JPS61194218A - Production of polyester fiber - Google Patents

Production of polyester fiber

Info

Publication number
JPS61194218A
JPS61194218A JP3286785A JP3286785A JPS61194218A JP S61194218 A JPS61194218 A JP S61194218A JP 3286785 A JP3286785 A JP 3286785A JP 3286785 A JP3286785 A JP 3286785A JP S61194218 A JPS61194218 A JP S61194218A
Authority
JP
Japan
Prior art keywords
yarn
spun
metakaolin
kaolin
polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3286785A
Other languages
Japanese (ja)
Inventor
Makoto Sasaki
誠 佐々木
Shinichi Shoda
庄田 真一
Yoshinori Kawashima
能則 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP3286785A priority Critical patent/JPS61194218A/en
Publication of JPS61194218A publication Critical patent/JPS61194218A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:In the spin-draw process where undrawn yarns are heat-drawn by air friction, a polyester containing a specific amount of kaolin is used to give fiber with reduced yarn unevenness, decreased yarn breakage and fluffs, and high brightness in dyeing color. CONSTITUTION:A polyester preferably containing more than 85mol% of ethylene terephthalate is combined with 0.1-5.0wt% of kaokin or metakaolin of less than 5mu particle size (which is prepared by calcining kaolin into amorphous form and the composition is melt-extruded and cooled with an air flow 3 usually down below 80 deg.C. The yarn is introduced into the hot air zone 6 to effect drawing. Then, yarn is bundled, treated with a finishing oil and taken up at a speed of more than 4,000m/min to give the objective fiber.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はポリエステル繊維の製造法に関し、特に直接紡
糸延伸法によって糸斑が良好で断糸及び単繊維切れが少
なく、かつ、染色鮮明性に優れるポリエステル繊維を製
造する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing polyester fiber, in particular, a method for producing polyester fiber, which has good yarn unevenness, less yarn breakage and single fiber breakage, and excellent dyeing brightness by direct spinning/drawing method. The present invention relates to a method for producing polyester fibers.

〔従来の技術〕[Conventional technology]

近年、生産性の向上を目的として紡糸工程と延伸工程と
を連続化した所謂直接紡糸延伸法が開発され、工業的に
実用化されている。この直接紡糸延伸法は ■ 溶融紡糸口金より溶融紡出され冷却固化した紡出糸
条を、延伸ローラー(群)と引取り熱セツトローラー(
群)との間でローラーの周速差に応じた倍率で延伸する
方法。
In recent years, for the purpose of improving productivity, a so-called direct spinning and drawing method in which a spinning process and a drawing process are made continuous has been developed and has been put into practical use industrially. In this direct spinning and drawing method, the spun yarn, which is melt spun from a melt spinneret and cooled and solidified, is transferred to a drawing roller (group) and a take-up heat setting roller (
A method of stretching at a magnification according to the difference in circumferential speed of the rollers between the two groups.

■ 熔融紡糸口金より溶融紡出され、一旦80℃以下の
温度に冷却固化された紡出糸条を、溶融紡糸口金と引取
りローラー(群)との間に独立した速度規定ローラー(
群)を介在させることなく張力勾配及び/又は温度勾配
のもとて延伸する方法 に大別される。
■ The spun yarn, which is melt-spun from a melt spinneret and once cooled and solidified at a temperature below 80°C, is spun by an independent speed regulating roller (
It is broadly divided into methods in which stretching is performed under a tension gradient and/or a temperature gradient without the intervention of any of the following.

前者の方法はこれによって得られる繊維の物性は好まし
いものであるが、引取り熱セツトローラー(群)を40
00〜6000 ta/分のような高速にした時に糸条
の揺れが大きく、特にローラー(群)に4糸条以りの多
糸条を多数周回させた場合には糸条間での重なりが生じ
糸切れとなったり、或はそれを避けるために糸条間隔を
大きくとろうとするとローラー長が長くなり装置的に高
速回転が不可能になる等の問題点があった。
The former method has preferable physical properties of the fibers obtained by this method, but the heat setting rollers (groups) are
At high speeds such as 00 to 6,000 ta/min, the yarn sways greatly, and especially when the roller (group) is made to rotate many yarns of 4 or more yarns, overlap between the yarns may occur. This causes problems such as thread breakage, or if an attempt is made to increase the thread spacing to avoid this, the length of the roller increases, making it impossible for the device to rotate at high speed.

後者の方法は熔融紡糸口金を通して溶融紡出され一旦8
0℃以下に冷却固化された紡出糸条を溶融紡糸口金と引
取りローラー(群)との間で張力勾配及び/又は温度勾
配下で延伸を発生させるものであるから、該張力勾配及
び/又は温度勾配の付与方法及び付与条件が製糸技術上
の重要なポイントとなる。糸条に張力を付与する一般的
手段としては、糸条を1〜2個のビンに接触させしごく
方法が有効でかつ工業的に実用化されている。しかしな
がら、この方法は糸条の速度が比較的低速の場合には有
用であるが、高速下でこのような方法を採用すると延伸
工程に於て断糸や単繊維切れの発生があり、実用上問題
点が多い。そこで4000〜6000 m/分の高速で
引取る場合は、最近では一旦80℃以下に冷却固化され
た紡出糸条を引続いて加熱流体域に導入し、紡出糸条を
取り囲む流体との走行rtJ擦抵抗抵抗って生じる糸引
き力(少なくとも必要な延伸張力に等しくなければなら
ない)の作用のもとに80″C以上に再加熱し、熱並び
に張力の影響下に加熱延伸し、結晶化及び配向を生ぜし
める方法が採用されている。
The latter method involves melt spinning through a melt spinneret and once 8
Since the spun yarn that has been cooled and solidified to below 0°C is drawn between the melt spinneret and the take-up rollers under a tension gradient and/or a temperature gradient, the tension gradient and/or Alternatively, the method and conditions for applying a temperature gradient are important points in silk-spinning technology. As a general means of imparting tension to the yarn, a method of bringing the yarn into contact with one or two bottles and squeezing it is effective and has been put into practical use industrially. However, although this method is useful when the yarn speed is relatively low, if such a method is adopted at high speeds, yarn breakage or single fiber breakage may occur during the drawing process, making it impractical for practical use. There are many problems. Therefore, when taking off at a high speed of 4,000 to 6,000 m/min, recently the spun yarn, which has been cooled and solidified to below 80°C, is subsequently introduced into a heated fluid region, and the spun yarn is separated from the fluid surrounding it. Under the action of the string pulling force (which must be at least equal to the necessary stretching tension) caused by the running rtJ friction resistance, it is reheated to 80"C or higher, heated and stretched under the influence of heat and tension, and crystallized. Methods have been employed to produce orientation and orientation.

