JPS61197420A - Production of fine crystal of perovskite-type lead titanate - Google Patents

Production of fine crystal of perovskite-type lead titanate

Info

Publication number
JPS61197420A
JPS61197420A JP3731585A JP3731585A JPS61197420A JP S61197420 A JPS61197420 A JP S61197420A JP 3731585 A JP3731585 A JP 3731585A JP 3731585 A JP3731585 A JP 3731585A JP S61197420 A JPS61197420 A JP S61197420A
Authority
JP
Japan
Prior art keywords
lead titanate
phase
perovskite
fine crystal
microcrystals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3731585A
Other languages
Japanese (ja)
Other versions
JPH066488B2 (en
Inventor
Akira Kamihira
上平 曉
Masayuki Suzuki
真之 鈴木
Hiroshi Yamanoi
山ノ井 博
Hideo Tamura
英雄 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP3731585A priority Critical patent/JPH066488B2/en
Publication of JPS61197420A publication Critical patent/JPS61197420A/en
Publication of JPH066488B2 publication Critical patent/JPH066488B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To produce perovskite-type lead titanate fine crystal having acicular particle from, by heat-treating fine crystal of PX-phase lead titanate at a temperature above a specific level. CONSTITUTION:A novel PX-phase lead titanate fine crystal which is a cubic acicular crystal having a diffraction peak at about 2theta=30.7 deg.C (theta: diffraction angle) by X-ray diffraction using a Cu target, is prepared beforehand. The lead titanate fine crystal is heat-treated at >=520 deg.C to obtain the objective perovskite-type lead titanate fine crystal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、強誘電材料、圧電材料、焦電材料として有用
で、特に粒子形状が針状であるペロブスカイト型チタン
酸鉛微結晶の製造方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a method for producing perovskite-type lead titanate microcrystals that are useful as ferroelectric materials, piezoelectric materials, and pyroelectric materials, and in particular have needle-like particle shapes. It is related to.

〔従来の技術〕[Conventional technology]

誘電体磁器の分野においては、電子部品の小型化や用途
の多様化等から、原料となる誘電体酸化物微粒子の新た
なる合成法の開発が進められている。
In the field of dielectric ceramics, new synthesis methods for dielectric oxide fine particles, which serve as raw materials, are being developed in response to miniaturization of electronic components and diversification of applications.

例えば、多層セラミックコンデンサにおいては、大容量
化とともに小型・軽量化を図るために、セラミック層の
厚みを薄くすることが必要で、原料である誘電体酸化物
の微粒子化が重要な課題となる。また、コンデンサの耐
圧の点からは、焼結段階での異常粒成長や不均一粒子の
生成は好ましくな(、均一微粒子の合成法の開発が急務
となっている。
For example, in multilayer ceramic capacitors, it is necessary to reduce the thickness of the ceramic layer in order to increase the capacitance as well as reduce the size and weight, and making the dielectric oxide, which is the raw material, finer particles is an important issue. In addition, from the viewpoint of the withstand voltage of the capacitor, abnormal grain growth and generation of non-uniform particles during the sintering stage are undesirable (although there is an urgent need to develop a method for synthesizing uniform fine particles).

あるいは、圧電体や焦電体を利用した圧電アクチュエー
タやバイモルフ、焦電型赤外線センサ等においても、同
様な理由から均一微粒子化技術の開発が要望されるとと
もに、特に、センサへの利用を考えた場合には、配向性
セラミックを作成することができれば、高周波スパッタ
法による配向性薄膜に比べて、製造コストの点等で有利
であると考えられる。
Furthermore, for similar reasons, there is a demand for the development of uniform atomization technology for piezoelectric actuators, bimorphs, pyroelectric infrared sensors, etc. that use piezoelectric or pyroelectric materials. In this case, if it is possible to create an oriented ceramic, it is considered to be advantageous in terms of manufacturing costs, etc., compared to an oriented thin film produced by high-frequency sputtering.

一方、誘電体磁器の原料となる誘電体酸化物としては、
数々の優れた特性を有するチタン酸鉛が広く用いられて
いる。そして、このチタン酸鉛(P b T i Ol
lは、一般に、酸化鉛(PbO)と酸化チタン(T i
 Oz)とを混合し、ボールミルで粉砕混合した後、8
00〜1000℃で仮焼成し、さらに均一になるまで再
度粉砕して、本焼成を行うという固相反応法により合成
されている。
On the other hand, the dielectric oxide that is the raw material for dielectric ceramics is
Lead titanate is widely used because it has many excellent properties. Then, this lead titanate (P b T i O l
l is generally lead oxide (PbO) and titanium oxide (T i
After mixing with 8 oz) and pulverizing with a ball mill,
It is synthesized by a solid-phase reaction method in which it is pre-calcined at 00 to 1000°C, then ground again until it becomes uniform, and then main-calcined.

