JPH0262497B2 - - Google Patents

Info

Publication number
JPH0262497B2
JPH0262497B2 JP61226192A JP22619286A JPH0262497B2 JP H0262497 B2 JPH0262497 B2 JP H0262497B2 JP 61226192 A JP61226192 A JP 61226192A JP 22619286 A JP22619286 A JP 22619286A JP H0262497 B2 JPH0262497 B2 JP H0262497B2
Authority
JP
Japan
Prior art keywords
lead
perovskite
solid solution
type
oxide solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61226192A
Other languages
Japanese (ja)
Other versions
JPS6385015A (en
Inventor
Kyoki Ki
Tokuji Akiba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chichibu Cement Co Ltd
Original Assignee
Chichibu Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chichibu Cement Co Ltd filed Critical Chichibu Cement Co Ltd
Priority to JP61226192A priority Critical patent/JPS6385015A/en
Publication of JPS6385015A publication Critical patent/JPS6385015A/en
Publication of JPH0262497B2 publication Critical patent/JPH0262497B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、ペロブスカイト型鉛含有複合酸化物
固溶体の製造方法に関するものである。
The present invention relates to a method for producing a perovskite-type lead-containing complex oxide solid solution.

【従来技術とその問題点】[Prior art and its problems]

ペロブスカイト型結晶構造を有するチタン酸
鉛、ジルコニウム酸鉛及びチタン酸ジルコニウム
酸鉛は、誘電体セラミツクス、圧電体セラミツク
ス、焦電体セラミツクス、抵抗体セラミツクス、
半導体セラミツクス等の分野に広く使用されてい
る。 このような鉛含有複合酸化物固溶体を合成する
最も一般的な製造方法は、酸化鉛、二酸化チタン
及び二酸化ジルコニウム成分を、高温で固相反応
させる、いわゆる酸化物法である。 しかしながら、このような固相反応によつて得
られる生成物は、X線回折によれば、組成的に極
めて不均質であるという欠点を有している。 この為に、固相反応で得られる複合酸化物固溶
体においては、この生成物を粉砕し、鉛成分の調
整をしながら再度焼成するという複雑で費用のか
かる操作を反復しなければならない欠点がある。 特に、鉛含有複合酸化物固溶体の場合、鉛成分
の高温における蒸発は激しく、いまだに相平衡図
のモポトロピクバウンダリにおける相図は完全に
定まつてない状態である。 更に、この固相反応で得られた複合酸化物固溶
体は、高温での熱履歴をうけることに関連して、
粉経が粗大で、他の原料や副原料との均一混和性
に欠け、反応性にも劣るという欠点を有してい
る。 そこで、上記のような固相反応における欠点を
改善する為に、溶液法ででチタン酸ジルコニウム
酸鉛を製造することが知られている。 例えば、1965年、J.Cana.Ceramic.Soc.、
V.34、P103のV.M.McNamaraによる報告に記載
されている通り、鉛、ジルコニウム、チタンの硝
酸溶液を混合し、硝酸アンモニア水溶液の上にス
プレーすることによつて、チタン酸ジルコニウム
酸鉛の共沈物を作り、それをもつて650℃で焼成
し、チタン酸ジルコニウム酸鉛を得ている。 又、1980年、Ceramic Bulletin、V.59、No.4
のS.Venkataramaniによる研究結果では、基本
的には固相反応を用いながら、反応成分の一つで
あるZr02を液相法で作り、それを用いることによ
つて500℃にてチタン酸ジルコニウム酸鉛を得て
いる。 又、1984年、Communication of、American
Ceramic Society、C−2の掛川による報告で
は、塩化チタンと塩化ジルコニウム水溶液の混合
液にCupferronを添加し、そこで得られた沈澱物
を900℃で焼成し、TiとZrとの混合物を作り、こ
れとPbOとを1100℃で固相反応させ、チタン酸ジ
ルコニウム酸鉛の粉末を得ている。 又、1984年、Ferroelectrics、V.54、P171の
Pedroduramによると、チタンとジルコニウムの
テトラブトオキサイド混合液をPbOと混合するこ
とによつて、非晶質共沈物を作り、それを750℃
に焼成し、チタン酸ジルコニウム酸鉛を得てい
る。 又、1986年、窯業協会誌94(6)545ページの山
村によると、鉛、ジルコニウム及びチタンの硝酸
塩水溶液を出発源として、これにシユウ酸エタノ
ールの混合液を反応させ、これから得られた沈澱
物を800〜1100℃で熱分解させ、チタン酸ジルコ
ニウム酸鉛を得ている。 しかしながら、これらを考察すると、シユウ酸
塩法を除いた諸方法は、基本的には固相法と変わ
りなく、ただ反応温度を下げる為の出発成分の一
部分に易反応性のものを使つていることに特徴が
あるにすぎず、これらの方法では固相反応で問題
にされる点全べてを解決できない。 一方、シユウ酸塩法も、結果的には、高温によ
る熱分解の工程を必要としている欠点がある。
Lead titanate, lead zirconate and lead zirconate titanate having a perovskite crystal structure can be used for dielectric ceramics, piezoelectric ceramics, pyroelectric ceramics, resistor ceramics,
