechanism. It is executed as an interrupted process. It is assumed that the above-mentioned detected input values have already been taken in to control fuel injection, and such values can be used to implement the flowchart of FIG. 4. For fuel injection control, the intake air amount (or intake negative pressure) is used as a parameter representing the load, and this is Q/N (intake air amount per revolution #/rev).
It is generally used as

第4図において、ステップ80において、負荷が第1の
設定値(0,3)より大きいか否かが判定され、ノーの
場合はステップ82にて減筒運転をすべき信号を出力す
る。これはバイパス制御弁44を開かせ且つ一部の気筒
の吸気弁18を閉じ続けさせる状態を作り出す。ステッ
プ80にてイエスの場合にはステップ84に進んで減筒
過給をすべき信号を出力する。これはバイパス制御弁4
4を閉じさせ且つ一部の気筒の吸気弁18を閉じ続けさ
せる状態を作り出す。電磁クラッチ38はこれに先立っ
て継がれている。次にステップ86にて負荷が第2の設
定値(0,5,第2の設定値〉第1の設定値)より大き
いか否かが判定され、ノーの場合は減筒過給を続け、イ
エスの場合はステップ88に進んで全筒運転をすべき信
号を出力する。これはバイパス制御弁44を開かせ且つ
全ての吸気弁18を作動させる状態を作り出す。次にス
テップ90に進み、負荷が第3の設定値(0,7゜第3
の設定値〉第2の設定値〉より大きいか否かを判定する
。ノーであればステップ88の全筒運転が維持される。
In FIG. 4, in step 80, it is determined whether the load is larger than the first set value (0, 3), and if no, in step 82, a signal to perform cylinder reduction operation is output. This creates a condition in which the bypass control valve 44 is opened and the intake valves 18 of some cylinders are kept closed. If YES in step 80, the process proceeds to step 84 and outputs a signal to perform cylinder reduction supercharging. This is bypass control valve 4
4 is closed and the intake valves 18 of some cylinders are kept closed. The electromagnetic clutch 38 has been engaged prior to this. Next, in step 86, it is determined whether the load is larger than a second set value (0, 5, second set value>first set value), and if no, cylinder reduction supercharging is continued; If YES, the process proceeds to step 88 and outputs a signal for all-cylinder operation. This creates a condition that causes bypass control valve 44 to open and all intake valves 18 to operate. Next, the process proceeds to step 90, where the load is set to the third set value (0.7° third
It is determined whether the second setting value is greater than the second setting value. If no, all-cylinder operation in step 88 is maintained.

イエスの場合にはさらにステツプ92において全筒過給
運転状態をずべき信号を出力する。これはバイパス制御
弁44を閉じさせ且つ全ての吸気弁18を作動させる状
態を作り出す。
In the case of YES, a signal to shift the all-cylinder supercharging operation state is further outputted in step 92. This creates a condition that causes bypass control valve 44 to close and all intake valves 18 to operate.

第5図は第4図のステップ84.92を実行するに際し
て遅延時間を設けた例を示し、これは急速時にコンピュ
ータは第4図に示すような段階的な指示を出すことがで
きるが機械的作動部分がコンピュータの速度に追従でき
ず、−気に全筒過給の状態になるのをさけるようにした
ものである。
FIG. 5 shows an example in which a delay time is provided when executing steps 84 and 92 of FIG. This prevents the operating parts from being able to follow the speed of the computer and causing all cylinders to be supercharged.

又、電磁クラッチ38はそれぞれに過給すべき段階毎に
継がれるようになっており、従って、ステップ80でイ
エスの場合、ステップ94にて電磁クラッチ38をまず
継ぎ、これからの経過時間をステップ96にて計測し、
所定の時間(1秒)経過したときにステップ84にてバ
イパス制御弁44を閉じ、減筒過給状態を作り出すよう
にしている。又、ステップ90にてイエスの場合も同様
にステップ98にて電磁クラッチ38を継ぎ、ステップ
100にて所定の経過時間(0,5秒)を計測している
。この場合、設定経過時間は減筒過給に移る場合と全筒
過給に移る場合とで変えられており、減筒過給に移る際
に電磁クラッチ38を十分に惰走させ、バイパス制御弁
44を閉じたときのショックを小さくするようにしてい
る。全筒過給に移る際にはその前の全荷時の出力が相対
的に大きくなっているので惰走時間は小さくてもショッ
クを小さくすることができる。このようにして、過給機
28及び吸気弁休止機構の作動状態を順次に切換えてい
くことにより、滑らかな加速が行える。
Further, the electromagnetic clutch 38 is engaged at each stage in which supercharging is to be performed. Therefore, if the answer is yes in step 80, the electromagnetic clutch 38 is engaged first in step 94, and the elapsed time is determined in step 96. Measured at
When a predetermined time (1 second) has elapsed, the bypass control valve 44 is closed in step 84 to create a reduced-cylinder supercharging state. If the answer is YES in step 90, the electromagnetic clutch 38 is connected in step 98, and a predetermined elapsed time (0.5 seconds) is measured in step 100. In this case, the set elapsed time is different depending on whether the shift is to reduced-cylinder supercharging or to all-cylinder supercharging. 44 is designed to reduce the shock when it is closed. When shifting to all-cylinder supercharging, the output at full load before that is relatively large, so the shock can be reduced even if the coasting time is short. In this way, by sequentially switching the operating states of the supercharger 28 and the intake valve deactivation mechanism, smooth acceleration can be achieved.