ところで、このような固相反応法によりチタン酸鉛微粒
子を合成する際には、ボールミルを使用するので不純物
が混入し易く、またpboの蒸発が大きな問題となる。
By the way, when lead titanate fine particles are synthesized by such a solid phase reaction method, since a ball mill is used, impurities are likely to be mixed in, and evaporation of pbo poses a major problem.

すなわち、上記仮焼成時の温度が高い程、pboの蒸発
量が指数関数的に多くなり、得られるチタン酸鉛微粒子
の組成が変わってしまう虞れがある。したがって、これ
を回避するために、pbo雰囲気中で焼成を行う等、熱
処理時に相当な工夫をする必要がある。あるいは、Pb
Oの蒸発を抑えるために、仮焼成の温度を下げ、しかる
後に本焼成を行うことも考えられるが、この場合には、
上記仮焼成終了時に未反応のpbOが相当量残留してお
り、この未反応のPbOが上記本焼成の段階で気化して
しまう虞れもあり、ここでも雰囲気コントロールの必要
がある。このようなことから、上述のような熱処理を利
用した固相反応法によって得られるチタン酸鉛微粒子で
は、P b、−、T i O,というように、ペロブス
カイト型構造におけるAサイト欠陥が生じ易く、この非
化学量論性が圧電特性や焦電特性等に悪影響を及ぼす虞
れが高い。また、仮に化学量論性の高いものが高温熱処
理によって得られると仮定しても、前述のような原料調
製手順による附り、焼結性は悪くなり、得られるペロブ
スカイト型チタン酸鉛微結晶の粒径は不均一で、粒子の
形状にも統一性は認められない。
That is, as the temperature during the above-mentioned pre-calcination is higher, the amount of evaporation of pbo increases exponentially, and there is a possibility that the composition of the obtained lead titanate fine particles may change. Therefore, in order to avoid this, it is necessary to take considerable measures during heat treatment, such as performing firing in a PBO atmosphere. Alternatively, Pb
In order to suppress the evaporation of O, it is possible to lower the temperature of the preliminary firing and then perform the main firing, but in this case,
A considerable amount of unreacted PbO remains at the end of the preliminary firing, and there is a risk that this unreacted PbO will vaporize during the main firing, so atmosphere control is also required here. For this reason, in the lead titanate fine particles obtained by the solid phase reaction method using heat treatment as described above, A-site defects in the perovskite structure, such as P b, -, T i O, are likely to occur. There is a high possibility that this non-stoichiometry will adversely affect piezoelectric properties, pyroelectric properties, etc. Furthermore, even if it is assumed that a product with high stoichiometry can be obtained by high-temperature heat treatment, the sintering properties of the perovskite-type lead titanate microcrystals obtained will deteriorate due to the material preparation procedure described above. The particle size is non-uniform, and no uniformity is observed in the shape of the particles.

したがって、以上のような理由から、固相反応法による
チタン酸鉛の純粋な形での誘電体磁器への応用例はほと
んどなく、圧電特性と焼結性の相反する特性のうちいず
れか一方を重視して実用に供しているのが実情である。
Therefore, for the reasons mentioned above, there are almost no examples of application of lead titanate in its pure form to dielectric ceramics using the solid phase reaction method, and it is difficult to obtain either one of the contradictory properties of piezoelectric properties and sinterability. The reality is that we are putting a lot of emphasis on it and putting it into practical use.

一方、一般式M(OR)nで表される有機金属化合物を
合成し、これから一般式MIMz (OR)Mで表され
る複合アルコキシドを合成した後、加水分解するという
、いわゆる金属アルコキシド法も提案されているが、製
造コストや生産性等の点で非常に問題が多い。また、得
られる沈澱は高純度のものであるが、非晶質であり、や
はり400℃程度の熱処理を施す必要があるため、Pb
oの蒸発の虞れもある。さらに、得られるチタン酸鉛微
結晶の粒子の均一性は良好であるが、粒子形状は球形に
近いものである。
On the other hand, a so-called metal alkoxide method has also been proposed, in which an organometallic compound represented by the general formula M(OR)n is synthesized, and from this a composite alkoxide represented by the general formula MIMz (OR)M is synthesized and then hydrolyzed. However, there are many problems in terms of manufacturing costs and productivity. In addition, although the obtained precipitate is of high purity, it is amorphous and requires heat treatment at about 400°C.
There is also a risk of evaporation of o. Furthermore, the uniformity of the particles of the lead titanate microcrystals obtained is good, but the particle shape is close to spherical.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このように、従来の合成法では、均一性や純度の高いチ
タン酸鉛微結晶を得ることは困難であり、特に用途に応
じてチタン酸鉛微結晶の形状を制御することは、全く不
可能であった。
As described above, it is difficult to obtain lead titanate microcrystals with high uniformity and purity using conventional synthesis methods, and in particular, it is completely impossible to control the shape of lead titanate microcrystals depending on the application. Met.