しかしながら、この方法は根本的には加熱流体との摩擦
抵抗力によって延伸するものであるから、加熱流体域を
形成する加熱管の前及び後のガイド類と糸条との摩擦に
より延伸倍率が変動し延伸環が生じ易く、特に熔融紡糸
口金から溶融紡出された糸条に沿って多量に生じる随伴
流を加熱管入口で強制的に製糸系外に排除する随伴流分
離装置と糸条との摩擦により糸揺れが助長され延伸が不
安定となり、製品糸条に染色斑や強伸度斑が生じるとい
う欠点がある。この欠点はポリエステル重合体中に易滑
剤(例えばTiO2、5i02等)が配合されていない
所謂プライト品種で顕著であり、これまで高級薄地婦人
衣料分野で巾広く用いられているプライト品種のポリエ
ステル繊維を、かかる方法で製造することは極めて困難
であっ″た。
However, since this method fundamentally involves drawing by frictional resistance with the heating fluid, the drawing ratio fluctuates due to the friction between the yarn and the guides before and after the heating tube that form the heating fluid area. The yarn is connected to an accompanying flow separation device that forcibly removes the accompanying flow, which tends to cause drawn rings, and which occurs in large quantities along the yarn melt-spun from the melt spinneret, out of the spinning system at the heating tube inlet. Friction promotes yarn sway and makes drawing unstable, which has the drawback of causing dyeing spots and strong elongation spots in the product yarn. This drawback is noticeable in the so-called prite type polyester fibers, which do not contain lubricants (e.g. TiO2, 5i02, etc.) in the polyester polymer. However, it was extremely difficult to manufacture by such a method.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は従来法の上記問題点を解決するものであり、ポ
リエステル重合体中にカオリンもしくはメタカオリンを
配合することにより、ガイド類と糸条との摩擦を低減さ
せ糸条の走行張力を安定化し、延伸倍率の変動を抑えて
糸斑を向上させ、断糸及び単繊維切れを少なくするとと
もに、該カオリンもしくはメタカオリンの屈折率がポリ
エステル重合体の屈折率と近い値を示すことを利用し、
プライト品種様の光沢感を得ようとするものである。更
に屈折率が近いため繊維内を透過する光がポリエステル
重合体とカオリンもしくはメタカオリン微粒子との界面
及び粒子内で捕捉される効果を利用し、染色に於ける深
色性を得ようとするものである。
The present invention solves the above-mentioned problems of the conventional method, and by blending kaolin or metakaolin into the polyester polymer, the friction between the guides and the yarn is reduced and the running tension of the yarn is stabilized. In addition to suppressing fluctuations in the draw ratio and improving yarn unevenness and reducing yarn breakage and single fiber breakage, the method utilizes the fact that the refractive index of the kaolin or metakaolin is close to the refractive index of the polyester polymer,
The purpose is to obtain the luster of the prite variety. Furthermore, because the refractive indexes are close, the light that passes through the fibers is captured at the interface between the polyester polymer and kaolin or metakaolin fine particles and within the particles, which is used to obtain bathochromic properties in dyeing. be.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の要旨とするところは、熔融紡糸されたのち冷却
気流によって冷却された未延伸繊維を引続いて加熱空気
域に導入し、該加熱空気域から高速度で引取ることによ
り未延伸繊維に空気の摩擦抵抗力によって熱延伸を施す
ポリエステル繊維の直接紡糸延伸法に於て、前記未延伸
繊維を構成するポリエステル重合体にカオリンもしくは
カオリンを焼成してX線回折的に無定形としたメタカオ
リンを0.1〜5.0tst%配合することを特徴とす
るポリエステル繊維の製造法である。
The gist of the present invention is to sequentially introduce undrawn fibers that have been melt-spun and then cooled by a cooling air stream into a heated air area, and take them out from the heated air area at a high speed to convert them into undrawn fibers. In the direct spinning and drawing method of polyester fibers, which heat-draws them using the frictional resistance of air, kaolin or metakaolin, which is made amorphous by X-ray diffraction, is added to the polyester polymer constituting the undrawn fibers. This is a method for producing polyester fiber characterized by blending 0.1 to 5.0 tst%.

以下本発明を更に詳しく説明する。The present invention will be explained in more detail below.

本発明で用いるポリエチレンテレフタレートは少なくと
も85モル%以上がエチレンテレフタレートから構成さ
れるものであり、0〜15モル%の範囲でポリエチレン
テレフタレート以外の共重合エステル単位を含有しうる
。ポリエチレンテレフタレート単位と共重合させうる他
のエステル形成性成分の代表例にはジエチレングリコー
ル、ラトラメチレングリコール、ヘキサメチレングリコ
ール、ペンタエリトリットなどのグリコール類、並びに
ヘキサヒドロテレフタル酸、ジ安息香酸。
The polyethylene terephthalate used in the present invention is composed of at least 85 mol% or more of ethylene terephthalate, and may contain copolymerized ester units other than polyethylene terephthalate in a range of 0 to 15 mol%. Representative examples of other ester-forming components that can be copolymerized with polyethylene terephthalate units include glycols such as diethylene glycol, latramethylene glycol, hexamethylene glycol, and pentaerythritol, as well as hexahydroterephthalic acid and dibenzoic acid.

アジピン酸、イソフタル酸、5−ナトリウムスルホイソ
フタル酸、アゼライン酸などのジカルボン酸がある。本
発明の方法で用いる溶融紡糸可能ポリエチレンテレフタ
レートは固有粘度〔η〕が0.45〜1゜Oの範囲のも
のが好ましい。
There are dicarboxylic acids such as adipic acid, isophthalic acid, 5-sodium sulfoisophthalic acid, and azelaic acid. The melt-spun polyethylene terephthalate used in the method of the present invention preferably has an intrinsic viscosity [η] of 0.45 to 1°O.

本発明で用いるカオリンはカオリナイト、ハロイサイト
、ディツカイト、ナタライトなどいずれも用い得るが、
特に粒度が5μ以下で不純物の少ないものが望ましい。
The kaolin used in the present invention can be any of kaolinite, halloysite, dietskiite, natalite, etc.
In particular, it is desirable that the particle size is 5 μm or less and there are few impurities.

この中特にカオリナイトがよい。また酸カオリナイトを
500〜1000℃で焼成して得たX線回折的に無定形
となったメタカオリンであっても勿論差支えない。
Among these, kaolinite is particularly good. Of course, metakaolin which has become amorphous in terms of X-ray diffraction obtained by firing acid kaolinite at 500 to 1000°C may also be used.

カオリン或はカオリンを焼成して得たメタカオリンは浮
遊選鉱或は単なる水液分級など適当な手段で分級を行な
って、実質上5μ以上の粗大粒子を含まないように調整
する。5μ以上の粗大粒子はこれをポリエステル重合体
に配合して紡糸したとき、口金部のフィルター詰りを起
し、威圧上昇が著しくなり実質上紡糸が難しくなる。ま
た糸の強力低下なども生ずる。
Kaolin or metakaolin obtained by calcining kaolin is classified by an appropriate means such as flotation or simple aqueous classification so that it does not substantially contain coarse particles of 5 microns or more. When coarse particles of 5 microns or more are blended into a polyester polymer and spun, they clog the filter in the nozzle, resulting in a significant increase in pressure, making spinning virtually difficult. In addition, the strength of the thread decreases.

カオリンの場合に除去できなかった鉄やその他の不純物
は、焼成してメタカオリンとした場合これら不純物は浮
遊選鉱や水液分級などの操作によって容易に除去できる
ので、不純物による重合体の着色の点からはメタカオリ
ンが好ましい。
Iron and other impurities that could not be removed in the case of kaolin can be easily removed by operations such as flotation and aqueous classification when calcined to produce metakaolin. is preferably metakaolin.