第6図は第4図の変形例を示し、ここではさらに機関の
回転数が判定条件に入っている。即ち、ステップ80に
てノーの場合に、ステップ102にて回転数が所定の値
(200Orpm)と比較され、イエスの場合には負荷
が第1の設定値より小さくてもステップ84に進み、減
筒過給を行うようになっている。又、ステップ90にて
ノーの場合も同様であり、ステップ104にて所定の値
(3000rpm)と比較され、イエスの場合にはステ
ップ92の全筒過給が行われるようになっている。この
場合にも、減筒過給に移る場合と全筒過給に移る場合と
で設定回転数を変えており、減筒過給に移る場合により
低回転側で切換えられるようになっており、トルクの小
さい低負荷時の切換えショックを小さくするようにして
いる。さらに、第7図は第5図及び第6図の変形例を示
し、第8図は第7図に従った過給機28と吸気弁停止機
構の作動状態を示す。
FIG. 6 shows a modification of FIG. 4, in which the engine speed is also included in the determination condition. That is, if the result in step 80 is NO, the rotation speed is compared with a predetermined value (200 rpm) in step 102, and if the result is YES, the process proceeds to step 84 even if the load is smaller than the first set value. It is designed to perform cylinder supercharging. The same holds true if the determination in step 90 is NO, and the engine speed is compared with a predetermined value (3000 rpm) in step 104, and if the determination is YES, all-cylinder supercharging is performed in step 92. In this case as well, the set rotation speed is different when moving to reduced-cylinder supercharging and when moving to all-cylinder supercharging, so that when moving to reduced-cylinder supercharging, it is possible to switch to a lower rotation side. It is designed to reduce the switching shock at low loads with low torque. Furthermore, FIG. 7 shows a modification of FIGS. 5 and 6, and FIG. 8 shows the operating state of the supercharger 28 and the intake valve stop mechanism according to FIG.

第8図の点線で示す′M域において電磁クラッチ38が
切換えられる。
The electromagnetic clutch 38 is switched in the 'M range indicated by the dotted line in FIG.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば負荷が小さいとき
には部分休部運転して燃費を向上させ、それから負荷の
増大に応じて全筒、全筒過給へと移行していくことによ
って滑らかに応答性よくトルクを立上らせることができ
る。
As explained above, according to the present invention, when the load is small, fuel efficiency is improved by performing partial rest operation, and then as the load increases, the transition is made to all-cylinder and all-cylinder supercharging, thereby providing a smooth response. It is possible to build up torque with ease.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による内燃機関の構成図、第2図は吸気
弁休止機構の正面図、第3図は第2図の断面図、第4図
は本発明の制御のフローチャート、第5図は他の例のフ
ローチャート、第6図は他の例のフローチャート、第7
図はさらに他の例のフローチャート、第8図は第8図に
従った作動状態を説明する図である。 18−吸気弁、   28−過給機、 42−バイパス通路、44−バイパス制御弁、56−ニ
ツ折れロッカアーム。
Fig. 1 is a block diagram of an internal combustion engine according to the present invention, Fig. 2 is a front view of the intake valve deactivation mechanism, Fig. 3 is a sectional view of Fig. 2, Fig. 4 is a flowchart of the control according to the invention, and Fig. 5 is a flowchart of another example, Figure 6 is a flowchart of another example, and Figure 7 is a flowchart of another example.
The figure is a flowchart of still another example, and FIG. 8 is a diagram explaining the operating state according to FIG. 18-Intake valve, 28-Supercharger, 42-Bypass passage, 44-Bypass control valve, 56-Folded rocker arm.