そこで本発明は、前述の如き当該技術分野の実情に鑑み
て提案されたものであって、複合材料的見地から用途の
多様化に対応することが可能で、かつ組成の均一性が高
く、高純度なチタン酸鉛微結晶を製造することが可能な
ペロブスカイト型チタン酸鉛微結晶の製造方法を提供す
ることを目的とする。
Therefore, the present invention has been proposed in view of the actual situation in the technical field as described above, and is capable of responding to diversification of uses from the viewpoint of composite materials, has high composition uniformity, and has high performance. An object of the present invention is to provide a method for producing perovskite-type lead titanate microcrystals that can produce pure lead titanate microcrystals.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は、高純度で、均一かつ格子歪の少ない結晶
性チタン酸鉛微粒子を湿式合成することが可能な合成方
法を開発せんものと長期に亘り鋭意研究の結果、p)I
および合成温度を所定の値に設定して湿式合成を行うこ
とにより、ペロブスカイト型チタン酸鉛微結晶、パイロ
クロア型チタン酸鉛微結晶あるいは新規な結晶相を有す
る針状チタン酸鉛微結晶を合成することが可能で、さら
に、この新規な結晶相を有する針状チタン酸鉛微結晶を
熱処理することにより、針状性を崩すことなくペロブス
カイト型のチタン酸鉛微結晶に相変化させることが可能
であることを見出し、この知見に基づいて本発明をなす
に至った。
The inventors of the present invention sought to develop a synthesis method capable of wet-synthesizing crystalline lead titanate fine particles with high purity, uniformity, and low lattice distortion, and as a result of long-term research, p) I
By performing wet synthesis with the synthesis temperature set to a predetermined value, perovskite-type lead titanate microcrystals, pyrochlore-type lead titanate microcrystals, or acicular lead titanate microcrystals having a new crystal phase are synthesized. Furthermore, by heat-treating acicular lead titanate microcrystals with this new crystalline phase, it is possible to change the phase to perovskite-type lead titanate microcrystals without losing the acicularity. We have discovered something, and based on this knowledge, we have accomplished the present invention.

すなわち、本発明は、CuターゲットによるX線回折で
2θ=30゜71° (θ:回折角)近傍部に回折ピー
クを有し正方晶系の針状結晶であるチタン酸鉛微結晶に
対し、520℃以上で熱処理を施すことを特徴とするも
のである。
That is, the present invention provides lead titanate microcrystals that are tetragonal needle-shaped crystals that have a diffraction peak in the vicinity of 2θ = 30° 71° (θ: diffraction angle) in X-ray diffraction using a Cu target. It is characterized by performing heat treatment at 520°C or higher.

本発明において原料として使用されるチタン酸鉛微結晶
は、その組成がP b T i Ozでありながら、従
来知られていない全く新規なる結晶相(以下、PX相と
する)を有するものである。
Although the lead titanate microcrystal used as a raw material in the present invention has a composition of P b Ti Oz, it has a completely new crystal phase (hereinafter referred to as PX phase) that has not been previously known. .

上記px相のチタン酸鉛微結晶を作成するには、例えば
四塩化チタン(TiO2,)のような可溶性のチタン化
合物もしくはその加水分解生成物と、鉛化合物の加水分
解生成物もしくはその水溶性塩とを混合し、アルカリ性
の水溶液中で100°C以上の高温で反応させ、生成し
た沈殿物を水あるいは温水で洗浄してK”、Na+等の
アルカリ陽イオンやCX等の陰イオンを完全に除去し、
濾過・乾燥すればよい。
In order to create the above px phase lead titanate microcrystals, a soluble titanium compound such as titanium tetrachloride (TiO2) or its hydrolysis product, and a hydrolysis product of a lead compound or its water-soluble salt are used. are mixed and reacted in an alkaline aqueous solution at a high temperature of 100°C or higher, and the resulting precipitate is washed with water or hot water to completely remove alkali cations such as K'' and Na+ and anions such as CX. remove,
Just filter and dry.

ここで、上記反応時のpHや反応温度が重要であって、
これらpHや反応温度に応じて、上述のPX相のチタン
酸鉛微結晶や、ペロブスカイト相(以下、PE相とする
)あるいはパイロクロア相(以下、PY相とする)のチ
タン酸鉛微結晶が生成する。本発明者等は、実験を重ね
、上記反応時のpHと反応温度を変えて得られるチタン
酸鉛微結晶の相図の作成を試みた。結果を第1図に示す
Here, the pH and reaction temperature during the above reaction are important,
Depending on the pH and reaction temperature, lead titanate microcrystals of the above-mentioned PX phase, perovskite phase (hereinafter referred to as PE phase), or pyrochlore phase (hereinafter referred to as PY phase) are formed. do. The present inventors conducted repeated experiments and attempted to create a phase diagram of lead titanate microcrystals obtained by changing the pH and reaction temperature during the above reaction. The results are shown in Figure 1.