Widely used in fields such as semiconductor ceramics. The most common manufacturing method for synthesizing such a lead-containing composite oxide solid solution is the so-called oxide method, in which lead oxide, titanium dioxide, and zirconium dioxide components are subjected to a solid phase reaction at a high temperature. However, the product obtained by such a solid-phase reaction has the disadvantage of being highly heterogeneous compositionally according to X-ray diffraction. For this reason, complex oxide solid solutions obtained by solid-phase reactions have the disadvantage of having to repeat the complicated and expensive process of pulverizing the product and firing it again while adjusting the lead content. . In particular, in the case of a lead-containing composite oxide solid solution, the lead component evaporates rapidly at high temperatures, and the phase diagram at the mopotropic boundary of the phase diagram is still not completely determined. Furthermore, the composite oxide solid solution obtained by this solid-state reaction undergoes thermal history at high temperatures.
It has the disadvantages of coarse powder size, lack of uniform miscibility with other raw materials and auxiliary raw materials, and poor reactivity. Therefore, in order to improve the above-mentioned drawbacks in the solid phase reaction, it is known to produce lead zirconate titanate using a solution method. For example, in 1965, J.Cana.Ceramic.Soc.
Co-precipitation of lead zirconate titanate by mixing a nitric acid solution of lead, zirconium and titanium and spraying it onto an aqueous ammonium nitrate solution as described in the report by VM McNamara in V.34, p103. This is then fired at 650℃ to obtain lead zirconate titanate. Also, 1980, Ceramic Bulletin, V.59, No.4
According to research results by S.Venkataramani, basically using a solid phase reaction, one of the reaction components, Zr0 2 , was produced by a liquid phase method, and by using it, zirconium titanate was produced at 500℃. Obtaining acid lead. Also, 1984, Communication of, American
In a report by Kakegawa of Ceramic Society, C-2, Cupferron was added to a mixed solution of titanium chloride and zirconium chloride, and the resulting precipitate was calcined at 900°C to create a mixture of Ti and Zr. and PbO are subjected to a solid phase reaction at 1100°C to obtain lead zirconate titanate powder. Also, 1984, Ferroelectrics, V.54, P171
According to Pedroduram, an amorphous coprecipitate was created by mixing a titanium and zirconium tetrabutoxide mixture with PbO, which was heated to 750°C.
lead zirconate titanate. In addition, according to Yamamura in 1986, Journal of the Ceramic Industry Association 94 (6), p. 545, an aqueous solution of nitrates of lead, zirconium, and titanium was used as a starting source, and a mixture of oxalic acid and ethanol was reacted with it, and the resulting precipitate was Lead zirconate titanate is obtained by thermally decomposing it at 800-1100℃. However, considering these, all methods except the oxalate method are basically the same as the solid-phase method, except that they use easily reactive materials as part of the starting components to lower the reaction temperature. However, these methods cannot solve all the problems encountered in solid-phase reactions. On the other hand, the oxalate method also has the drawback of requiring a thermal decomposition process at high temperatures.