Claims (1)

【特許請求の範囲】[Claims] 吸気通路に機械式過給機を備え、一部の吸気弁を休止さ
せる機構を備え、さらに前記過給機及び前記吸気弁休止
機構のための制御手段を備え、機関の負荷の増大に応じ
て順に部分休部、部分休筒過給、全筒、全筒過給となる
ようにした機械式過給機付内燃機関。
A mechanical supercharger is provided in the intake passage, a mechanism for stopping some of the intake valves is provided, and a control means for the supercharger and the intake valve stopping mechanism is provided, so that the intake passage can be controlled according to an increase in the load of the engine. An internal combustion engine with a mechanical supercharger that operates in the following order: partial cylinder deactivation, partial cylinder deactivation supercharging, all cylinder cylinder deactivation, and all cylinder cylinder supercharging.
JP3892085A 1985-03-01 1985-03-01 Internal-combustion engine with mechanical supercharger Granted JPS61200339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3892085A JPS61200339A (en) 1985-03-01 1985-03-01 Internal-combustion engine with mechanical supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3892085A JPS61200339A (en) 1985-03-01 1985-03-01 Internal-combustion engine with mechanical supercharger

Publications (2)

Publication Number Publication Date
JPS61200339A true JPS61200339A (en) 1986-09-04
JPH0544544B2 JPH0544544B2 (en) 1993-07-06

Family

ID=12538651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3892085A Granted JPS61200339A (en) 1985-03-01 1985-03-01 Internal-combustion engine with mechanical supercharger

Country Status (1)

Country Link
JP (1) JPS61200339A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4996966A (en) * 1988-01-19 1991-03-05 Mazda Motor Corporation Supercharged engine
US7882820B2 (en) 2006-02-28 2011-02-08 Toyota Jidosha Kabushiki Kaisha Control apparatus of internal combustion engine and control method of internal combustion engine
JP2015081555A (en) * 2013-10-23 2015-04-27 日立オートモティブシステムズ株式会社 Multi-cylinder internal combustion engine control device and controller

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56113025A (en) * 1980-02-13 1981-09-05 Nissan Motor Co Ltd Engine which controls number of cylinders
JPS56154127A (en) * 1980-04-30 1981-11-28 Hino Motors Ltd Internal combustion engine with supercharger

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56113025A (en) * 1980-02-13 1981-09-05 Nissan Motor Co Ltd Engine which controls number of cylinders
JPS56154127A (en) * 1980-04-30 1981-11-28 Hino Motors Ltd Internal combustion engine with supercharger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4996966A (en) * 1988-01-19 1991-03-05 Mazda Motor Corporation Supercharged engine
US7882820B2 (en) 2006-02-28 2011-02-08 Toyota Jidosha Kabushiki Kaisha Control apparatus of internal combustion engine and control method of internal combustion engine
JP2015081555A (en) * 2013-10-23 2015-04-27 日立オートモティブシステムズ株式会社 Multi-cylinder internal combustion engine control device and controller

Also Published As

Publication number Publication date
JPH0544544B2 (en) 1993-07-06

Similar Documents

Publication Publication Date Title
US8205585B2 (en) Variable valve gear for internal combustion engine
US6352061B2 (en) Control device for a variable valve timing mechanism of an engine
US10309323B2 (en) Control apparatus for vehicle
CN107035511A (en) The control device of internal combustion engine
JP3873834B2 (en) Intake valve drive control device for internal combustion engine
JPH09125994A (en) Variable valve timing control device for exhaust gas turbine supercharged internal combustion engine
JPS626258Y2 (en)
JPS61200339A (en) Internal-combustion engine with mechanical supercharger
JP2004076638A (en) Inlet valve drive control device for internal combustion engine
JP4003567B2 (en) Intake control device for internal combustion engine
JPS61197733A (en) Internal-combustion engine with mechanical type supercharger
JPH0413388Y2 (en)
JP2940413B2 (en) Internal combustion engine with variable cylinder mechanism
JP2004100575A (en) Control unit of internal combustion engine
JPS61200337A (en) Internal-combustion engine with mechanical supercharger
JP3933007B2 (en) Intake control device for internal combustion engine
JPH10196381A (en) Control device of internal combustion engine mounted with variable nozzle type turbocharger
JP3709644B2 (en) Torque control device for internal combustion engine
JP2004100547A (en) Control device for internal combustion engine
JPS6338614A (en) Control device for supercharge pressure of internal combustion engine with supercharger
JP2526264B2 (en) Exhaust turbocharged engine
JPH01277654A (en) Control device for engine with exhaust turbosupercharger
JP3772949B2 (en) Internal combustion engine with cam phase variable mechanism
JPH0144743Y2 (en)
JP2023034305A (en) Engine control device