この第1図から、PY相は低アルカリ高温域から高アル
カリ低温域で安定であり、PE相は高アルカリ高温域の
み安定で、さらに、PX相は特定の範囲内でのみ生成す
ることが判明した。なお、この第1図において、()内
は副生成物的に若干生成するものを表し、AMは非晶質
(アモルファス)状態のチタン酸鉛を表す。
From this Figure 1, it is clear that the PY phase is stable from the low-alkali high temperature range to the high-alkali low temperature range, the PE phase is stable only in the high-alkali high temperature range, and furthermore, the PX phase is formed only within a specific range. did. In FIG. 1, the numbers in parentheses represent slightly generated by-products, and AM represents lead titanate in an amorphous state.

すなわち、PX相のチタン酸鉛微結晶を作成するには、
pH11,2〜13.0、反応温度145℃以上とする
必要があり、pH11,5〜12.5、反応温度180
℃以上とすることが好ましい。このように設定すること
により、PX相がほとんど単−相として生成する。また
、反応時間は、1時間以内で充分である。
That is, to create PX phase lead titanate microcrystals,
pH 11.2 to 13.0, reaction temperature 145°C or higher, pH 11.5 to 12.5, reaction temperature 180
It is preferable to set it as above degreeC. By setting in this way, the PX phase is almost generated as a single phase. Further, a reaction time of one hour or less is sufficient.

上記PX相のチタン酸鉛微結晶を合成する上で、出発原
料となるTi化合物もしくはその加水分解生成物を得る
には、TiCら、 T i  (S 0a)zのような
塩を水に熔解させるか、もしくは、その水溶液を、KO
H,NaOH,NHL、OH,L i OHのようなア
ルカリ水溶液で加水分解させればよい。
In order to obtain a Ti compound or its hydrolysis product as a starting material for synthesizing the PX phase lead titanate microcrystals, a salt such as TiC et al., Ti (S 0a)z is dissolved in water. or the aqueous solution to KO
Hydrolysis may be carried out using an alkaline aqueous solution such as H, NaOH, NHL, OH, and Li OH.

ただし、T i  (S (%hを用いるときは、これ
らアルカリ溶液で加水分解してTie、・nH−LO(
a!!化チクチタン水和物作成し、デカンテーションや
濾過を繰り返して1.504−を除去すればよい。
However, when using T i (S (%h), it is hydrolyzed with these alkaline solutions to obtain Tie, .
a! ! It is sufficient to prepare a hydrated titanium chloride and remove 1.504- by repeating decantation and filtration.

また、鉛化合物としては、酢酸鉛Pb(CHICo 0
)、 −3H7LO,硝酸鉛pb(No3)1.塩化鉛
Pbcx工等が使用できる。ただし、塩化鉛を使用する
場合には、あらかじめアルカリ性の熱水で処理しておく
ことが好ましい。
In addition, as a lead compound, lead acetate Pb (CHICo 0
), -3H7LO, lead nitrate pb (No3)1. Lead chloride Pbcx etc. can be used. However, when using lead chloride, it is preferable to treat it with alkaline hot water in advance.

これら出発原料のモル比は特に問わないが、l:1の割
合で合成することできる。また、このとき、Pbが過剰
の場合には簡単に洗浄できるが、Tiが過剰の場合には
除去操作が必要である。
Although the molar ratio of these starting materials is not particularly limited, they can be synthesized at a ratio of 1:1. Further, at this time, if Pb is in excess, it can be easily cleaned, but if Ti is in excess, a removal operation is required.

上述のように、100℃以上の高温で反応させる場合に
使用される装置としては、いわゆるオートクレーブと称
される装置が使用され、その内容器には、高アルカリ、
高温に耐え得る材料、例えばポリテトラフルオルエチレ
ン(いわゆるテフロン)等を使用することが好ましい。
As mentioned above, an apparatus called an autoclave is used for the reaction at a high temperature of 100°C or higher, and its inner container contains high alkali,
It is preferable to use a material that can withstand high temperatures, such as polytetrafluoroethylene (so-called Teflon).

上記Px相のチタン酸鉛微結晶は、ペロブスカイト相の
チタン酸鉛結晶とも、またパイロクロア相のチタン酸鉛
結晶とも異なる回折パターンを有するものであって、そ
の回折X線スペクトルは第2図に示すようなものである
。なお、この第2図にスペクトルを示すチタン酸鉛微結
晶は、前述の製造方法に従い、p H12,0、反応温
度182℃、反応時間1時間の条件で合成したものであ
り、また、X線回折は、Cuターゲットを用い、Niフ
ィルターを使用して測定した。
The Px phase lead titanate microcrystal has a diffraction pattern that is different from the perovskite phase lead titanate crystal and the pyrochlore phase lead titanate crystal, and its diffraction X-ray spectrum is shown in Figure 2. It's something like this. The lead titanate microcrystals whose spectra are shown in FIG. Diffraction was measured using a Cu target and a Ni filter.