カオリンの配合量については、一般にはポリエステル重
合体に対して0.1wt%〜5wt%、好ましくは0.
5i1t%〜2.0wt%である。0.1wt%より少
量では摩擦係数の低下及び濃染の効果が少なく、5wt
%より多量では製糸性、糸質の低下のため好ましくない
。また配合方法としてはポリエステル重合体の重合前或
は重合時の反応系に添加する方法と重合後に添加する方
法があるが、重合体への粒子の均一な分散の点から、重
合前或は重合時に添加するのが好ましい。この場合には
粒子の凝集を防ぐため、必要に応じ分散剤を併用するこ
とは勿論可能である。
The amount of kaolin to be blended is generally 0.1 wt% to 5 wt%, preferably 0.1 wt% to the polyester polymer.
5i1t% to 2.0wt%. If the amount is less than 0.1wt%, the effect of reducing the friction coefficient and darkening will be small;
If the amount is more than %, it is not preferable because the spinning property and quality of the yarn deteriorate. There are two methods of compounding: adding to the reaction system before or during the polymerization of the polyester polymer, and adding after the polymerization. It is preferable to add it occasionally. In this case, it is of course possible to use a dispersant in combination, if necessary, in order to prevent particle agglomeration.

本発明でいうX線回折的に無定形とは、通常の粉末X線
回折を行なったとき、カオリンの結晶格子に特有のX線
回折が見られなくなる状態を意味する。
The term "amorphous in terms of X-ray diffraction" as used in the present invention means a state in which the X-ray diffraction characteristic of the crystal lattice of kaolin is no longer observed when ordinary powder X-ray diffraction is performed.

また本発明ではカオリンもしくはメタカオリンの一方の
み配合することは勿論可能であるが、両者を任意の比率
で混合したものであっても差支えない。
Further, in the present invention, it is of course possible to mix only one of kaolin and metakaolin, but it is also possible to mix the two in any ratio.

本発明方法で用いるカオリン或はメタカオリンを配合し
たポリエステル重合体は、具体的には次のようにして製
造される。
Specifically, the polyester polymer blended with kaolin or metakaolin used in the method of the present invention is produced as follows.

即ち直接重合法にてテレフタール酸とエチレングリコー
ルをモル比で1=2になるよう重合釜に投入し、同時に
触媒として三酸化アンチモンをテレフタール酸に対しモ
ル比で0.005%投入し、この混合物を4.0気圧の
圧力下で生成する。
That is, in a direct polymerization method, terephthalic acid and ethylene glycol were charged into a polymerization vessel in a molar ratio of 1=2, and at the same time, antimony trioxide was added as a catalyst in a molar ratio of 0.005% to terephthalic acid, and this mixture was is produced under a pressure of 4.0 atmospheres.

水を系外に排出しながら、最終温度を240℃にコント
ロールしながら反応する。水が発生しなくなった時点で
オートクレーブに移送し、メタカオリンを20重量%分
散させたエチレングリコールスラリーを攪拌下に徐々に
添加し、メタカオリンの量が最終生成ポリエチレンテレ
フタレートに対し重量比で1.5%になる様に調整する
。更に攪拌しながらオートクレーブの内圧を徐々に0.
1 mm11gまで減圧し、エチレングリコール蒸気を
連続的に系外に除去し、最終温度を280℃とした。
The reaction is carried out while controlling the final temperature at 240° C. while discharging water from the system. When no more water is generated, it is transferred to an autoclave, and an ethylene glycol slurry in which 20% by weight of metakaolin is dispersed is gradually added while stirring, so that the amount of metakaolin is 1.5% by weight based on the final polyethylene terephthalate. Adjust so that While stirring, gradually reduce the internal pressure of the autoclave to 0.
The pressure was reduced to 1 mm and 11 g, ethylene glycol vapor was continuously removed from the system, and the final temperature was set at 280°C.

該混合物を固有粘度が0.64となるまで重合したあと
水中に押出し、冷却後、切断してチップを得る。
The mixture is polymerized until the intrinsic viscosity becomes 0.64, extruded into water, cooled, and cut to obtain chips.

かくして得られたポリマーチ・7プは真空乾燥してスク
リュー型押出機に供給し、熔融紡糸する。
The polymer chip 7 thus obtained is vacuum dried, fed to a screw extruder, and melt-spun.

本発明方法で用いる直接紡糸延伸装置を図面により説明
する。第1図に於て熔融紡糸口金1から溶融紡出された
紡出糸条2は、冷却気流3によって冷却後、集束ガイド
4を経て更に随伴気流分離装置5で紡出糸条に随伴する
空気流を分離し、加熱流体域6へ導入されここで加熱延
伸された後、紡糸油剤付与装置7により集束及び油剤処
理を施され、引取りローラー8,9を経たあとワイング
ーで巻取られパッケージ11に成型される。引取りロー
−7−8,9の間にインターレース装置Oが配設され、
糸条交絡が付与される。
The direct spinning/drawing apparatus used in the method of the present invention will be explained with reference to the drawings. In FIG. 1, the spun yarn 2 melt-spun from the melt spinneret 1 is cooled by a cooling air flow 3, passes through a convergence guide 4, and is further passed through an accompanying air flow separation device 5 to collect air accompanying the spun yarn. After the flow is separated and introduced into a heated fluid region 6 where it is heated and stretched, it is subjected to convergence and oil treatment by a spinning oil application device 7, and after passing through take-up rollers 8 and 9, it is wound up with a wine goo and packaged into a package 11. It is molded into. An interlace device O is arranged between the take-up rows 7-8 and 9,
Yarn interlacing is provided.

本発明方法では紡出直後の糸条は冷却風吹き付け或は空
冷のような通常の冷却装置により、前記ポリエステル重
合体を80℃以下の1度に一旦冷却される。この冷却を
行なう前の紡出糸条にポリエステル重合体の融点以上の
高温加熱域を通すことは、繊維の太さ斑を生じるので好
ましくない。
In the method of the present invention, the polyester polymer is once cooled to 80° C. or less by a conventional cooling device such as blowing cooling air or air cooling the yarn immediately after spinning. It is not preferable to pass the spun yarn before cooling through a heating range at a high temperature higher than the melting point of the polyester polymer because it causes uneven thickness of the fibers.

また紡出糸条を予め一旦80℃以下に冷却しない場合に
は、加熱流体域中に於ける熱延伸による配向が不充分と
なり、満足しうる糸質を得ることができない。
Furthermore, if the spun yarn is not once cooled to 80° C. or lower in advance, the orientation by hot drawing in the heated fluid region will be insufficient, making it impossible to obtain a satisfactory yarn quality.

80℃以下までの冷却は室温の純粋な空気を吹き込むこ
とにより行うのが好ましいが、しかし任意に他の方法で
行なってもよい。空気の吹き込みは横吹き方式、外側か
ら中心部へ、もしくは逆の中心部から外側へ空気を吹き
込む円周クエンチ方式のいずれであってもよい。
Cooling to below 80° C. is preferably carried out by blowing pure air at room temperature, but may optionally be carried out in other ways. Air may be blown by a horizontal blowing method, a circumferential quenching method in which air is blown from the outside to the center, or conversely from the center to the outside.