【発明の開示】[Disclosure of the invention]

本発明者は、例えば三塩化チタン又は四塩化チ
タン等の水溶性チタン塩及び二酸化チタンの群か
ら選ばれる少なくとも一種類、例えば硝酸鉛又は
過塩素酸鉛等の水溶性鉛塩及び酸化鉛の群から選
ばれる少なくとも一種類(但し、少なくとも酸化
鉛又は二酸化チタンのいずれか使用)及びオキシ
塩化ジルコニウムを、アルカリ性水溶液媒体中に
分散させて撹拌または静置下に水熱反応させる
と、微細な粒経で、比較的大きい比表面積を有す
る微細なペロブスカイト型結晶構造を有する鉛含
有複合酸化物固溶体が得られることを見出だし、
本発明を成し遂げたのである。 尚、水溶性鉛塩及び酸化鉛の群から選ばれる少
なくとも一種類、水溶性チタン塩及び二酸化チタ
ンの群から選ばれる少なくとも一種類、及びオキ
シ塩化ジルコニウムを、アルカリ性水溶液媒体中
に混合させ、撹拌または静置下に水熱反応(例え
ば約50〜300℃ような比較的低い温度での反応。
但し、50〜100℃の温度では常圧下で、100〜300
℃の温度では自生圧力下)させるペロブスカイト
型チタン酸鉛の製造に際して、アルカリ性水溶液
媒体として約1〜18NのNaOH又はKOHを用い
ることが望ましい。 特に、アルカリ性水溶液媒体として約5〜15N
のKOH又はNaOHを用いた場合には、ペロブス
カイト型構造への結晶度化が高く、しかも粉化性
に優れたものが得られ、セラミツクスへの焼結用
原料として特に有用な鉛含有複合酸化物固溶体が
得られる。 尚、約1〜18NのKOH又はNaOHが発揮する
役割の重要性は、鉛含有複合酸化物固溶体のX線
回折像を参照することによつて理解できる。 即ち、四塩化チタン、オキシ塩化ジルコニウム
及び酸化鉛を純水の媒体に混合し、水熱反応させ
た場合は、チタン酸ジルコニウム酸鉛化合物は生
成されず、NaOH又は KOHの水溶液を媒体と
して使用することによつて、反応速度はNaOH
及びKOH水溶液の媒体濃度によつて変わるが、
チタン酸ジルコニウム酸鉛固溶体特有のX線回折
ピークが得られ、そして、NaOH又はKOH水溶
液の媒体濃度が6Nを越えると、ペロブスカイト
型チタン酸ジルコニウム酸鉛複合酸化物固溶体特
有のX線回折ピークが完全な形で得られるのであ
る。 尚、第1図Aは、純水の媒体中で水熱反応させ
た場合のX線回折像を、第1図BはKOH 5Nの
アルカリ性水溶液媒体中で水熱反応させた場合の
X線回折像を、第1図CはKOH 1ONのアルカ
リ性水溶液媒体中で水熱反応させた場合のX線回
折像を示すものである。 又、本発明においてチタン酸鉛とジルコニウム
酸鉛の固溶範囲が全固溶範囲において生成可能で
ある。 すなわち、四塩化チタン水溶液、オキシ塩化ジ
ルコニウム水溶液及び酸化鉛を用いて、出発原料
混合比をPb(Zr0.1Ti0.9)O3からPb(Zr0.9Ti0.1)O3
までにジルコニウムとチタンのモル比を0.1モル
ごとに変え、100N KOH溶液媒体中で200℃、24
時間反応させて得られた反応生成物のX線回折像
を参照すると、いずれの場合とも固相反応で研究
されているジルコニウムとチタンの全国溶体実験
結果とも非常に良く一致し、上記原料を出発原料
とし、出発組成比を変えてKOH水溶液媒体中に
おいて水熱反応させることによつて、チタン酸ジ
ルコニウム酸鉛のペロブスカイト型鉛含有複合酸
化物固溶体が、その全固溶範囲において、その生
成が顕著となつている事実が理解される。 本発明によるペロブスカイト型鉛含有複合酸化
物固溶体は、結晶化度が大きく、しかも結晶粒子
間の歪が少ないという利点を有している。この特
徴の故に、この複合金属酸化物固溶液体は、焼成
等の熱履歴を受けた場合にも、凝結することが少
なく、粉化性に顕著に優れているのであつて、こ
の事実は後述する例を参照することにより直ちに
明白となろう。 しかも、本発明による鉛含有複合酸化物固溶体
の走査形電子顕微鏡写真によると、本発明による
鉛含有複合酸化物の固溶体は、前述したペロブス
カイト型微結晶を有すると共に、粒経が0.1ミク
ロン以下であり、更にBET比表面積が10m2/g
以上、特に20m2/g以上であるという特徴を有す
る。 尚、公知方法では、粒経が1ミクロンよりも小
さいペロブスカイト型酸化物固溶体を得ることは
到底困難であり、また非晶質のものや前駆体の場
合には非較的大きい比表面積を有するとしても、
ペロブスカイト型の結晶に転化すると、その比表
面積は5m2/gよりもかなり小さい値となる。 これに対して、本発明による鉛含有複合酸化物
固溶体は、結晶でありながら、10m2/g以上、特
に20m2/g以上の大きな比表面積を有する。 そして、本発明による鉛含有複合酸化物固溶体
は、上述した特性を有することにより、セラミツ
クスの製造に用いたとき、予想外の顕著な作用効
果を示す。 先ず、この複合金属酸化物固溶液体は、1次粒
経が微細で、しかも表面活性が大きい為、1次粒
子が柔らかく、凝集した2次粒子の形で存在し、
その為プレス成形、押出成形、テープキヤスト、
ホツトプレス等の手段で、容易に所望形状のセラ
ミツクス構造体を成形できる。 しかも、この鉛含有複合酸化物は、1次粒経が
微細で、表面活性が大であり、しかもペロブスカ
イト型結晶構造となつている為、約900〜1000℃
のような低温で焼成可能であり、このような低温
の焼結によつても、緻密で、機械的強度に優れた
ペロブスカイト型セラミツクス体を形成できる。 又、本発明による鉛含有複合酸化物固溶体から
形成されるセラミツクス体は、理論密度の95%〜
98%にも達する密度を有する。 更に、本発明による鉛含有複合酸化物固溶体は
上述した優れた焼結特性を有し、低温で焼結可能
であることにも関連して、焼結時の粒成長が著し
く抑制され、例えば粒成長抑制剤の配合なしに
も、諸特性に優れたペロブスカイト製セラミツク
ス体を得ることが出来る。 又、本発明による鉛含有複合酸化物固溶体は、
ペロブスカイト型結晶でありながら、粒経が微細
で表面活性が大であるという性質を有して、セラ
ミツクス以外の用途、例えば排ガス浄化用触媒、
電極触媒等の分野にも有利して使用し得る。 実施例 1〜18 ペロブスカイト型チタン酸ジルコニウム酸鉛複
合酸化物固溶液体の製造方法は下記の方法に従
う。 尚、製造条件としては下記に示した範囲内で任
意に選ぶことが出来る。 反応生成物のスラリ濃度:10〜500g/ 反応温度:50〜300℃ 反応時間:10分〜144時間 撹拌速度:200rpm以下 ペロブスカイト型鉛含有複合酸化物の具体的製
造方法としては、表1に示すペロブスカイト型固
溶体成分のモル割合に従つて調整された。 そして、各水溶性金属塩水溶液を容積比として
10倍のKOH又はNaOH水溶液媒体と混合し、マ
ントルヒータ付ステンレス製オートクレーブ(内
容積3)に上記水溶性金属塩水溶液とKOH又
はNaH水溶液の混合液を注入したのち、200℃に
加熱し、1日水熱処理して水熱反応を施し、ろ過
性に優れたペロブスカイト型結晶の鉛含有複合酸
化物固溶体の反応生成物スラリー18種類を調整し
た。 次いで、ここに得た生成物スラリーをろ過した
のち、イオン交換水を用いて数回洗い、最後にケ
ーキとして回収した後、100℃の温度において2
時間以上乾燥し、それぞれのペロブスカイト型微
結晶の鉛含有複合酸化物の微粉末18種類を得た。 ここに、それぞれ得たペロブスカイト型鉛含有
酸化物固溶体粉末について、結晶系及びBET比
表面積を測定したので、その結果を表1に併せ表
示した。
The present inventor has disclosed that at least one member selected from the group of water-soluble titanium salts such as titanium trichloride or titanium tetrachloride and titanium dioxide, and the group of water-soluble lead salts such as lead nitrate or lead perchlorate and lead oxide. When at least one type selected from the following (however, at least one of lead oxide or titanium dioxide is used) and zirconium oxychloride are dispersed in an alkaline aqueous medium and subjected to a hydrothermal reaction with stirring or standing still, fine grain size is obtained. discovered that a lead-containing complex oxide solid solution having a fine perovskite crystal structure with a relatively large specific surface area could be obtained,