本発明者等は、この回折パターンの各回折X線ピークの
回折角θの値から、回折結晶面間隔およびミラー指数を
計算により求めた。結果を次表に示す。
The present inventors calculated the diffraction crystal plane spacing and Miller index from the value of the diffraction angle θ of each diffraction X-ray peak of this diffraction pattern. The results are shown in the table below.

(以下余白) (以下余白) すなわち、上記PX相のチタン酸鉛微結晶は、2θ= 
22.76°、2θ=28.91°、2θ=30.71
’、2θ=32.OO’、2θ= 43.65°。
(Hereafter the margin) (Hereafter the margin) In other words, the PX phase lead titanate microcrystals have 2θ=
22.76°, 2θ=28.91°, 2θ=30.71
', 2θ=32. OO', 2θ = 43.65°.

2θ= 55.40° (82回折角)にそれぞれ強い
回折X線ピークを有する。また、このチタン酸鉛微結晶
は、a = 12.34人、c=14.5人の正方品で
あることが確認された。
Each has a strong diffraction X-ray peak at 2θ = 55.40° (82 diffraction angles). Further, it was confirmed that this lead titanate microcrystal was a square product with a = 12.34 people and c = 14.5 people.

また、上記PX相のチタン酸鉛微結晶は、太さ0.1〜
0.2μ、長さ10μ以上の針状粒子であり、合成時の
Pb/Tiモル比は1.01程度と極めて化学量論性が
高い。
In addition, the lead titanate microcrystals of the PX phase have a thickness of 0.1 to
They are acicular particles with a diameter of 0.2μ and a length of 10μ or more, and the Pb/Ti molar ratio during synthesis is approximately 1.01, which is extremely high stoichiometry.

本発明においては、このようなPX相のチタン酸鉛微結
晶に対して熱処理を施して、ペロブスカイト相へ相変化
させる。
In the present invention, such lead titanate microcrystals in the PX phase are subjected to heat treatment to change the phase to the perovskite phase.

上記px相に対する熱処理温度としては、所定の熱処理
温度での保持時間が10時間以上程度の長時間熱処理の
場合には、520℃以上であればよく、550℃以上で
あることがより好ましい。
The heat treatment temperature for the px phase may be 520° C. or higher, and more preferably 550° C. or higher, in the case of long-term heat treatment in which the holding time at a predetermined heat treatment temperature is about 10 hours or more.

また、最終到達温度での保持時間がない場合には、熱処
理温度が580℃以上であればPE相(ペロブスカイト
相)への相変化が始まる。ここで、完全にペロブスカイ
ト相の強誘電相を用いるときには、650℃以上の熱処
理を施すことが好ましい。
Further, if there is no holding time at the final temperature, a phase change to a PE phase (perovskite phase) begins if the heat treatment temperature is 580° C. or higher. Here, when using a ferroelectric phase that is completely a perovskite phase, it is preferable to perform heat treatment at 650° C. or higher.

一方、特に活性度が要求される場合には、熱処理温度を
低くする方が望ましく、580℃〜620℃の熱処理温
度が好ましい。
On the other hand, when particularly high activity is required, it is desirable to lower the heat treatment temperature, and a heat treatment temperature of 580°C to 620°C is preferable.

ただし、上記いずれの場合においても、熱処理温度が9
00℃を越えると、粒子形状が球形に近くなる等、針状
性が崩れる虞れがある。したがって、針状性を重要視す
るのであれば、900℃以下であることが好ましい。
However, in any of the above cases, the heat treatment temperature is 9
If the temperature exceeds 00°C, the particle shape may become close to spherical, and the acicularity may be lost. Therefore, if acicularity is important, the temperature is preferably 900°C or lower.

(作用〕 このように、pH11,2〜13. O、温度145℃
以上の条件で湿式合成される新規結晶相であるPX相の
チタン酸鉛微結晶に対して520℃以上で熱処理を施す
ことにより、針状性を有するペロブスカイト型のチタン
酸鉛微結晶が合成される。
(Effect) In this way, pH 11.2-13.O, temperature 145℃
By heat-treating lead titanate microcrystals of the PX phase, which is a new crystal phase wet-synthesized under the above conditions, at 520°C or higher, perovskite-type lead titanate microcrystals with acicular properties are synthesized. Ru.

(実施例〕 以下、本発明を具体的な実験例から説明する。(Example〕 The present invention will be explained below using specific experimental examples.

なお、本発明がこの実験例に限定されるものでないこと
は言うまでもない。
It goes without saying that the present invention is not limited to this experimental example.