本発明方法では次いで糸条を加熱流体域に導入するが、
該加熱流体域の入口の位置は糸条が80℃に達する位置
より下方であればよいが、走行糸条に沿って発生する随
伴気流の量を極力抑え、糸条に対する空気抵抗を下げる
意味で凝固点位置に近い方が好ましい。通常、紡糸口金
面から1〜3mの範囲にあれば充分である。
In the method of the invention, the yarn is then introduced into the heated fluid region,
The position of the inlet of the heating fluid region may be below the point where the yarn reaches 80°C, but it is necessary to suppress the amount of accompanying airflow generated along the running yarn as much as possible and reduce the air resistance against the yarn. It is preferable that the temperature be close to the freezing point position. Usually, a range of 1 to 3 m from the spinneret surface is sufficient.

加熱流体域を形成する装置としては、糸条の非接触加熱
装置であればいかなるものでもよいが、なかでも円形断
面の加熱管が好ましい。該加熱管   ′の内径は糸条
が管に接触せずに通過するのに充分な大きさが必要であ
り、1糸条あたり5〜50龍の内径を有することが好ま
しい。管の長さは糸条の通過時間が0.01〜0.03
秒となる長さが必要であるが、50〜300 C11好
ましくは150〜250alである。
The device for forming the heating fluid region may be any device as long as it is a non-contact heating device for yarn, but a heating tube with a circular cross section is particularly preferred. The inner diameter of the heating tube must be large enough for the yarn to pass through the tube without contacting it, and preferably has an inner diameter of 5 to 50 mm per yarn. The length of the tube is determined by the passage time of the thread from 0.01 to 0.03.
The length is required to be 50 to 300 C11, preferably 150 to 250 al.

本発明方法では加熱流体域の温度は極めて重要であり、
加熱された糸条の温度が80℃未満の場合には主として
引取り速度によって定まる糸条張力下では延伸されず、
得られた糸は破断強度が低く、破断伸度の高い、しかも
熱収縮率の高い不満足な性能しか示さない0本発明に於
て、は得られる糸条の性能からは、この加熱流体域の出
口の糸条の温度を120℃以上にするのが適当である。
In the method of the invention, the temperature of the heated fluid zone is extremely important;
If the heated yarn temperature is less than 80°C, it will not be drawn under the yarn tension determined mainly by the take-up speed.
The obtained yarn exhibits unsatisfactory performance such as low breaking strength, high breaking elongation, and high heat shrinkage rate.In the present invention, from the performance of the obtained yarn, it is clear that It is appropriate that the temperature of the yarn at the exit is 120°C or higher.

一方、あまり温度が高くなると糸条同志の融着などが発
生するので、この加熱温度には操作の面でおのずから限
界がある。特に加熱流体域に入る前の糸条の配向性が低
い場合糸切れ等が著しく、操業性が低下するため、この
点からも引取りローラーの速度の下限は制約され、引取
り速度は4000 va/分以上が必要となってくる。
On the other hand, if the temperature is too high, fusion of yarns will occur, so there is a limit to this heating temperature in terms of operation. In particular, if the orientation of the yarn before entering the heated fluid region is low, yarn breakage etc. will be significant and the operability will be reduced. Therefore, from this point of view as well, the lower limit of the speed of the take-up roller is restricted, and the take-up speed is 4000 va. /minute or more is required.

加熱流体としては好ましくは空気であるが、窒素でもよ
い、また管内の加熱流体は糸条による随伴気流及びそれ
に伴う乱流以外は静止流体で良いが、加熱流体を糸条の
上流からもしくは下流から積極的に導入すると更に好ま
しい。
The heating fluid is preferably air, but nitrogen may also be used.The heating fluid in the tube may be a stationary fluid except for the accompanying airflow caused by the yarn and the accompanying turbulence, but it is preferable to use the heating fluid from upstream or downstream of the yarn. It is even more preferable to actively introduce it.

また加熱流体域中に於て糸条は変形抵抗と加熱流体との
摩擦抵抗力とのバランスによって熱延伸を受けて配向性
並びに結晶性が増大するが、この加熱流体域の温度勾配
を正にすることば糸条の変形速度を緩慢にし糸斑の少な
い均染性並びに強伸度物性に優れた繊維糸条を得るのに
極めて効果的であり好ましいといえる。
In addition, in the heated fluid region, the yarn undergoes hot stretching due to the balance between deformation resistance and frictional resistance force with the heated fluid, and its orientation and crystallinity increase. It can be said that this method is very effective in slowing down the deformation speed of the yarn and obtaining a fiber yarn having excellent level dyeing properties with little yarn unevenness and excellent strong elongation physical properties.

糸条に同伴される空気による糸条の乱れ、加熱効率の低
下を防止するため、加熱流体域に導入する直前で糸条の
随伴流を分離するのが好ましい。
In order to prevent the yarn from being disturbed by the air entrained in the yarn and from reducing heating efficiency, it is preferable to separate the accompanying flow of the yarn immediately before introducing it into the heating fluid region.

随伴気流の分離装置は糸条に随伴して走行する気流を糸
条から分離する機能を有するものであればいかなるもの
でもよいが、特に中央部に糸条走行用小孔を有し円錐形
のものが最もシンプルでありかつ目的に合致する。材質
は耐摩耗性の点でセラミックがよい。随伴気流分離装置
は加熱管の糸条入口側に設けられた中央部に糸条走行用
孔を穿った円盤上上Iの該孔を閉鎖するように該上苫上
に装着される。糸条に随伴された気流は、この随伴流分
離装置によって糸条から分離されて加熱管の外側へと拡
散し、管内には殆ど入らない。従って管内の加熱流体は
随伴気流によって錯乱されることがなく、管内は常に所
定温度に保持されるから糸条の均一な熱延伸が達成でき
る。
The accompanying airflow separation device may be any device as long as it has the function of separating the airflow that travels along with the yarn from the yarn, but in particular, a conical device with a small hole in the center for the yarn to travel through can be used. The one that is the simplest and serves the purpose. Ceramic is a good material because of its wear resistance. The accompanying air flow separation device is mounted on the upper disc I, which has a thread running hole in the center provided on the yarn inlet side of the heating tube, so as to close the hole. The airflow entrained by the yarn is separated from the yarn by this entrained flow separation device and diffused to the outside of the heating tube, hardly entering the inside of the tube. Therefore, the heated fluid inside the tube is not disturbed by the accompanying air current, and the inside of the tube is always maintained at a predetermined temperature, so that uniform hot drawing of the yarn can be achieved.

加熱流体域を通過させた後、給油装置で集束を与えなが
ら給油を行ない、その後、4000〜6000 ta/
分で回転する1個もしくは対になった引取りローラー(
群坊引取ってワイングーに巻取る。供給する油剤としは
濃度2〜15−t%のエマルジッン型油剤でもよく、ま
た鉱物油と界面活性剤との混合物を主体とするストレー
ト型油剤でもよい。給油装置は通常給油ガイドが用いら
れるが、適当な装置を設けて糸条に随伴する気流をカッ
トできればキスロールでも差支えない。給油後にインタ
ーレース等の処理を行ってもよい。この場合、対になっ
た引取りローラ一群の中間にインターレース装置を設け
る方式が繊維交絡の点から最も効果的であるが、引取り
ローラーの前もしくは後に適当な −張力調整ガイド等
と組合せて設けることも勿論可能である。
After passing through the heated fluid region, oil is supplied while giving focusing with the oil supply device, and then 4000 to 6000 ta/
One or a pair of take-off rollers (
I took over Gunbo and rolled it into wine goo. The supplied oil may be an emulsion type oil having a concentration of 2 to 15-t%, or a straight type oil containing a mixture of mineral oil and a surfactant. A lubricating guide is usually used as the lubricating device, but a kiss roll may also be used as long as an appropriate device is installed to cut the air flow accompanying the yarn. Processing such as interlacing may be performed after refueling. In this case, the most effective way to prevent fiber entanglement is to provide an interlacing device between a pair of take-up rollers, but it is also necessary to install an interlace device in combination with an appropriate tension adjustment guide before or after the take-up rollers. Of course, this is also possible.