This invention has been achieved. In addition, at least one type selected from the group of water-soluble lead salts and lead oxide, at least one type selected from the group of water-soluble titanium salts and titanium dioxide, and zirconium oxychloride are mixed in an alkaline aqueous medium, and the mixture is stirred or A hydrothermal reaction (e.g. reaction at a relatively low temperature of about 50 to 300°C) under standing conditions.
However, at a temperature of 50 to 100℃ and under normal pressure,
In the production of perovskite-type lead titanate (under autogenous pressure at temperatures of 0.degree. C.), it is desirable to use about 1 to 18 N NaOH or KOH as the alkaline aqueous medium. In particular, about 5 to 15N as an alkaline aqueous medium
When using KOH or NaOH, a lead-containing composite oxide with high crystallinity to a perovskite structure and excellent powdering properties is obtained, which is particularly useful as a raw material for sintering ceramics. A solid solution is obtained. The importance of the role played by about 1-18N KOH or NaOH can be understood by referring to the X-ray diffraction image of the lead-containing complex oxide solid solution. That is, when titanium tetrachloride, zirconium oxychloride, and lead oxide are mixed in a pure water medium and subjected to a hydrothermal reaction, a lead titanate zirconate compound is not produced, and an aqueous solution of NaOH or KOH is used as the medium. In particular, the reaction rate is NaOH
and varies depending on the medium concentration of the KOH aqueous solution,
An X-ray diffraction peak peculiar to the lead zirconate titanate solid solution is obtained, and when the medium concentration of NaOH or KOH aqueous solution exceeds 6N, the X-ray diffraction peak peculiar to the perovskite-type lead zirconate titanate composite oxide solid solution is completely lost. It can be obtained in this form. In addition, Fig. 1A shows the X-ray diffraction image when the hydrothermal reaction was carried out in a pure water medium, and Fig. 1B shows the X-ray diffraction image when the hydrothermal reaction was carried out in the alkaline aqueous solution medium of KOH 5N. FIG. 1C shows an X-ray diffraction image obtained when KOH 1ON was subjected to a hydrothermal reaction in an alkaline aqueous solution medium. Further, in the present invention, lead titanate and lead zirconate can be produced in the entire solid solution range. That is, using a titanium tetrachloride aqueous solution, a zirconium oxychloride aqueous solution, and lead oxide, the starting material mixture ratio was changed from Pb(Zr 0.1 Ti 0.9 )O 3 to Pb(Zr 0.9 Ti 0.1 )O 3
The molar ratio of zirconium and titanium was changed in steps of 0.1 mole and the mixture was heated at 200 °C in a 100 N KOH solution medium at 24 °C.
Referring to the X-ray diffraction images of the reaction products obtained by time-reaction, in both cases, they agree very well with the results of nationwide solution experiments of zirconium and titanium, which have been studied in solid-phase reactions, starting from the above raw materials. A perovskite-type lead-containing complex oxide solid solution of lead zirconate titanate was formed by using the raw material as a raw material and performing a hydrothermal reaction in a KOH aqueous solution medium by changing the starting composition ratio, and its formation was remarkable over the entire solid solution range. The fact that this is the case is understood. The perovskite-type lead-containing composite oxide solid solution according to the present invention has the advantage of high crystallinity and low distortion between crystal grains. Because of this characteristic, this composite metal oxide solid solution is less likely to condense even when subjected to thermal history such as calcination, and has excellent powdering properties.This fact will be discussed later. It will become immediately clear by referring to the example below. Moreover, according to a scanning electron micrograph of the lead-containing composite oxide solid solution according to the present invention, the lead-containing composite oxide solid solution according to the present invention has the above-mentioned perovskite-type microcrystals and has a grain size of 0.1 micron or less. , and the BET specific surface area is 10m 2 /g