実験例1゜ ビー力に氷水を用意し、これに四塩化チタン液を静かに
少しずつ滴下した。このとき、初期においては白濁した
が、数時間攪拌を続けると、完全に透明な四塩化チタン
水溶液が得られた。これを250mj!のメスフラスコ
に移し、標準溶液とした。この標準溶液から10m1を
正確に分取し、過剰アンモニア水で加水分解し、T i
 Oi・nH□0を濾別した後、1000℃で熱処理し
て重量法がら濃度を決定した。ここで、四塩化チタンの
濃度は0.9681mol/j’であった。
Experimental Example 1 A glass of ice water was prepared, and a titanium tetrachloride solution was gently dropped little by little into it. At this time, the solution was cloudy at the beginning, but after stirring for several hours, a completely transparent titanium tetrachloride aqueous solution was obtained. This is 250mj! The solution was transferred to a volumetric flask and used as a standard solution. Accurately take 10 ml of this standard solution, hydrolyze it with excess aqueous ammonia, and
After Oi·nH□0 was filtered off, it was heat-treated at 1000°C and the concentration was determined by gravimetric method. Here, the concentration of titanium tetrachloride was 0.9681 mol/j'.

一方、酢酸鉛P b (CH3COO)z ・3 Hx
Oノ22、32 gを精秤し、100mj!の水に溶解
した。
On the other hand, lead acetate P b (CH3COO)z ・3 Hx
Precisely weigh 22, 32 g of Ono, 100 mj! dissolved in water.

次いで、この酢酸鉛溶液にPb/Ti=1.000とな
るように上記四塩化チタン標li液を60゜79mj+
を徐々に加えた。このとき、p b c z、の白色沈
澱が生じるが、これは後の反応において何等支障となら
ない。
Next, the above titanium tetrachloride standard li solution was added to this lead acetate solution at 60°79mj+ so that Pb/Ti=1.000.
was added gradually. At this time, a white precipitate of p b c z is formed, but this does not pose any problem in the subsequent reaction.

さらに、あらかじめKOH溶液を作成しておき、これを
加えてpHを調整し、pH=12.0とした。
Furthermore, a KOH solution was prepared in advance, and the pH was adjusted by adding this solution to pH=12.0.

また、このとき全/8/&量は400mj!となるよう
にした。
Also, at this time, the total amount was 400mj! I made it so that

これをテフロン製のオートクレーブ用容器に移し、オー
トクレーブを用い、電気炉により182℃、反応時間1
時間の条件で合成を行った。
This was transferred to a Teflon autoclave container, and heated to 182°C in an electric furnace using an autoclave for a reaction time of 1.
Synthesis was performed under time conditions.

得られた沈澱を温水で充分洗浄し、上澄のpHが7付近
になるまでデカンテーションを繰り返し、不純物を除去
した後、これを濾別し、−昼夜乾燥してPX相のチタン
酸鉛微結晶を得た。
The resulting precipitate was thoroughly washed with warm water, and decantation was repeated until the pH of the supernatant reached around 7. After removing impurities, this was filtered out and dried day and night to remove fine lead titanate from the PX phase. Obtained crystals.

このpx相のチタン酸鉛微結晶の走査型電子顕微鏡写真
(SEM)を第3図に示す。この第3図より、得られる
PX相のチタン酸鉛微結晶は、太さ0.1〜0.2μで
長さが10μ以上の針状粒子であることがわかった。
A scanning electron micrograph (SEM) of this px phase lead titanate microcrystal is shown in FIG. From FIG. 3, it was found that the PX phase lead titanate microcrystals obtained were acicular particles with a thickness of 0.1 to 0.2 μm and a length of 10 μm or more.

さらに、このPX相のチタン酸鉛微結晶の組成分析を行
ったところ、P b/T i = 1.01と非常に化
学量論性が高く、また、Kは0.01重量%程度、Na
やClは測定限界以下であった。
Furthermore, when we analyzed the composition of this PX-phase lead titanate microcrystal, we found that it had a very high stoichiometry of P b /T i = 1.01, and that K was about 0.01% by weight and Na
and Cl were below the measurement limit.

次に、上記px相のチタン酸鉛微結晶の原料粉体を、成
形することなしに、粉体のまま電気炉中で焼成を行った
。熱処理条件は、1時間当たり100℃の昇温速度で、
それぞれ所定の温度で保持時間なしで急冷した。なお、
このとき通常の固相反応で行われているようなPbOの
雰囲気を外側に設けるようなことは、特に行わなかった
Next, the raw material powder of the px phase lead titanate microcrystals was fired in an electric furnace as a powder without being molded. The heat treatment conditions were a temperature increase rate of 100°C per hour,
Each was rapidly cooled at a predetermined temperature without holding time. In addition,
At this time, there was no particular need to provide an atmosphere of PbO outside, which is done in normal solid-phase reactions.