糸条の単糸繊度は、小さいほど熱処理効果が大きいので
、単糸繊度は6デニール以下とするのが好ましい。
The smaller the single yarn fineness of the yarn, the greater the heat treatment effect, so it is preferable that the single yarn fineness is 6 denier or less.

なお加熱流体域入口上方で給油することは、油剤の蒸発
潜熱に加熱エネルギーが消費されるため好ましくない。
Note that it is not preferable to supply oil above the inlet of the heating fluid region because heating energy is consumed by latent heat of vaporization of the oil.

結晶部分の配向を充分に行ない糸斑が少なく、かつ熱安
定性、染色特性の優れた繊維を得るためには引取り速度
は4000 s/分以上が必要である。
In order to obtain fibers with sufficient orientation of the crystalline portions, less yarn unevenness, and excellent thermal stability and dyeing properties, the take-up speed must be 4000 s/min or more.

4000 m/分未満では加熱流体域での熱延伸の変形
度(通常延伸の倍率に相当するもの)が大きく、単繊維
間で延伸斑が生しるため繊度斑、染色斑などの糸構造斑
が目立つといった問題が生じる。一方、引取り速度が6
000m /分を超えると紡糸糸切れが多く発生するよ
うになり、また加熱流体域中での熱延伸の変形度が小さ
く、力学特性向上が小さくなるので好ましくない。
If it is less than 4000 m/min, the deformation degree of hot drawing in the heated fluid region (corresponding to the magnification of normal drawing) is large, and stretching unevenness occurs between single fibers, resulting in yarn structure unevenness such as fineness unevenness and dyeing unevenness. A problem arises in that it becomes conspicuous. On the other hand, the take-up speed is 6
If it exceeds 000 m 2 /min, spun yarn breakage will occur frequently, and the degree of deformation during hot stretching in the heated fluid region will be small, resulting in a small improvement in mechanical properties, which is not preferable.

本発明方法に於て冷却気流温度を35℃以上に高くする
ことは、本発明を何ら妨げるものではなく、糸斑の少な
い糸条が形成されるのでむしろ好ましい。尚、ここで糸
斑が減少する理由は次のように考えられる。即ち紡出糸
条の細化挙動は冷却気流温度及び流速条件に依存するが
、このとき冷却気流温度が高くなると紡出糸条の冷却細
化が緩慢に進行し、その結果として繊維に均一な微細構
造が発現、Wj成されるのと同時に、前記冷却細化変形
速度が緩慢であるため、糸条の振動の影響等の外乱を受
は難くなり、糸斑の少ない糸条が形成される。
In the method of the present invention, increasing the temperature of the cooling air stream to 35° C. or higher does not impede the present invention in any way, and is rather preferable since yarns with fewer uneven yarns are formed. The reason why the thread spots are reduced here is thought to be as follows. In other words, the thinning behavior of the spun yarn depends on the cooling air temperature and flow rate conditions, but when the cooling air temperature increases, the cooling thinning of the spun yarn progresses slowly, resulting in uniform fiber formation. At the same time as the fine structure is expressed and Wj is formed, the cooling and thinning deformation rate is slow, so that the yarn is less susceptible to external disturbances such as the influence of vibration, and a yarn with fewer yarn irregularities is formed.

本発明方法では上記の加熱流体域を1個設ける方式の他
、溶融紡糸口金を通して溶融紡出され一旦80℃以下の
温度に冷却固化された紡出糸条を70〜100℃の第1
の加熱雰囲気中に導入し、実質的に紡出糸条に伸長を与
えることなく予備加熱した後、直ちに最低温度が50℃
を下らず最高温度が150℃以上である糸条走行方向に
沿って昇温する正の温度勾配を付与した第2の加熱雰囲
気中を通過させて熱延伸し、4000〜6000 m1
分の速度で引取る、加熱雰囲気を2段に設けた方式を採
用してもよい。
In the method of the present invention, in addition to the method of providing one heated fluid region as described above, the spun yarn, which is melt-spun through a melt spinneret and once cooled and solidified to a temperature of 80°C or less, is
After being preheated without substantially elongating the spun yarn, the minimum temperature was immediately reduced to 50°C.
The yarn is hot-stretched by passing it through a second heated atmosphere that has a positive temperature gradient that increases the temperature along the yarn running direction, with a maximum temperature of 150°C or higher without decreasing the temperature, and then stretching the yarn to a length of 4000 to 6000 m1.
It is also possible to adopt a system in which the heating atmosphere is set up in two stages, and the heating atmosphere is taken up at a speed of 1 minute.

かくの如くして得られるポリエステル繊維は熱収縮率(
乾熱収縮率、清水収縮率)が低(熱安定性に優れる他、
更に次に述べる優れた特徴を有する。即ち、 ■ 通常の延伸方式に於て低倍率で延伸した場合に観察
される未延伸部分(ネッキングと称する)を生じること
な(、広範囲に延伸比を変化しうる。
The polyester fiber thus obtained has a heat shrinkage rate (
Low dry heat shrinkage rate, fresh water shrinkage rate (excellent thermal stability,
Furthermore, it has the following excellent features. That is, (1) the stretching ratio can be varied over a wide range without producing unstretched portions (referred to as necking), which are observed when stretching is carried out at a low ratio in a normal stretching method.

■ 染料吸着速度が高く濃染性に優れる。これは繊維の
平均配向が低いということにも由来するが、加熱流体域
に於ける糸条の細化変形に伴う繊維微細構造の結晶化及
び配向が単繊維表面の加熱流体と接触して摩擦抵抗によ
るせん断力を受は易い表層部で簗中的に進行し、単繊維
内部では低配向非晶部が比較的多(残っているという効
果にも帰せられる。
■ High dye adsorption speed and excellent deep dyeing properties. This is also due to the fact that the average orientation of the fibers is low, but the crystallization and orientation of the fiber microstructure accompanying the thinning deformation of the yarn in the heated fluid region causes friction due to contact with the heated fluid on the surface of the single fiber. This is also attributable to the fact that the shearing force due to resistance is easily received by the surface layer, which progresses in a medium-like manner, and that a relatively large number of low-orientation amorphous portions (remain) remain inside the single fiber.

本発明方法では、上記■の濃染性とカオリンもしくはメ
タカオリン配合に由来するブライド品種様の光沢感並び
、に涼味のある染色性とが組合わされ、極めて染色鮮明
性の良好なポリエステル繊維が得られるのである。
In the method of the present invention, the deep dyeing properties described in (1) above are combined with the glossiness of the Bride variety derived from the combination of kaolin or metakaolin, and the cool dyeing properties, and polyester fibers with extremely good dyeing clarity can be obtained. It is.

〔実施例〕〔Example〕

以下本発明方法を実施例により説明し、併せて比較例と
の物性上の比較を示す。
The method of the present invention will be explained below with reference to examples, and a comparison of physical properties with comparative examples will also be shown.

裏胤週二上 カオリナイトを800℃で焼成して得たX線回折的に無
定形である市販のメタカオリン(土屋カオリン工業株式
会社製、商品名rsatintone J 、化学構造
Aj!、203 ・2si02)をエチレングリコ−ル
スラリ−(20重量%)としたのち、サンドグラインダ
ー、沈降分離機、デカンタ−、フィルターを通して径5
μ以上の粗大粒子を分離除去した。
Commercially available metakaolin, which is amorphous in X-ray diffraction, obtained by firing Uratane Shufujika kaolinite at 800°C (manufactured by Tsuchiya Kaolin Kogyo Co., Ltd., trade name rsatintone J, chemical structure Aj!, 203/2si02) After turning into ethylene glycol slurry (20% by weight), it is passed through a sand grinder, sedimentation separator, decanter, and filter to a diameter 5
Coarse particles larger than μ were separated and removed.

得られた調整スラリーをポリマー中の含有量が1.5重
量%となるようにエチレングリコール並びにテレフタル
酸のエステル化物に配合し、常法に従って重合した。こ
のようにして得たポリエチレンテレフタレートは〔η)
 =0.64であり、ポリマー中に3.5重量%のジエ
チレングリコールを含むものであった。
The obtained prepared slurry was blended with an esterified product of ethylene glycol and terephthalic acid so that the content in the polymer was 1.5% by weight, and polymerized according to a conventional method. The polyethylene terephthalate obtained in this way is [η]
= 0.64, and the polymer contained 3.5% by weight of diethylene glycol.

前記ポリエステル重合体を真空乾燥したあとスクリュー
型押出機に供給して溶融混練し、引続き第1図に示す装
置を用いて直接紡糸延伸した。紡糸口金は径0.30鶴
の孔を24個有するものを用い、吐出量40g/分で2
95℃で紡出した。紡出糸条の冷却は横吹き型冷却装置
を用い、吹出しの上端位置が紡糸口金下10ca+にな
るようにし、かつ25℃、65R)1%に調整した空気
を0.5a+/秒の速度で1.5mの長さにわたって吹
付け、紡出糸条の温度を80℃以下とした。加熱筒は内
径30■禽。
After the polyester polymer was vacuum-dried, it was supplied to a screw type extruder for melt-kneading, and then directly spun and stretched using the apparatus shown in FIG. The spinneret used was one with 24 holes with a diameter of 0.30 mm, and the spinneret was used at a flow rate of 40 g/min.
It was spun at 95°C. The spun yarn was cooled using a side-blowing type cooling device, with the upper end of the blowout being 10ca+ below the spinneret, and air adjusted to 1% at 25°C and 65R) at a rate of 0.5a+/sec. Spraying was carried out over a length of 1.5 m, and the temperature of the spun yarn was kept at 80° C. or lower. The heating cylinder has an inner diameter of 30cm.

長さ1.5 mのものを用い、加熱箇上部に糸条通路と
して径51重の小孔を有するセラミック製の随伴流分離
装置を配設し、加熱筒外部から熱媒(ダウサム)により
管内壁が180℃になるように加熱した。加熱筒出口に
於ける走行糸条の温度は143℃であり、走行張力は5
4gで張力の変動は小さく安定していた。また加熱筒入
口と出口に於ける糸条の太さの比から加熱流体域に於け
る加熱延伸は1.7倍と推定された。
A 1.5 m long tube was used, and a ceramic accompanying flow separation device with small holes with a diameter of 51 layers was installed as a yarn passage in the upper part of the heating tube, and a heat medium (dowsum) was used from outside the heating tube to separate the inside of the tube. The walls were heated to 180°C. The temperature of the running yarn at the exit of the heating cylinder is 143°C, and the running tension is 5.
At 4 g, fluctuations in tension were small and stable. Further, from the ratio of the thickness of the yarn at the entrance and exit of the heating cylinder, it was estimated that the heating drawing in the heating fluid region was 1.7 times.

紡糸油剤は給油ガイドを用い加熱筒から50cm下の位
置で糸条に付与した。油剤はエマルジョン型で界面活性
剤成分を12重量%含み、25℃に於ける溶液粘度が2
.5 cpsのものを用い、糸条に対し界面活性剤成分
が0.5重量%になるように計量した。
The spinning oil was applied to the yarn at a position 50 cm below the heating cylinder using an oil supply guide. The oil agent is an emulsion type, contains 12% by weight of surfactant component, and has a solution viscosity of 2 at 25°C.
.. 5 cps was used, and the surfactant component was weighed to be 0.5% by weight based on the yarn.

引取りローラーは2個対になったものを用い、周速度は
5QOO+++/分とした。引取りローラーは表面がロ
ーラー軸方向に伸びる鏡面部と梨池部が円周方向に交互
に4回繰返される所謂ゼブラローラーを用い糸離れをよ
くした。2個の引取りローラー間には糸条交絡装置を設
置し、エア圧5kg/cjで25個/Ilの交絡を与え
た。ワインダーはバーマーク社製の巻取機を用いた。こ
のようにして得たポリエチレンテレフタレート繊維の糸
質を表−1に示す。
A pair of two take-up rollers were used, and the circumferential speed was 5QOO+++/min. The take-up roller was a so-called zebra roller whose surface had mirror-finished portions extending in the axial direction of the roller and pear-shaped portions that were alternately repeated four times in the circumferential direction to improve yarn separation. A yarn interlacing device was installed between the two take-up rollers, and an air pressure of 5 kg/cj was used to provide entanglement of 25 yarns/Il. A winder manufactured by Barmark was used as the winder. Table 1 shows the yarn quality of the polyethylene terephthalate fiber thus obtained.

凡笠透 メタカオリンをポリエチレンテレフタレート重合体中に
配合しない点を除いては、実施例−1と全く同様にして
、〔η〕が0.64でジエチレングリコールを0.9重
量%含むポリエチレンテレフタレートを得た。次いで、
このポリエチレンテレフタレートを実施例−1と全く同
一条件で直接紡糸延伸してブライト品種のポリエステル
繊維を得た。
Polyethylene terephthalate having [η] of 0.64 and containing 0.9% by weight of diethylene glycol was obtained in exactly the same manner as in Example-1, except that Obokasa Toru metakaolin was not blended into the polyethylene terephthalate polymer. . Then,
This polyethylene terephthalate was directly spun and drawn under exactly the same conditions as in Example 1 to obtain a bright type polyester fiber.

この場合加熱筒上部に配設した随伴流分離装置で走行糸
条の単繊維が跳ねるのが観察され、また加熱筒出口に於
ける走行糸条の張力は65gで張力が小刻みに変動し不
安定であった。
In this case, it was observed that the single fibers of the running yarn bounced in the accompanying flow separation device installed at the top of the heating cylinder, and the tension of the running yarn at the exit of the heating cylinder was 65 g, but the tension fluctuated little by little and became unstable. Met.

このようにして得たポリエステル繊維のパッケージを観
察したところ、単繊維切れが表面に認められた。糸質を
実施例−1と併せ表−1に示す。
When the polyester fiber package thus obtained was observed, single fiber breaks were observed on the surface. The fiber quality is shown in Table 1 together with Example 1.