As mentioned above, it is particularly characterized in that it is 20 m 2 /g or more. In addition, with known methods, it is extremely difficult to obtain a perovskite-type oxide solid solution with a grain size of less than 1 micron, and in the case of amorphous materials or precursors, they have a relatively large specific surface area. too,
When converted into perovskite-type crystals, the specific surface area becomes considerably smaller than 5 m 2 /g. In contrast, the lead-containing composite oxide solid solution according to the present invention has a large specific surface area of 10 m 2 /g or more, particularly 20 m 2 /g or more, although it is a crystal. Since the lead-containing composite oxide solid solution according to the present invention has the above-mentioned properties, it exhibits unexpectedly significant effects when used in the production of ceramics. First, this composite metal oxide solid solution has a fine primary particle size and high surface activity, so the primary particles are soft and exist in the form of aggregated secondary particles.
Therefore, press molding, extrusion molding, tape casting,
A ceramic structure of a desired shape can be easily formed by means such as hot pressing. Moreover, this lead-containing composite oxide has a fine primary grain size, high surface activity, and has a perovskite crystal structure, so it can be heated to temperatures of approximately 900 to 1000℃.
It is possible to sinter at such a low temperature, and even by sintering at such a low temperature, a perovskite ceramic body that is dense and has excellent mechanical strength can be formed. Furthermore, the ceramic body formed from the lead-containing composite oxide solid solution according to the present invention has a theoretical density of 95% to
It has a density of up to 98%. Furthermore, the lead-containing composite oxide solid solution according to the present invention has the above-mentioned excellent sintering properties and can be sintered at low temperatures, so grain growth during sintering is significantly suppressed, such as grain growth. A perovskite ceramic body with excellent properties can be obtained without adding a growth inhibitor. Further, the lead-containing composite oxide solid solution according to the present invention is
Although it is a perovskite crystal, it has fine grain size and high surface activity, and is used for applications other than ceramics, such as exhaust gas purification catalysts, etc.
It can also be advantageously used in fields such as electrocatalysis. Examples 1 to 18 A perovskite-type lead zirconate titanate composite oxide solid solution was produced according to the following method. Incidentally, the manufacturing conditions can be arbitrarily selected within the range shown below. Slurry concentration of reaction product: 10 to 500 g/Reaction temperature: 50 to 300°C Reaction time: 10 minutes to 144 hours Stirring speed: 200 rpm or less The specific method for producing the perovskite-type lead-containing composite oxide is shown in Table 1. It was adjusted according to the molar proportion of perovskite type solid solution components. Then, each water-soluble metal salt aqueous solution is expressed as a volume ratio.
After mixing with 10 times the amount of KOH or NaOH aqueous solution medium and pouring the mixture of the above water-soluble metal salt aqueous solution and KOH or NaH aqueous solution into a stainless steel autoclave (inner volume 3) equipped with a mantle heater, it was heated to 200°C and heated to 1. Eighteen kinds of reaction product slurries of lead-containing complex oxide solid solutions of perovskite-type crystals with excellent filterability were prepared by hydrothermal treatment and hydrothermal reaction. The product slurry obtained here was then filtered, washed several times with deionized water, and finally recovered as a cake, which was then washed at a temperature of 100°C for 2 hours.
After drying for more than an hour, 18 types of fine powders of perovskite-type microcrystalline lead-containing composite oxides were obtained. The crystal system and BET specific surface area of each of the obtained perovskite-type lead-containing oxide solid solution powders were measured, and the results are also shown in Table 1.

【表】 さらに、ここに得られたペロブスカイト型鉛含
有複合酸化物固溶体粉体の中から6種類を選び、
それぞれの粉末を1ton/cm2で円板状(10mmφ×1
mm)に加圧成形した後、950℃で1時間焼成した。 そして、この焼結体の密度、ビツカース硬度
(荷重500g)を測定すると共に、この焼結体の両
面に電極を焼付け、誘電特性を調べたので、これ
らの結果を表2に示す。
[Table] Furthermore, six types were selected from the perovskite-type lead-containing composite oxide solid solution powders obtained here.
Powder each powder at 1 ton/cm 2 into a disk shape (10 mmφ x 1
mm) and then baked at 950°C for 1 hour. Then, the density and Vickers hardness (load of 500 g) of this sintered body were measured, and electrodes were baked on both sides of this sintered body to examine the dielectric properties. Table 2 shows these results.

【表】 この表から明らかなように、950℃という通常
の概念では低温である温度において、95%以上の
焼結度が得られていることが判る。このことは、
本発明によつて得た微粉末が焼結性に優れている
ことを示している。 又、ビツカース硬度からのデータから判るよう
に、本発明によつて得た微粉末を焼成した焼結体
は物理的安定性が高いものである。 さらには、誘電特性のデータから判るように、
クリテイカルな組成における誘電率の増加は大き
く、本発明によつて得た微粉末は誘電材料又は圧
電材料として好適なことが窺える。
[Table] As is clear from this table, it can be seen that a degree of sintering of 95% or more is obtained at a temperature of 950°C, which is a low temperature according to the usual concept. This means that
This shows that the fine powder obtained by the present invention has excellent sinterability. Furthermore, as can be seen from the data on the Vickers hardness, the sintered body obtained by firing the fine powder obtained according to the present invention has high physical stability. Furthermore, as can be seen from the dielectric property data,
The increase in dielectric constant in critical compositions is large, and it can be seen that the fine powder obtained by the present invention is suitable as a dielectric material or a piezoelectric material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、X線回折像を示すものである。 FIG. 1 shows an X-ray diffraction image.

Claims (1)

【特許請求の範囲】 1 水溶性鉛塩及び酸化鉛の群から選ばれる少な
くとも一種類、水溶性チタン塩及び二酸化チタン
の群から選ばれる少なくとも一種類(但し、酸化
鉛又は二酸化チタンのいずれかを少なくとも用い
る)、及びオキシ塩化ジルコニウムを、アルカリ
性水溶液媒体中で水熱反応させることを特徴とす
るペロブスカイト型鉛含有複合酸化物固溶体の製
造方法。 2 特許請求の範囲第1項記載のペロブスカイト
型鉛含有複合酸化物固溶体の製造方法において、
アルカリ性水溶液媒体は、NaOH又はKOHの少
なくとも一つを約1〜18Nの濃度で含むもの。 3 特許請求の範囲第1項記載のペロブスカイト
型鉛含有複合酸化物固溶体の製造方法において、
水熱反応は、約100〜300℃の温度で、かつ、自生
圧力下で行なわれるもの。 4 特許請求の範囲第1項記載のペロブスカイト
型鉛含有複合酸化物固溶体の製造方法において、
水熱反応は、約50〜100℃の温度で、かつ、常圧
下で行なわれるもの。 5 特許請求の範囲第1項記載のペロブスカイト
型鉛含有複合酸化物固溶体の製造方法において、
水溶性鉛塩及び酸化鉛の群から選ばれる少なくと
も一種類、水溶性チタン塩及び二酸化チタンの群
から選ばれる少なくとも一種類、及びオキシ塩化
ジルコニウムを、実質上Pb(ZrxTi1-x)O3(但し
0<x<1)のモル比となるよう反応させるも
の。
[Claims] 1. At least one type selected from the group of water-soluble lead salts and lead oxide, and at least one type selected from the group of water-soluble titanium salts and titanium dioxide (provided that either lead oxide or titanium dioxide is 1. A method for producing a perovskite-type lead-containing complex oxide solid solution, which comprises hydrothermally reacting at least one of the following: (at least used) and zirconium oxychloride in an alkaline aqueous medium. 2. In the method for producing a perovskite-type lead-containing composite oxide solid solution according to claim 1,
The alkaline aqueous medium includes at least one of NaOH or KOH at a concentration of about 1-18N. 3. In the method for producing a perovskite-type lead-containing composite oxide solid solution according to claim 1,
Hydrothermal reactions occur at temperatures of approximately 100 to 300°C and under autogenous pressure. 4. In the method for producing a perovskite-type lead-containing composite oxide solid solution according to claim 1,
Hydrothermal reactions are carried out at temperatures of approximately 50 to 100°C and under normal pressure. 5. In the method for producing a perovskite-type lead-containing composite oxide solid solution according to claim 1,
At least one type selected from the group of water-soluble lead salts and lead oxide, at least one type selected from the group of water-soluble titanium salts and titanium dioxide, and zirconium oxychloride, substantially Pb(Zr x Ti 1-x )O 3 (However, the molar ratio is 0<x<1).
JP61226192A 1986-09-26 1986-09-26 Production of lead-containing compound oxide solid solution of perovskite type Granted JPS6385015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61226192A JPS6385015A (en) 1986-09-26 1986-09-26 Production of lead-containing compound oxide solid solution of perovskite type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61226192A JPS6385015A (en) 1986-09-26 1986-09-26 Production of lead-containing compound oxide solid solution of perovskite type

Publications (2)

Publication Number Publication Date
JPS6385015A JPS6385015A (en) 1988-04-15
JPH0262497B2 true JPH0262497B2 (en) 1990-12-25

Family

ID=16841331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61226192A Granted JPS6385015A (en) 1986-09-26 1986-09-26 Production of lead-containing compound oxide solid solution of perovskite type

Country Status (1)

Country Link
JP (1) JPS6385015A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63206316A (en) * 1987-02-20 1988-08-25 Sony Corp Production of lead titanate zirconate fine particle
CN112639241B (en) 2018-08-30 2023-05-26 西门子交通股份有限公司 Lifting device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5969429A (en) * 1982-10-07 1984-04-19 Nippon Mining Co Ltd Manufacture of ultrafine powder of zro2

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5969429A (en) * 1982-10-07 1984-04-19 Nippon Mining Co Ltd Manufacture of ultrafine powder of zro2

Also Published As

Publication number Publication date
JPS6385015A (en) 1988-04-15

Similar Documents

Publication Publication Date Title
JPH04502303A (en) Method for producing submicron ceramic powders of perovskite compounds with controlled stoichiometry and particle size
JP4556398B2 (en) Method for producing the composition
JP2010120850A (en) Method for producing composition
JPH062584B2 (en) Lead titanate microcrystal and method for producing the same
JP3319807B2 (en) Perovskite-type compound fine particle powder and method for producing the same
JPS6052092B2 (en) Manufacturing method of perovskite-type lead-containing composite oxide
US5366718A (en) Process for producing columbite-type niobate and process for producing perovskite-type compound therefrom
JPH0262496B2 (en)
JPH0262497B2 (en)
JP3772354B2 (en) Manufacturing method of ceramic powder
JPS63151672A (en) Manufacture of lead zirconate titanate base piezoelectric ceramic
JP2660301B2 (en) Manufacturing method of sintered body
JPH0558632A (en) Production of perovskite-type multiple oxide powder
JP2841347B2 (en) Manufacturing method of piezoelectric ceramics
JP2899755B2 (en) Method for producing PZT powder
JPS63151673A (en) Manufacture of lead zirconate titanate base piezoelectric ceramic
JP2001199765A (en) Raw material powder for dielectric porcelain composition, and dielectric porcelain composition
JP2865975B2 (en) Method for producing lead perovski type compound
JP3041411B2 (en) Method for producing raw material powder for piezoelectric ceramics
JPH05116943A (en) Production of barium titanate powder
JP4243515B2 (en) Method for producing raw material powder for producing lead zirconate titanate powder, method for producing lead zirconate titanate powder, and method for producing lead zirconate titanate-based sintered body
JPH01122907A (en) Production of perovskite oxide powder
KR100400359B1 (en) Synthesis of lead titanate powder substituted transition metals by hydrothermal method
JPS61127624A (en) Production of perovskite type oxide solid
JP3250874B2 (en) Method for producing composite oxide