このようにして得られた粉体の各熱処理温度における相
変化の様子を第4図に示す。なお、ここでは、PX相の
チタン酸鉛微結晶の相対量を(330)の回折X線ピー
ク高さとして表し、また、PE相のチタン酸鉛微結晶の
相対量を(110)の回折X線ピーク高さとして表して
、その熱処理温度によってPX相からPE相へ変化する
様子をグラフ化した。
FIG. 4 shows the phase change of the powder thus obtained at each heat treatment temperature. Here, the relative amount of lead titanate microcrystals in the PX phase is expressed as the (330) diffraction X-ray peak height, and the relative amount of lead titanate microcrystals in the PE phase is expressed as the (110) diffraction X-ray peak height. The change from the PX phase to the PE phase depending on the heat treatment temperature was graphed as a line peak height.

この結果、570℃付近からPE相への転移が始まり、
650℃でほぼ完全にPx相からPE相へ相転移するこ
とが判明した。
As a result, the transition to the PE phase begins around 570°C,
It was found that the phase transition from the Px phase to the PE phase almost completely occurred at 650°C.

また、得られたPE相のチタン酸鉛微結晶の走査電子顕
微鏡写真を第5図に示す、なお、このPE相のチタン酸
鉛微結晶は、A37Mカード〔6−0452)に示され
るPbTi0と一致することから確認した。
In addition, a scanning electron micrograph of the obtained PE phase lead titanate microcrystals is shown in Figure 5.This PE phase lead titanate microcrystals are similar to the PbTi0 shown on the A37M card [6-0452]. Confirmed that they match.

この第5図より、熱処理を施すことにより、粒子の長さ
が僅かに短くなった感はあるものの、第3図に示すPX
相のチタン酸鉛微結晶とほとんど形状の変わらない針状
性を有するペロブスカイト型チタン酸鉛微結晶が得られ
ることがわかる。
From this Figure 5, it seems that the length of the particles has become slightly shorter due to the heat treatment, but the PX shown in Figure 3
It can be seen that perovskite-type lead titanate microcrystals having acicular properties that are almost the same in shape as the phase lead titanate microcrystals can be obtained.

実験例2゜ 先の実験例と同様の手法によりpx相のチタン酸鉛微結
晶を合成した。
Experimental Example 2 Px phase lead titanate microcrystals were synthesized by the same method as in the previous experimental example.

次いで、このPX相のチタン酸鉛微結晶に対して、温度
を変えて10−13時間の長時間熱処理を行った。
Next, this PX phase lead titanate microcrystal was subjected to a long-term heat treatment for 10 to 13 hours at different temperatures.

得られたチタン酸鉛微結晶の各熱処理温度における相変
化の様子を第6図に示す。
FIG. 6 shows the phase change of the obtained lead titanate microcrystals at each heat treatment temperature.

この第6図より、長時間熱処理では、520℃以上でP
E相への相転移が始まり、550℃以上でほぼ完全にP
E相へ相転移することが判明した。
From this figure 6, in long-term heat treatment, P
A phase transition to E phase begins, and P becomes almost completely at 550°C or higher.
It was found that there was a phase transition to E phase.

〔発明の効果〕〔Effect of the invention〕

以上の説明からも明らかなように、本発明によれば、非
常に均一で二次凝集のない針状のペロブスカイト型チタ
ン酸鉛微結晶を製造することができる。特に、得られる
チタン酸鉛微結晶は、その粒子形状が針状で、太さ0.
1μm程度、長さ10μm以上と特異な形状を有し、複
合材料9強度材料を兼ね備えた圧電材料としての用途が
期待され、配向焼結の可能性も高い。
As is clear from the above description, according to the present invention, acicular perovskite-type lead titanate microcrystals that are extremely uniform and free from secondary agglomeration can be produced. In particular, the obtained lead titanate microcrystals have a needle-like particle shape and a thickness of 0.
It has a unique shape of approximately 1 μm and a length of 10 μm or more, and is expected to be used as a piezoelectric material that is a composite material with 9 strength materials, and there is also a high possibility of oriented sintering.

また、本発明においては、原料組成がPb/T+ # 
1. OのPX相単相を用いているので、従来の固相反
応法と異なり、熱処理を施しても、得られるペロブスカ
イト型チタン酸鉛微結晶の組成変動は非常に少ない。
Further, in the present invention, the raw material composition is Pb/T+ #
1. Since a single PX phase of O is used, unlike conventional solid-phase reaction methods, there is very little compositional variation in the resulting perovskite-type lead titanate microcrystals even if heat treatment is performed.