なお本発明に於ける走行糸条の温度は、所定の引取り速
度で引取られている走行糸条から1(in離れた位置に
於ける該糸条をとりまく雰囲気温度を熱電対で測定した
Note that the temperature of the running yarn in the present invention was determined by measuring the ambient temperature surrounding the running yarn at a position 1 inch away from the running yarn being taken at a predetermined take-up speed using a thermocouple.

条斑は編立てして筒編状物とした後、染色を行ない(染
料三菱化成工業社製テラシールブルー2%owf 、 
 100℃×60分)、染色物を目視判定により全く斑
の無いものを◎に、最も斑があり実用価値の無いものを
××として、◎、○、△、×、××と5段階で評価した
。■及びOは合格品を示している。
After knitting the stripes into a tubular knitted material, dyeing was performed (Teraseal Blue 2% owf, manufactured by Mitsubishi Chemical Industries, Ltd.).
100℃ x 60 minutes), and the dyed product was visually evaluated in 5 stages: ◎, ◎ for those with no spots, and XX for those with the most spots and no practical value, ◎, ○, △, ×, XX. evaluated. ■ and O indicate passed products.

以下余白 メタカオリンをそれぞれ0.5重量%(実施例−2)及
び4.0重量%(実施例−3)ポリエチレンテレフタレ
ート重合体中に配合した点を除いては、実施例−1と全
く同様にして〔η〕が0.64でジエチレングリコール
が2.5gg%、4,5重量%であるポリエチレンテレ
フタレートを得た。次いでこのポリエチレンテレフタレ
ートを実施例−1と全く同一条件で直接紡糸延伸してポ
リエステル繊維を得た。
The following procedure was carried out in exactly the same manner as in Example 1, except that 0.5% by weight (Example 2) and 4.0% by weight (Example 3) of blank metakaolin were blended into the polyethylene terephthalate polymer. Polyethylene terephthalate having [η] of 0.64 and containing 2.5 gg% and 4.5% by weight of diethylene glycol was obtained. Next, this polyethylene terephthalate was directly spun and drawn under exactly the same conditions as in Example 1 to obtain a polyester fiber.

糸質を表−2に示す。The fiber quality is shown in Table 2.

実施例−2(メタカオリン0.5重量%)に於いは加熱
筒上部に配設した随伴気流分離装置で走行糸条の単繊維
が跳ねるのが観察されず、また加熱筒出口に於ける走行
糸条の張力は57gで張力の変動は小さく安定していた
In Example 2 (metakaolin 0.5% by weight), no single fibers of the running yarn were observed to bounce in the accompanying air flow separation device installed at the top of the heating cylinder, and the running at the exit of the heating cylinder was not observed. The tension of the yarn was 57 g, which was stable with little variation in tension.

実施例−3(メタカオリン4.Oi量%)に於いは実施
例、l、2と同様、加熱筒上部に配設した随伴気流分離
装置での走行糸条の単繊維跳ねは観察されず、加熱筒出
口に於ける走行糸条の張力は50gで張力の変動は小さ
く極めて安定していた。しかしながら実施例−3に於て
は糸質特に破断強度が低目であり、また紡糸口金で単糸
切れが散発した。
In Example 3 (metakaolin 4.Oi amount %), as in Examples 1 and 2, no single fiber bounce of the running yarn was observed in the accompanying air flow separation device installed at the top of the heating cylinder. The tension of the running yarn at the exit of the heating cylinder was 50 g, and the fluctuation in tension was small and extremely stable. However, in Example 3, the yarn quality, particularly the breaking strength, was low, and single yarn breakage occurred sporadically at the spinneret.

尚、実施例−1,2,3及び比較例で得た73.5デニ
ール、24フイラメントのポリエステル繊維をタックの
緯糸に打ち込み、三菱化成工業社製の分散染料ダイヤニ
クスBlack PB−FSを25%owf、分散剤と
してDisper TL (期成化学工業社製)及びウ
ルトラMT (N−2)  (御幣島化学工業社製)を
用い、浴比1:50の染浴中で130℃×60分で染色
した布帛のL 値を測定し、その結果をグラフ(第2図
)に示す。
In addition, the 73.5 denier, 24 filament polyester fibers obtained in Examples 1, 2, 3 and the comparative example were inserted into the weft of the tack, and 25% of the disperse dye Dianics Black PB-FS manufactured by Mitsubishi Chemical Industries, Ltd. Dyeing at 130°C for 60 minutes in a dye bath with a bath ratio of 1:50 using Disper TL (manufactured by Kisei Kagaku Kogyo Co., Ltd.) and Ultra MT (N-2) (manufactured by Mitejima Kagaku Kogyo Co., Ltd.) as dispersants. The L value of the fabric was measured and the results are shown in the graph (Figure 2).

L*値の測定は日立カラーアナライザー307分もとに
数値計算して求めた。低いし*値は光の反射が小さく、
濃染されていることを示す。
The L* value was determined by numerical calculation based on Hitachi Color Analyzer 307 minutes. Low* value means less light reflection,
Indicates that it is deeply dyed.

第2図に示す如く、濃染性についてはメタカオリン配合
量0.5〜1.5重量%でほぼ飽和に達していることが
判る。
As shown in FIG. 2, it can be seen that the deep dyeing property is almost saturated at a metakaolin content of 0.5 to 1.5% by weight.

〔発明の効果〕〔Effect of the invention〕

以上の如く本発明方法によれば、染色鮮明性に未延伸法
により極めて能率的にかつ断糸や単繊維切れがなく製造
可能であり、また得られる製品のである。
As described above, according to the method of the present invention, it is possible to produce the product very efficiently by the non-stretching method with good color clarity and without yarn breakage or single fiber breakage, and the resulting product can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法で用いる直接紡糸延伸装置の一例の
概略図である。 第2図はメタカオリン配合量に対する?値を示すグラフ
である。 l:溶融紡糸口金、 2:紡出糸条、 3:冷却気流、   4:集束ガイド、5:随伴気流分
離装置、 6:加熱流体域(加熱筒)、 7:紡糸油剤付与装置、 8.9:引取りローラー、 lO:インターレース装置、 11:パッケージ。
FIG. 1 is a schematic diagram of an example of a direct spinning/drawing apparatus used in the method of the present invention. Figure 2 shows the relationship between metakaolin content? It is a graph showing values. 1: Melt spinneret, 2: Spun yarn, 3: Cooling air flow, 4: Focusing guide, 5: Entrained air flow separation device, 6: Heating fluid region (heating tube), 7: Spinning oil application device, 8.9 : Take-off roller, IO: Interlace device, 11: Package.

Claims (1)

【特許請求の範囲】[Claims] 溶融紡糸されたのち、冷却気流によって冷却された未延
伸繊維を引続いて加熱空気域に導入し、該加熱空気域か
ら高速度で引取ることにより未延伸繊維に空気の摩擦抵
抗力によって熱延伸を施すポリエステル繊維の直接紡糸
延伸法に於て、前記未延伸繊維を構成するポリエステル
重合体にカオリンもしくはカオリンを焼成してX線回折
的に無定形としたメタカオリンを0.1〜5.0wt%
配合することを特徴とするポリエステル繊維の製造法。
After being melt-spun, the undrawn fibers that have been cooled by a cooling air stream are subsequently introduced into a heated air area, and taken from the heated air area at high speed, so that the undrawn fibers are hot-drawn by the frictional force of the air. In the direct spinning and drawing method of polyester fibers, 0.1 to 5.0 wt% of kaolin or metakaolin, which has been made amorphous by X-ray diffraction, is added to the polyester polymer constituting the undrawn fibers.
A method for producing polyester fiber characterized by blending.
JP3286785A 1985-02-22 1985-02-22 Production of polyester fiber Pending JPS61194218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3286785A JPS61194218A (en) 1985-02-22 1985-02-22 Production of polyester fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3286785A JPS61194218A (en) 1985-02-22 1985-02-22 Production of polyester fiber

Publications (1)

Publication Number Publication Date
JPS61194218A true JPS61194218A (en) 1986-08-28

Family

ID=12370804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3286785A Pending JPS61194218A (en) 1985-02-22 1985-02-22 Production of polyester fiber

Country Status (1)

Country Link
JP (1) JPS61194218A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997027356A1 (en) * 1996-01-25 1997-07-31 Scapa Group Plc Industrial fabrics
CN103243415A (en) * 2013-05-22 2013-08-14 常州新力纤维科技有限公司 Modified polyester flatly drawn yarn based on concave-convex emboss effect and production method of yarn
US9443644B2 (en) 2010-08-31 2016-09-13 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US9646740B2 (en) 2010-08-31 2017-05-09 3M Innovative Properties Company Electrical characteristics of shielded electrical cables
US9653195B2 (en) 2010-08-31 2017-05-16 3M Innovative Properties Company Shielded electrical cable
US10147522B2 (en) 2010-08-31 2018-12-04 3M Innovative Properties Company Electrical characteristics of shielded electrical cables

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997027356A1 (en) * 1996-01-25 1997-07-31 Scapa Group Plc Industrial fabrics
US10134506B2 (en) 2010-08-31 2018-11-20 3M Innovative Properties Company Electrical characteristics of shielded electrical cables
US9502154B1 (en) 2010-08-31 2016-11-22 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US9449738B2 (en) 2010-08-31 2016-09-20 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US11923112B2 (en) 2010-08-31 2024-03-05 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US9595371B2 (en) 2010-08-31 2017-03-14 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US10147522B2 (en) 2010-08-31 2018-12-04 3M Innovative Properties Company Electrical characteristics of shielded electrical cables
US9646740B2 (en) 2010-08-31 2017-05-09 3M Innovative Properties Company Electrical characteristics of shielded electrical cables
US9653195B2 (en) 2010-08-31 2017-05-16 3M Innovative Properties Company Shielded electrical cable
US9666332B1 (en) 2010-08-31 2017-05-30 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US9704619B1 (en) 2010-08-31 2017-07-11 3M Innovative Properties Company Electrical characteristics of shielded electrical cables
US9715952B2 (en) 2010-08-31 2017-07-25 3M Innovative Properties Company Electrical characteristics of shielded electrical cables
US9865378B2 (en) 2010-08-31 2018-01-09 3M Innovative Properties Company Shielded electrical cable
US9892823B2 (en) 2010-08-31 2018-02-13 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US10056170B2 (en) 2010-08-31 2018-08-21 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US10090082B2 (en) 2010-08-31 2018-10-02 3M Innovative Properties Company Shielded electrical cable
US10109397B2 (en) 2010-08-31 2018-10-23 3M Innovative Properties Company Electrical characteristics of shielded electrical cables
US11699536B2 (en) 2010-08-31 2023-07-11 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US9443644B2 (en) 2010-08-31 2016-09-13 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US9627106B2 (en) 2010-08-31 2017-04-18 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US10340059B2 (en) 2010-08-31 2019-07-02 3M Innovative Properties Company Shielded electrical cable
US10347398B2 (en) 2010-08-31 2019-07-09 3M Innovative Properties Company Electrical characteristics of shielded electrical cables
US10347393B2 (en) 2010-08-31 2019-07-09 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US10438725B2 (en) 2010-08-31 2019-10-08 3M Innovative Properties Company Electrical characteristics of shielded electrical cables
US10573432B2 (en) 2010-08-31 2020-02-25 3M Innovative Properties Company Shielded electrical cable
US10629329B2 (en) 2010-08-31 2020-04-21 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US10784021B2 (en) 2010-08-31 2020-09-22 3M Innovative Properties Company Shielded electrical cable
US10896772B2 (en) 2010-08-31 2021-01-19 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US10998111B2 (en) 2010-08-31 2021-05-04 3M Innovative Properties Company Shielded electrical cable
US11348706B2 (en) 2010-08-31 2022-05-31 3M Innovative Properties Company Shielded electrical cable
US11488745B2 (en) 2010-08-31 2022-11-01 3M Innovative Properties Company Shielded electrical cable
US11651871B2 (en) 2010-08-31 2023-05-16 3M Innovative Properties Company Shielded electric cable
US11664137B2 (en) 2010-08-31 2023-05-30 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US11688530B2 (en) 2010-08-31 2023-06-27 3M Innovative Properties Company Shielded electric cable
US10109396B2 (en) 2010-08-31 2018-10-23 3M Innovative Properties Company Electrical characteristics of shielded electrical cables
CN103243415A (en) * 2013-05-22 2013-08-14 常州新力纤维科技有限公司 Modified polyester flatly drawn yarn based on concave-convex emboss effect and production method of yarn

Similar Documents

Publication Publication Date Title
KR870001130B1 (en) Polyester fiber having excellent thermal dimensional stability chemical stability and high tenacity and process for the production thereof
JP2003520303A (en) High-speed spinning method of bicomponent fiber
WO2003091485A1 (en) Method for producing polyester extra fine multi-filament yarn and polyester extra fine false twist textured yarn, polyester extra fine multi-filament yarn, and polyester extra-fine false twist textured yarn
JP3229084B2 (en) Method for producing polyester fiber
JPS61194218A (en) Production of polyester fiber
EP0207489A2 (en) Highly-shrinkable polyester fiber, process for preparation thereof, blended polyester yarn and process for preparation thereof
JP2007009341A (en) Method for producing polyester multifilament for yarn division, having excellent dyeing stability and excellent yarn dividableness
JPS62243824A (en) Production of ultrafine polyester filament yarn
EP0089912A2 (en) Process for the production of high-strength polyester yarn
KR20050098892A (en) Spin annealed poly(trimethylene terephthalate) yarn
JPH09137317A (en) Melt-spinning apparatus for ultrafine multifilament yarn, spinning therefor and production of the same yarn
JPH0931749A (en) Production of polyester fiber
JPS584091B2 (en) Polyester fiber manufacturing method
JPS6215321A (en) Production of modified cross-section combined filament polyester yarn
JPH04119119A (en) Production of naphthalate polyester fiber
JPH0617317A (en) Production of polyester fiber
JP3271401B2 (en) Method for producing polyester fiber
JP4056288B2 (en) Method for producing polyester ultrafine multifilament yarn
JPH04361610A (en) Production of polyester fiber
JPH10251919A (en) Polyester fiber and its production
JPS6155211A (en) Melt-spinning of ultrafine multifilament
JPH0735606B2 (en) Method for manufacturing polyester thermal shrinkage difference mixed yarn
JPH0321647B2 (en)
JPH0532492B2 (en)
JP2004285497A (en) Method for producing low shrinkable polyester filament