JPH10251919A - Polyester fiber and its production - Google Patents

Polyester fiber and its production

Info

Publication number
JPH10251919A
JPH10251919A JP4889397A JP4889397A JPH10251919A JP H10251919 A JPH10251919 A JP H10251919A JP 4889397 A JP4889397 A JP 4889397A JP 4889397 A JP4889397 A JP 4889397A JP H10251919 A JPH10251919 A JP H10251919A
Authority
JP
Japan
Prior art keywords
polyester
fiber
yarn
less
shrinkage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4889397A
Other languages
Japanese (ja)
Inventor
Kiyoshi Maruo
潔 丸雄
Toshio Yamauchi
俊男 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP4889397A priority Critical patent/JPH10251919A/en
Publication of JPH10251919A publication Critical patent/JPH10251919A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a high-tenacity polyester fiber capable of simultaneously improving heat resistance and dimensional stability and to provide a method for producing the fiber. SOLUTION: An undrawn filament of polyethylene terephthalate-based polyester which is obtained at 2,500-3,000m/minute spinning rate and has 3-10% dry heat shrinkage percentage at 180 deg.C and 0.85-1.0 intrinsic viscosity is, without being wound once, successively drawn at 1.4-2.0 times draw ratio, heat-treated in restricted shrinkage in 4-8% at 250-270 deg.C to give the objective polyester yarn having characteristics of 2.0×10<2> to 5.0×10<2> nm<3> average crystallite volume, >=270 deg.C melting point, >=7.0g/de mechanical strength, <10 elongation under 4.5g/de load and <3.0 dry heat shrinkage percentage at 180 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、産業資材用、特に
ゴムおよび樹脂補強用繊維として好適な、高強度で且つ
寸法安定性に優れると同時に、耐熱性にも優れたポリエ
ステル繊維およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polyester fiber which is suitable for industrial materials, especially as a fiber for reinforcing rubber and resin, has high strength and excellent dimensional stability, and also has excellent heat resistance and a method for producing the same. It is about.

【0002】[0002]

【従来の技術】ポリエステル繊維は、産業資材用繊維と
して広く使用されており、特にゴムおよび樹脂補強用繊
維として優れた性能を有しているが、近年高性能化と生
産性向上への要求の高まりとともに、高熱環境下での寸
法安定性、すなわち耐熱性と低収縮性とを同時に満足す
る高強力繊維が要求されている。
2. Description of the Related Art Polyester fiber is widely used as a fiber for industrial materials, and has excellent performance especially as a fiber for reinforcing rubber and resin. However, in recent years, there has been a demand for higher performance and higher productivity. With the increase, a high-strength fiber that satisfies both dimensional stability in a high-temperature environment, that is, heat resistance and low shrinkage, is required.

【0003】従来、低収縮性のポリエステル繊維を製造
する方法としては、低重合度のポリエステルからなる未
延伸糸を多段に延伸し、引続いて特定の収縮率で制限収
縮熱処理する方法がよく知られている。しかしながら、
かかる方法で得られる繊維はポリエステルの重合度が低
いため、耐熱性が不十分であるという問題がある。この
方法において、用いるポリエステルの重合度を高くする
と、満足できる低収縮率を達成するためには制限収縮熱
処理温度を融点近傍まで上げる必要があり、その結果強
力劣化が起こって強度が不十分になるという問題があ
る。
Heretofore, as a method for producing a polyester fiber having low shrinkage, there is well known a method in which an undrawn yarn made of a polyester having a low degree of polymerization is drawn in multiple stages, and then subjected to a heat treatment with limited shrinkage at a specific shrinkage. Have been. However,
Since the fiber obtained by such a method has a low degree of polymerization of polyester, there is a problem that heat resistance is insufficient. In this method, when the degree of polymerization of the polyester used is increased, it is necessary to raise the limiting shrinkage heat treatment temperature to near the melting point in order to achieve a satisfactory low shrinkage, and as a result, strong strength occurs and strength becomes insufficient. There is a problem.

【0004】また別の方法として、高速紡糸して分子配
向の高い未延伸糸を引取り、これを熱延伸する方法(特
公昭63−528号公報、特開平6−136614号公
報、特開平7−102417号公報等)が提案されてい
るが、かかる方法により得られる繊維は、180℃乾熱
収縮率が3%未満の寸法安定性と耐熱性とを同時に満足
できるレベルには達していない。例えば特開平7−10
2417号公報においては、延伸時の糸表面温度を21
0℃以下にする必要があり、強度を7.0g/de以上
にすると180℃乾熱収縮率を3%未満にすることがで
きなくなるという問題がある。
As another method, high-speed spinning is performed to take out an undrawn yarn having a high molecular orientation and to heat-draw the undrawn yarn (Japanese Patent Publication No. 63-528, Japanese Patent Application Laid-Open No. 6-136614, Japanese Patent Application Laid-Open No. However, the fiber obtained by such a method has not reached a level at which the dimensional stability and the heat resistance at 180 ° C. dry heat shrinkage of less than 3% can be simultaneously satisfied. For example, JP-A-7-10
In Japanese Patent No. 2417, the yarn surface temperature at the time of drawing is 21
It is necessary to be 0 ° C. or less, and if the strength is 7.0 g / de or more, there is a problem that the dry heat shrinkage at 180 ° C. cannot be less than 3%.

【0005】この様に、従来優れた寸法安定性および耐
熱性と、7.0g/de以上という高強度特性とを兼ね
備えたポリエステル繊維は、未だ提案されていないのが
実情である。
[0005] As described above, a polyester fiber having conventionally excellent dimensional stability and heat resistance and high strength characteristics of 7.0 g / de or more has not yet been proposed.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記背景を
鑑みてなされたもので、その目的は、耐熱性と寸法安定
性とが同時に改善された高強力ポリエステル繊維および
その直接紡糸延伸方法による製造方法を提供することに
ある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above background, and an object of the present invention is to provide a high-strength polyester fiber having improved heat resistance and dimensional stability at the same time and a method for directly spinning and drawing the same. It is to provide a manufacturing method.

【0007】[0007]

【課題を解決するための手段】本発明者らの研究によれ
ば、上記本発明の第1の課題は、「固有粘度が0.85
〜1.00のポリエチレンテレフタレート系ポリエステ
ルより構成されたポリエステル繊維であって、該繊維中
の平均微結晶体積が2.0×102 〜5.0×102
3 、融点が270℃以上、強度が7.0g/de以
上、4.5g/de荷重伸度が10%未満および180
℃乾熱収縮率が3.0%未満であるポリエステル繊
維。」により達成することができる。
According to the study of the present inventors, the first problem of the present invention is that the intrinsic viscosity is 0.85 to 0.85.
Polyester fibers composed of polyethylene terephthalate-based polyester having an average crystallite volume of 2.0 × 10 2 to 5.0 × 10 2 n.
m 3 , melting point of 270 ° C. or more, strength of 7.0 g / de or more, 4.5 g / de load elongation of less than 10% and 180
Polyester fiber having a dry heat shrinkage of less than 3.0%. ”Can be achieved.

【0008】また別の課題は、「固有粘度が0.90以
上のポリエチレンテレフタレート系ポリエステルを紡糸
口金から溶融吐出し、該吐出糸条に直に冷却風を吹き付
けて冷却固化させた後2500〜3000m/分の紡糸
速度で引き取って得た180℃乾熱収縮率が3〜10%
の未延伸糸を、一旦巻き取ることなく引続いて1.4〜
2.0倍に延伸した後、温度250〜270℃で4〜8
%の制限収縮熱処理を施すポリエステル繊維の製造方
法。」により達成することができる。
Another problem is that a polyethylene terephthalate-based polyester having an intrinsic viscosity of 0.90 or more is melt-discharged from a spinneret, and a cooling air is blown directly onto the discharge yarn to cool and solidify the yarn. 180 ° C dry heat shrinkage of 3 to 10%
The unstretched yarn of 1.4 is continuously taken up without being wound up.
After stretching 2.0 times, 4 to 8 at a temperature of 250 to 270 ° C.
% Polyester fiber is subjected to a heat treatment for limiting shrinkage. ”Can be achieved.

【0009】[0009]

【発明の実施の形態】本発明の繊維を構成するポリエス
テルは、繰返し単位の95モル%以上、好ましくは97
モル%以上がエチレンテレフタレートであるポリエチレ
ンテレフタレート系ポリエステルであり、本発明の繊維
の耐熱性を阻害しない範囲内で少量の第3成分が共重合
されていてもよい。許容される共重合量は第3成分の種
類によって異なるが、例えばジエチレングリコールの場
合にはポリエステルの重量を基準として0.8重量%
(全酸成分を基準にすると約2.5モル%)以下、好ま
しくは0.7重量%(約2.2モル%)以下であり、こ
の範囲を越えると耐熱性が不十分となりやすい。なお本
発明においては、共重合成分が3官能以上の多価カルボ
ン酸成分であり、その共重合量が0.01〜1.0モル
%、特に0.05〜0.50モル%(全酸成分を基準と
して)の範囲内である場合、高強力で且つ良好な寸法安
定性を有すると共に、耐熱性にも優れた繊維を、後述す
る直接紡糸延伸方法により容易に製造することができる
ので好ましい。ここで好ましく用いられる3官能以上の
カルボン酸成分としては、例えばトリメリット酸、トリ
メシン酸などをあげることができる。またポリエステル
中の分子鎖末端カルボキシル基濃度は15当量/106
gポリマー以下であると、耐熱性がより向上するので好
ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The polyester constituting the fiber of the present invention comprises at least 95 mol% of repeating units, preferably 97 mol%.
A mole% or more is a polyethylene terephthalate-based polyester in which ethylene terephthalate is ethylene terephthalate, and a small amount of a third component may be copolymerized within a range that does not impair the heat resistance of the fiber of the present invention. The allowable copolymerization amount varies depending on the type of the third component. For example, in the case of diethylene glycol, 0.8% by weight based on the weight of the polyester is used.
(About 2.5 mol% based on the total acid components), preferably 0.7 wt% (about 2.2 mol%), and if it exceeds this range, the heat resistance tends to be insufficient. In the present invention, the copolymerization component is a tri- or higher functional polycarboxylic acid component, and the copolymerization amount is 0.01 to 1.0 mol%, particularly 0.05 to 0.50 mol% (total acid). (Based on the components), it is preferable because a fiber having high strength, good dimensional stability, and excellent heat resistance can be easily produced by a direct spin drawing method described later. . Examples of the trifunctional or more functional carboxylic acid component preferably used here include trimellitic acid and trimesic acid. The concentration of carboxyl groups at the molecular chain terminals in the polyester is 15 equivalent / 10 6
It is preferable that the amount is not more than g polymer, because the heat resistance is further improved.

【0010】上記ポリエステルからなる繊維の固有粘度
(35℃、o−クロロフェノール溶液で測定)は、0.
85〜1.0、好ましくは0.9〜1.0の範囲内にあ
る必要がある。固有粘度がこの範囲未満の場合には、強
度7.0g/de以上の繊維を得ることが困難になるだ
けでなく、融点270℃以上の耐熱性に優れた繊維を得
ることもできなくなる。一方、固有粘度が前記範囲を越
える場合には、製糸時の工程安定性が低下して単糸切れ
や断糸が増加し、得られる繊維の物性が不十分なものに
なりやすいので好ましくない。
The intrinsic viscosity (measured in an o-chlorophenol solution at 35 ° C.) of the fiber comprising the polyester is 0.1.
It must be in the range of 85-1.0, preferably 0.9-1.0. If the intrinsic viscosity is less than this range, it becomes difficult not only to obtain fibers having a strength of 7.0 g / de or more, but also it is not possible to obtain fibers having a melting point of 270 ° C. or more and excellent heat resistance. On the other hand, when the intrinsic viscosity exceeds the above-mentioned range, the stability of the process at the time of spinning is reduced, and single yarn breakage or breakage increases, and the physical properties of the obtained fiber tend to be insufficient.

【0011】次ぎに本発明のポリエステル繊維は、その
微結晶体積(V)が2.0×102〜5.0×102
3 の範囲内にある必要がある。ここで微結晶体積は、
X線回折で求められる(010)、(100)面の干渉
ピークの半価巾からシェラーの式を用いて算出されるa
軸方向およびb軸方向の結晶サイズの積に、X線小角散
乱から求められる長周期間隔および桜田・温品法により
求められる結晶化度をかけたもので、該体積が2.0×
102 nm3 未満の場合には微結晶が小さすぎるため、
後記する本発明の要件である「融点が270℃以上」を
達成することができなくなって耐熱性が不十分となる。
一方5.0×102 nm3 を越える場合には、微結晶が
大きすぎるために強度7.0g/de以上の繊維を安定
に得ることは困難になり、産業資材用繊維としては利用
価値が低くなるので好ましくない。
Next, the polyester fiber of the present invention has a crystallite volume (V) of 2.0 × 10 2 to 5.0 × 10 2 n.
It must be in the range of m 3 . Where the crystallite volume is
A calculated from the half width of the interference peak on the (010) and (100) planes obtained by X-ray diffraction using Scherrer's formula
The product of the crystal size in the axial direction and the b-axis direction is multiplied by the long-period interval determined from small-angle X-ray scattering and the degree of crystallinity determined by the Sakurada-Honjin method.
If it is less than 10 2 nm 3 , the microcrystals are too small.
It is no longer possible to achieve the requirement of the present invention, “melting point is 270 ° C. or higher”, which results in insufficient heat resistance.
On the other hand, when it exceeds 5.0 × 10 2 nm 3 , it is difficult to stably obtain fibers having a strength of 7.0 g / de or more because the microcrystals are too large, and the value of the fibers as industrial materials is low. It is not preferable because it becomes low.

【0012】また繊維の融点は270℃以上、好ましく
は273〜277℃の範囲内にあることが必要であり、
かかる特性を有することにより、寸法安定性を向上させ
るための制限収縮熱処理の処理温度を高めることが可能
となり、強度7.0g/de以上と180℃乾熱収縮率
3.0%未満とを同時に満足する繊維を容易に得ること
ができるだけでなく、該繊維を使用する際の雰囲気温度
を高くすることができる。ここで繊維の融点は、示差走
査熱量計を用いて窒素気流下昇温速度20℃/分で測定
した結晶融解吸熱曲線の融解吸熱ピーク温度である。な
お、この融解吸熱ピークに副ピークが存在する場合に
は、該副ピークの結晶成分は主ピークの結晶成分よりも
分子鎖が比較的ルーズに固定されているため、応力が付
加された場合にその集中を緩和することができると推定
されより好ましい。
The fiber must have a melting point of 270 ° C. or higher, preferably in the range of 273 to 277 ° C.
By having such characteristics, it is possible to raise the processing temperature of the limited shrinkage heat treatment for improving dimensional stability, and to simultaneously increase the strength to 7.0 g / de or more and the 180 ° C dry heat shrinkage of less than 3.0%. Not only can a satisfactory fiber be easily obtained, but also the ambient temperature when using the fiber can be increased. Here, the melting point of the fiber is the melting endothermic peak temperature of the crystal melting endothermic curve measured at a heating rate of 20 ° C./min under a nitrogen stream using a differential scanning calorimeter. When a sub-peak exists in the melting endothermic peak, the crystal component of the sub-peak has a molecular chain relatively loosely fixed than the crystal component of the main peak. It is presumed that the concentration can be reduced, which is more preferable.

【0013】本発明の繊維においては、上記特性に加え
て、さらに強度が7.0g/de以上好ましくは7.5
〜10.0g/de、4.5g/de荷重伸度が10%
未満好ましくは7〜9%および180℃乾熱収縮率が
3.0%未満好ましくは2.5〜2.9%を満足する必
要がある。強度が7.0g/de未満の場合には、従来
寸法安定性の良好なものは知られており、本発明の対象
とするものではない。また4.5g/de荷重伸度が1
0%以上の場合には、繊維の一次降伏点近傍の強度が低
くなりすぎて小さな伸長応力でも変形が起こりやすくな
るため好ましくない。さらに180℃乾熱収縮率が3.
0%以上の場合には、例えば織物等の繊維製品にしてゴ
ムや樹脂を被覆処理する際に、熱収縮変形が起こりやす
くなるだけでなく、高温下での使用中にも変形しやすく
なるため好ましくない。
The fiber of the present invention has a strength of 7.0 g / de or more, preferably 7.5 g, in addition to the above-mentioned properties.
110.0 g / de, 4.5 g / de load elongation is 10%
Less than 7%, preferably less than 3.0% and a dry heat shrinkage of 180 ° C. less than 3.0%, preferably 2.5-2.9%. When the strength is less than 7.0 g / de, a material having good dimensional stability is conventionally known and is not an object of the present invention. 4.5 g / de load elongation is 1
If it is 0% or more, the strength near the primary yield point of the fiber becomes too low, and deformation is likely to occur even with a small elongation stress, which is not preferable. Further, the dry heat shrinkage at 180 ° C is 3.
When the content is 0% or more, for example, when a fiber product such as a woven fabric is coated with rubber or resin, not only heat shrinkage deformation is likely to occur, but also deformation during use at high temperatures is likely. Not preferred.

【0014】なお本発明のポリエステル繊維は、その繊
度(単糸繊度)が1.0〜6.0デニール、好ましくは
2.0〜5.0デニールの範囲にあることが好ましく、
1.0デニール未満の場合には前記の繊維特性を同時に
満足する繊維を安定に紡糸することが困難となり、一方
6.0デニールを越える場合には高強力化と熱寸法安定
性とを同時に満足させることが困難となる。
The polyester fiber of the present invention has a fineness (single yarn fineness) in the range of 1.0 to 6.0 denier, preferably 2.0 to 5.0 denier.
When it is less than 1.0 denier, it is difficult to stably spin fibers satisfying the above-mentioned fiber properties at the same time, while when it exceeds 6.0 denier, high strength and thermal dimensional stability are simultaneously satisfied. It will be difficult to do so.

【0015】以上に詳述した本発明のポリエステル繊維
は、例えば下記の方法により得ることができるが、本発
明はこの方法により製造されたものに限定されるわけで
はない。
The polyester fiber of the present invention described in detail above can be obtained, for example, by the following method, but the present invention is not limited to one produced by this method.

【0016】本発明の繊維を製造するに当っては、25
00〜3000m/分といった比較的遅い速度でも分子
鎖にかかる張力(したがって紡糸張力)を高くして高配
向高結晶の未延伸糸を得、これによって直接延伸後の糸
条速度を低下させて制限収縮熱処理時の処理時間を長く
とれるようにし、かくすることにより、制限収縮熱処理
を十分施せるようにして高強度特性を維持しながら乾熱
収縮率を下げることが大切で、そのためには用いるポリ
マー及び紡糸延伸条件の選択が重要となる。すなわち、
まず得られる延伸糸の固有粘度を0.85以上とするた
めに、溶融紡糸に供するポリエチレンテレフタレート系
ポリエステルのチップ固有粘度は0.90以上、好まし
くは0.95以上のものを用い、紡糸温度300〜31
0℃で紡糸口金から溶融吐出し、該吐出糸条を直に冷却
固化させて2500〜3000m/分の速度で引取る。
この際、糸条に紡糸張力が十分かかるようにして配向結
晶化を進行させ、得られる未延伸糸の180℃乾熱収縮
率が10%未満、好ましくは7%未満となるようにする
ことも大切で、そのためには吐出糸条を前記のように急
冷したり、用いるポリマーに大きな伸長変形応力が発生
しやすいように3官能以上の多価カルボン酸成分が0.
01〜1.00モル%共重合されたものを用いることが
好ましい。なお紡糸速度が2500m/分未満になる
と、紡糸時の配向結晶化が不十分となって、高融点で且
つ良好な寸法安定性を兼備する繊維は得られなくなり、
一方3000m/分を越えると、未延伸糸の配向結晶化
は進行するものの、十分な強度を持つような延伸倍率で
延伸するとその後の糸条速度が非常に大きくなり、十分
な制限収縮熱処理を施すことができなくなるため、高強
度と寸法安定性とを両立させることができなくなる。
In producing the fiber of the present invention, 25
Even at a relatively low speed of 00 to 3000 m / min, the tension applied to the molecular chains (and thus the spinning tension) is increased to obtain a highly oriented and highly crystalline undrawn yarn. It is important to reduce the dry heat shrinkage rate while maintaining high strength properties by allowing the treatment time for the shrinkage heat treatment to be longer and keeping the shrinkage heat treatment sufficient by maintaining this. The selection of spinning and drawing conditions is important. That is,
First, in order to make the intrinsic viscosity of the obtained drawn yarn 0.85 or more, the polyethylene terephthalate-based polyester to be subjected to melt spinning has a chip intrinsic viscosity of 0.90 or more, preferably 0.95 or more, and has a spinning temperature of 300 or more. ~ 31
The melted yarn is discharged from a spinneret at 0 ° C., and the discharged yarn is directly cooled and solidified, and is taken out at a speed of 2500 to 3000 m / min.
At this time, the orientation crystallization is advanced so that the spinning tension is sufficiently applied to the yarn, and the dry heat shrinkage at 180 ° C. of the obtained undrawn yarn may be less than 10%, preferably less than 7%. It is important that the discharge yarn is quenched as described above, and that a polyfunctional carboxylic acid component having three or more functional groups is used in order to easily generate a large elongational deformation stress in the polymer used.
It is preferable to use a copolymer of 01 to 1.00 mol%. If the spinning speed is less than 2500 m / min, the orientational crystallization during spinning becomes insufficient, and a fiber having a high melting point and good dimensional stability cannot be obtained,
On the other hand, if it exceeds 3000 m / min, the oriented crystallization of the undrawn yarn proceeds, but if the film is drawn at a draw ratio having sufficient strength, the subsequent yarn speed becomes very large, and sufficient heat treatment for limiting shrinkage is performed. This makes it impossible to achieve both high strength and dimensional stability.

【0017】上記のように紡糸することにより、糸条の
配向結晶化が進み、微結晶サイズの大きい高配向高結晶
化未延伸糸が得られ、該未延伸糸の180℃乾熱収縮率
も10%未満となる。しかも融解吸熱ピークには複数
(255℃付近の副ピークと260〜275℃付近の主
ピーク)現れ、この副ピークは前記のようにポリマー鎖
が比較的ルーズに固定されているためと推定され、延伸
時の応力集中が緩和されて高倍率延伸が可能となる。
By spinning as described above, the oriented crystallization of the yarn proceeds, and a highly oriented and highly crystallized undrawn yarn having a large crystallite size is obtained. It becomes less than 10%. In addition, a plurality of melting endothermic peaks (a sub-peak near 255 ° C. and a main peak near 260 to 275 ° C.) appear, and this sub-peak is presumed to be because the polymer chain is relatively loosely fixed as described above. Stress concentration at the time of stretching is alleviated, and high-magnification stretching becomes possible.

【0018】得られた未延伸糸は、一旦巻き取ることな
く連続して延伸(直接紡糸延伸)されるが、この際延伸
倍率を大きくしすぎると得られる繊維の微結晶体積が小
さくなったり延伸時に単糸切れや断糸が発生しやすくな
り、一方延伸倍率を小さくしすぎると強度が不十分とな
るので、1.5〜2.0倍に延伸する。ここで、延伸は
2段以上に分けて行うことが好ましく、その際第1段延
伸は結晶化抑制のためにできるだけ低温で行うことが好
ましく、紡糸直延伸する際には別延伸の場合とは異なっ
て糸温度が高いため、第1段予熱ロールは非加熱とする
ことが望ましい。延伸後の糸は、その寸法安定性を向上
させるため、さらに制限収縮熱処理を施すことが必要で
ある。熱処理装置は180℃乾熱収縮率を3%未満にで
きるものであれば特に限定する必要はないが、通常は加
熱ローラーが簡便で且つ熱効率も良好で好ましく、その
際温度は250〜270℃の範囲が適当である。ローラ
ー温度がこの範囲未満の場合には十分熱処理できなくな
って得られる繊維の寸法安定性が不十分となり、逆に前
記範囲を越える場合には強力劣化が起こりやすくなって
強度7.0g/de以上を達成できなくなる。制限収縮
倍率は4〜8%の範囲が適当であり、4%未満では得ら
れる繊維の180℃乾熱収縮率を3%未満にすることは
困難になり、一方8%を越える場合には安定に制限収縮
熱処理を施すことが困難になるので好ましくない。
The obtained undrawn yarn is continuously drawn without being wound once (direct spinning drawing). At this time, if the drawing ratio is too high, the volume of microcrystals of the obtained fiber becomes small, or the drawn fiber is drawn. Occasionally, single yarn breakage or yarn breakage tends to occur. On the other hand, if the draw ratio is too small, the strength becomes insufficient, so that the film is drawn to 1.5 to 2.0 times. Here, the stretching is preferably performed in two or more stages, and in this case, the first-stage stretching is preferably performed at a temperature as low as possible in order to suppress crystallization. Since the yarn temperature is different, the first-stage preheating roll is preferably not heated. In order to improve the dimensional stability of the drawn yarn, it is necessary to further perform a heat-restriction shrinkage treatment. The heat treatment apparatus is not particularly limited as long as it can reduce the dry heat shrinkage at 180 ° C. to less than 3%, but usually a heating roller is preferred because it is simple and has good thermal efficiency. The range is appropriate. When the roller temperature is lower than this range, the heat treatment cannot be performed sufficiently, resulting in insufficient dimensional stability of the obtained fiber. On the other hand, when the roller temperature is higher than the above range, the strength tends to deteriorate and the strength is 7.0 g / de or more. Cannot be achieved. The limiting shrinkage ratio is suitably in the range of 4 to 8%. If it is less than 4%, it is difficult to reduce the dry heat shrinkage of the obtained fiber at 180 ° C to less than 3%, while if it exceeds 8%, it is stable. However, it is not preferable because it becomes difficult to perform the heat treatment with limited shrinkage.

【0019】制限収縮処理を施す熱ローラーは、ローラ
ー径が4〜8%で小さくなる段付きローラーを用いて徐
々に収縮させてもよく、かくすることにより糸条の走行
安定性がより向上するので好ましい。
The heat roller to be subjected to the restriction shrinkage treatment may be gradually contracted by using a stepped roller having a roller diameter of 4 to 8% and reduced, whereby the running stability of the yarn is further improved. It is preferred.

【0020】[0020]

【実施例】以下、本発明を実施例によりさらに詳細に説
明する。なお、ポリエステル繊維の構造や物性を特定す
る各パラメーターの測定方法は以下のとおりである。 切断強度、伸度、4.5g/de荷重伸度 JIS L 1017に準拠した。
The present invention will be described in more detail with reference to the following examples. In addition, the measuring method of each parameter which specifies the structure and physical properties of a polyester fiber is as follows. Cutting strength, elongation, 4.5 g / de load elongation Based on JIS L1017.

【0021】 微結晶体積 広角X線回折での(010)、(100)面の回折ピー
クの半価巾よりシェラーの式を用いて算出したa軸方向
の結晶サイズ、およびb軸方向の結晶サイズ、さらにX
線小角散乱測定から求めた長周期間隔、ならびに桜田・
温品法により求めた結晶化度から、次式で算出した。 結晶体積=a軸方向の結晶サイズ×b軸方向の結晶サイ
ズ×長周期間隔×結晶化度
Microcrystal volume The crystal size in the a-axis direction and the crystal size in the b-axis direction calculated from the half width of the diffraction peaks of the (010) and (100) planes in wide-angle X-ray diffraction using the Scherrer equation. And X
Long-period interval obtained from small-angle X-ray scattering measurements,
From the crystallinity determined by the hot item method, it was calculated by the following equation. Crystal volume = crystal size in a-axis direction × crystal size in b-axis direction × long period interval × crystallinity

【0022】 融点 示差走査熱量計(パーキンエルマー社製 DSC−I
型)を用い、窒素気流下昇温速度20℃/分で測定し、
その吸熱ピーク温度をもって結晶融点とした。
Melting point Differential scanning calorimeter (DSC-I manufactured by PerkinElmer)
Using a mold) at a heating rate of 20 ° C./min under a nitrogen stream.
The endothermic peak temperature was defined as the crystal melting point.

【0023】 180℃乾熱収縮率 試料に0.01g/deの荷重をかけて糸長L0 を求
め、次いで180℃で30分間無張力下で熱処理した後
に同じく0.01g/deの荷重をかけて糸長L1 を求
め、下記式で算出する。 180℃乾熱収縮率(%)=((L0 −L1 )/L0
×100
Dry heat shrinkage at 180 ° C. A sample is subjected to a load of 0.01 g / de to determine the yarn length L 0 , and then heat-treated at 180 ° C. for 30 minutes under no tension to apply a load of 0.01 g / de. over seeking the yarn length L 1 and is calculated by the following equation. 180 ° C. dry heat shrinkage (%) = ((L 0 −L 1 ) / L 0 )
× 100

【0024】生コード耐熱強力維持率 生コードとガラス管とを温度20℃湿度60%雰囲気下
で12時間調湿した後、該生コードを該ガラス管に封入
して150℃下48時間加熱処理し、次いで強力を測定
して熱処理前後の強力比率を%で表す。
Raw cord heat and strength retention rate The raw cord and the glass tube are conditioned for 12 hours in an atmosphere at a temperature of 20 ° C. and a humidity of 60%, and then the raw cord is sealed in the glass tube and heat-treated at 150 ° C. for 48 hours. Then, the strength is measured, and the strength ratio before and after the heat treatment is expressed in%.

【0025】[実施例1]固有粘度が0.95、トリメ
リット酸成分の共重合量が0.1モル%、ジエチレング
リコールの共重合量が0.6重量%のポリエチレンテレ
フタレート系ポリエステルを約300℃で溶融し、孔径
1.2mmのノズルを249個有する紡糸口金より、延
伸後に得られる繊維の繊度が表1記載のとおりになる割
合で吐出した後、該吐出糸条に直ちに温度25℃の冷却
風を吹き付けて冷却固化させ、オイリングノズルで油剤
を付与した後に温度70℃加熱引取りローラーで300
0m/分の速度で引取り、次いで一旦巻き取ることなく
続いて2段延伸を行い、さらに制限収縮熱処理を施して
巻き取った。
Example 1 A polyethylene terephthalate-based polyester having an intrinsic viscosity of 0.95, a copolymerization amount of trimellitic acid component of 0.1 mol%, and a copolymerization amount of diethylene glycol of 0.6% by weight was heated to about 300 ° C. And then discharged from a spinneret having 249 nozzles having a hole diameter of 1.2 mm at a ratio such that the fineness of the fiber obtained after drawing is as shown in Table 1, and then immediately cooled to a temperature of 25 ° C. on the discharged yarn. The air is sprayed to cool and solidify, and the oil agent is applied with an oiling nozzle.
The film was taken up at a speed of 0 m / min, then was subjected to two-step stretching without being wound up once, and was further subjected to heat treatment with limited shrinkage, and was wound up.

【0026】ここで第1段延伸の供給ロールは前記加熱
引取りローラーとし、第2段延伸の予熱は第1段延伸ロ
ーラーで行いその温度は120℃とした。また第1段延
伸倍率は1.30倍とし、第2段延伸倍率は全延伸倍率
が表1記載のようになるようにした。さらに第2段延伸
ローラーは段付きローラーを使用し、表1記載のローラ
ー温度で表1記載の収縮率になるように制限収縮熱処理
を施した。
Here, the supply roll for the first-stage stretching was the heating take-off roller, and the preheating for the second-stage stretching was performed with the first-stage stretching roller, and the temperature was 120 ° C. The first-stage stretching ratio was 1.30 times, and the second-stage stretching ratio was such that the total stretching ratio was as shown in Table 1. Furthermore, a stepped roller was used as the second-stage stretching roller, and heat-limited heat treatment was performed at the roller temperature shown in Table 1 so as to obtain the shrinkage ratio shown in Table 1.

【0027】得られたポリエステル繊維は、総繊度が3
000デニールとなるよう複数本合糸して50回/10
cmの下撚をかけた後、これを3本合わせて50回/1
0cmの上撚をかけて生コードとした。結果を表1に示
す。
The obtained polyester fiber has a total fineness of 3
Plural yarns for 50 times / 10
cm after twisting, and three of them are combined 50 times / 1
A raw cord was obtained by twisting 0 cm. Table 1 shows the results.

【0028】[実施例2〜3、比較例1〜5]実施例1
において、表1記載のように使用するポリマーの種類、
紡糸条件および延伸条件を変更する以外は実施例1と同
様に行った。結果を表1に合わせて示す。なお、比較例
1および2では、吐出糸条は一旦加熱帯域を通過させた
後冷却固化させた。
[Examples 2 and 3, Comparative Examples 1 to 5] Example 1
In, the type of polymer used as described in Table 1,
The procedure was performed in the same manner as in Example 1 except that the spinning conditions and the stretching conditions were changed. The results are shown in Table 1. In Comparative Examples 1 and 2, the discharged yarn was once cooled, solidified after passing through a heating zone.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【発明の効果】本発明のポリエステル繊維は、強度が
7.0g/de以上と高強力でありながら、180℃乾
熱収縮率が3%未満と寸法安定性が非常に良好で、しか
も融点が270℃以上と耐熱性にも優れているため、ゴ
ム類や樹脂の補強用繊維を初めとして各種産業資材用と
して好適に用いることができる。
The polyester fiber of the present invention has a high strength of 7.0 g / de or more and a very good dimensional stability with a dry heat shrinkage of less than 3% at 180.degree. Since it has excellent heat resistance of 270 ° C. or more, it can be suitably used for various industrial materials including reinforcing fibers of rubbers and resins.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 固有粘度が0.85〜1.0のポリエチ
レンテレフタレート系ポリエステルより構成されたポリ
エステル繊維において、該繊維中の平均微結晶体積が
2.0×102 〜5.0×102 nm3 、融点が270
℃以上で、且つ強度が7.0g/de以上、4.5g/
de荷重伸度が10%未満および180℃乾熱収縮率が
3.0%未満であることを特徴とするポリエステル繊
維。
1. A polyester fiber composed of polyethylene terephthalate polyester having an intrinsic viscosity of 0.85 to 1.0, wherein the average crystallite volume in the fiber is 2.0 × 10 2 to 5.0 × 10 2. nm 3 , melting point 270
° C or more, and the strength is 7.0 g / de or more and 4.5 g / de.
A polyester fiber having a de load elongation of less than 10% and a 180 ° C dry heat shrinkage of less than 3.0%.
【請求項2】 ポリエチレンテレフタレート系ポリエス
テルが、ジエチレングリコール成分の共重合量がポリエ
ステル重量を基準として0.8重量%以下で、且つ3官
能以上の多価カルボン酸成分の共重合量がポリエステル
の全酸成分を基準として0.01〜1.00モル%のポ
リエチレンテレフタレート系共重合ポリエステルである
請求項1記載のポリエステル繊維。
2. A polyethylene terephthalate-based polyester wherein the copolymerization amount of a diethylene glycol component is 0.8% by weight or less based on the weight of the polyester, and the copolymerization amount of a trifunctional or higher polycarboxylic acid component is a total acid of the polyester. The polyester fiber according to claim 1, which is a polyethylene terephthalate-based copolymerized polyester in an amount of 0.01 to 1.00 mol% based on the component.
【請求項3】 固有粘度が0.90以上のポリエチレン
テレフタレート系ポリエステルを紡糸口金から溶融吐出
し、該吐出糸条に直に冷却風を吹き付けて冷却固化させ
た後2500〜3000m/分の紡糸速度で引き取って
得た180℃乾熱収縮率が3〜10%の未延伸糸を、一
旦巻き取ることなく引続いて1.4〜2.0倍に延伸し
た後、温度250〜270℃で4〜8%の制限収縮熱処
理を施すことを特徴とするポリエステル繊維の製造方
法。
3. A polyethylene terephthalate-based polyester having an intrinsic viscosity of 0.90 or more is melt-discharged from a spinneret, and is cooled and solidified by directly blowing cooling air onto the discharged yarn, and then a spinning speed of 2500 to 3000 m / min. The unstretched yarn having a dry heat shrinkage of 3 to 10% at 180 ° C. obtained by drawing at a temperature of 250 to 270 ° C. is drawn at a temperature of 250 to 270 ° C. A method for producing a polyester fiber, comprising performing a heat-restriction heat treatment of about 8%.
JP4889397A 1997-03-04 1997-03-04 Polyester fiber and its production Pending JPH10251919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4889397A JPH10251919A (en) 1997-03-04 1997-03-04 Polyester fiber and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4889397A JPH10251919A (en) 1997-03-04 1997-03-04 Polyester fiber and its production

Publications (1)

Publication Number Publication Date
JPH10251919A true JPH10251919A (en) 1998-09-22

Family

ID=12815960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4889397A Pending JPH10251919A (en) 1997-03-04 1997-03-04 Polyester fiber and its production

Country Status (1)

Country Link
JP (1) JPH10251919A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064526A (en) * 2001-08-23 2003-03-05 Toray Ind Inc Energy-absorbing polyester fiber
JP2011058145A (en) * 2009-09-14 2011-03-24 Teijin Fibers Ltd Tension member and high tension voltage cable using the same
JP2011058146A (en) * 2009-09-14 2011-03-24 Teijin Fibers Ltd String-shaped article for industrial material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064526A (en) * 2001-08-23 2003-03-05 Toray Ind Inc Energy-absorbing polyester fiber
JP4736274B2 (en) * 2001-08-23 2011-07-27 東レ株式会社 Energy absorbing polyester fiber
JP2011058145A (en) * 2009-09-14 2011-03-24 Teijin Fibers Ltd Tension member and high tension voltage cable using the same
JP2011058146A (en) * 2009-09-14 2011-03-24 Teijin Fibers Ltd String-shaped article for industrial material

Similar Documents

Publication Publication Date Title
US4690866A (en) Polyester fiber
JP3655577B2 (en) Method for producing polyethylene naphthalate fiber
JPH04504284A (en) Dimensionally stable polyester yarn for high tenacity treated cords
JPH0128127B2 (en)
PL184254B1 (en) Yarn made of continuous polyester monofilaments, polyester tyre reinforcement cord and method of making them
CN1727539B (en) Polyester multi-filament yarn for tire cord
JP2629075B2 (en) High modulus polyester yarn for tire cords and composites
JP4337539B2 (en) Polyester fiber production method and spinneret for melt spinning
CN1327049C (en) Production process of industrial polyester multifilament tow
KR20050003123A (en) High tenacity polyethylene-2,6-naphthalate fibers having excellent processability, and process for preparing the same
JPS6141320A (en) Polyester fiber
JPS6119812A (en) Polyester fiber
JPH10251919A (en) Polyester fiber and its production
JPH0261109A (en) Polyester fiber
JPS5953736A (en) Polyester tire cord and production thereof
KR0140230B1 (en) Manufacturing method of dimensional stability polyester yarn
JPH0323644B2 (en)
EP0295147B1 (en) High strength polyester yarn
JPH0450407B2 (en)
JPS61194218A (en) Production of polyester fiber
JP2776003B2 (en) Method for producing polyester fiber
JP2003129337A (en) Polytrimethylene terephthalate fiber and method for producing the same
JPS5813718A (en) Polyester fiber
EP4190953A1 (en) Polyethylene yarn having improved post-processability, and fabric comprising same
JPS61289115A (en) Polyester fiber