さらに、本発明によれば、熱処理温度を制御することに
より、得られるチタン酸鉛微結晶の活性度を上げること
もでき、高密度焼結材料として使用可能なチタン酸鉛微
結晶を製造することができる。
Further, according to the present invention, by controlling the heat treatment temperature, the activity of the obtained lead titanate microcrystals can be increased, and lead titanate microcrystals that can be used as a high-density sintered material can be manufactured. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は湿式合成法におけるp)(一温度による相図で
あり、第2図は本発明において原料とじて使用されるP
X相のチタン酸鉛微結晶の回折X線スペクトルである。 第3図はpH12,0,反応温度182℃1反応時間1
時間で得られるPX相のチタン酸鉛微結晶の走査電子顕
微鏡写真、第4図はpx相のPE相への相転移状態を示
す特性図である。 第5図は得られるPE相のチタン酸鉛微結晶の走査電子
顕微鏡写真である。 第6図は長時間熱処理時のpx相のPE相への相転移状
態を示す特性図である。
Figure 1 is a phase diagram of p) (at one temperature) in the wet synthesis method, and Figure 2 is a phase diagram of P used as a raw material in the present invention.
It is a diffraction X-ray spectrum of X-phase lead titanate microcrystal. Figure 3 shows pH 12.0, reaction temperature 182℃, 1 reaction time 1.
FIG. 4 is a scanning electron micrograph of PX phase lead titanate microcrystals obtained over time, and FIG. 4 is a characteristic diagram showing the state of phase transition from the PX phase to the PE phase. FIG. 5 is a scanning electron micrograph of the resulting PE phase lead titanate microcrystals. FIG. 6 is a characteristic diagram showing the phase transition state of the px phase to the PE phase during long-term heat treatment.

Claims (1)

【特許請求の範囲】[Claims] CuターゲットによるX線回折で2θ=30.71°(
θ:回折角)近傍部に回折ピークを有し正方晶系の針状
結晶であるチタン酸鉛微結晶に対し、520℃以上で熱
処理を施すことを特徴とするペロブスカイト型チタン酸
鉛微結晶の製造方法。
2θ=30.71° (
θ: diffraction angle) Perovskite-type lead titanate microcrystals, which are tetragonal needle-shaped crystals with a diffraction peak in the vicinity, are heat-treated at 520°C or higher. Production method.
JP3731585A 1985-02-26 1985-02-26 Method for producing needle-shaped perovskite-type lead titanate microcrystals Expired - Fee Related JPH066488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3731585A JPH066488B2 (en) 1985-02-26 1985-02-26 Method for producing needle-shaped perovskite-type lead titanate microcrystals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3731585A JPH066488B2 (en) 1985-02-26 1985-02-26 Method for producing needle-shaped perovskite-type lead titanate microcrystals

Publications (2)

Publication Number Publication Date
JPS61197420A true JPS61197420A (en) 1986-09-01
JPH066488B2 JPH066488B2 (en) 1994-01-26

Family

ID=12494246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3731585A Expired - Fee Related JPH066488B2 (en) 1985-02-26 1985-02-26 Method for producing needle-shaped perovskite-type lead titanate microcrystals

Country Status (1)

Country Link
JP (1) JPH066488B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010251766A (en) * 2001-11-15 2010-11-04 Fujifilm Dimatix Inc Ink jet printing module with orientation-determined piezoelectric film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010251766A (en) * 2001-11-15 2010-11-04 Fujifilm Dimatix Inc Ink jet printing module with orientation-determined piezoelectric film

Also Published As

Publication number Publication date
JPH066488B2 (en) 1994-01-26

Similar Documents

Publication Publication Date Title
JPS61275108A (en) Preparation of powder of dielectric substance
JPS61158820A (en) Lead titanate crystallite and production thereof
US8431109B2 (en) Process for production of composition
JP3319807B2 (en) Perovskite-type compound fine particle powder and method for producing the same
JP3526886B2 (en) Method for producing composite oxide
US5366718A (en) Process for producing columbite-type niobate and process for producing perovskite-type compound therefrom
JPS6153113A (en) Production of powdery raw material of easily sintering perovskite and its solid solution by wet process
JPS61242903A (en) Production of compound oxide ceramic powder
JPS61197420A (en) Production of fine crystal of perovskite-type lead titanate
JPH01294527A (en) Production of metallic oxide of perovskite type of abo3 type
JPH0769645A (en) Production of lead-containing multiple oxide
JPS61158823A (en) Production of lead titanate fine powder
JPS61197421A (en) Production of fine crystal of lead titanate
JPS61158821A (en) Production of lead titanate crystallite
JPS61158822A (en) Production of lead titanate crystallite
JP2996776B2 (en) Method for producing lead zirconate titanate
JPH0558632A (en) Production of perovskite-type multiple oxide powder
KR100531137B1 (en) Method for Preparation of Piezoelectric Ceramics by Coprecipitation
JPH0262496B2 (en)
EP0200176B1 (en) Method for producing fine particles of lead zirconate
JPS63117914A (en) Production of metal oxide powder for ptc-thermistor
JPH0262497B2 (en)
JPH01294529A (en) Production of oxide of perovskite type of abo3 type
JPS61191518A (en) Production of low-temperature sinterable raw material powder for producing dielectric porcelain
JPH0580404B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees