JPS61190005A - Production of rare earth magnet - Google Patents

Production of rare earth magnet

Info

Publication number
JPS61190005A
JPS61190005A JP2878785A JP2878785A JPS61190005A JP S61190005 A JPS61190005 A JP S61190005A JP 2878785 A JP2878785 A JP 2878785A JP 2878785 A JP2878785 A JP 2878785A JP S61190005 A JPS61190005 A JP S61190005A
Authority
JP
Japan
Prior art keywords
rare earth
powder
molded body
molding
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2878785A
Other languages
Japanese (ja)
Inventor
Atsushi Sakai
淳 阪井
Masahiro Nawa
正弘 名和
Sunao Ozawa
小沢 直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2878785A priority Critical patent/JPS61190005A/en
Publication of JPS61190005A publication Critical patent/JPS61190005A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the seizure and deformation during sintering and to produce a rare earth magnet having good dimensional accuracy by dispersing and interposing a granular material having a specific grain size between a molding of powder contg. a rare earth element and a base plate in the stage of sintering said molding on the base plate. CONSTITUTION:The molding consisting of the powder contg. the rare earth element is formed. Such molding is imposed on the base plate and is sintered, by which the rare earth magnet is produced. The granular material having 20-500mu grain size is interposed between the molding and the base plate. The rare earth intermetallic alloy compd. powder of the same kind as the green compact molding or the rare earth intermetallic compd. powder having the m.p. higher than the m.p. of the green compact molding is used for the granular material. The same granular material is dispersed and interposed between the molding and a keep plate in the case of using the keep plate according to need. The rare earth magnet is thus produced with a good yield.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、希土類磁石の製法に関するものである。[Detailed description of the invention] 〔Technical field〕 The present invention relates to a method for manufacturing rare earth magnets.

〔背景技術〕[Background technology]

S m Coをはじめとする希土類磁石は、高い飽和磁
化、高保磁力を有する高性能磁石として、最近、需要の
増加が著しい磁石である。特に、小型化、軽量化が進め
られているスピーカやモータなどに積極的に採用される
ようになった。
Rare earth magnets such as S m Co are magnets whose demand has recently increased significantly as high-performance magnets having high saturation magnetization and high coercive force. In particular, they have been actively adopted in speakers and motors, which are becoming smaller and lighter.

希土類磁石の一般的な製法は、つぎのようなものである
。希土類磁石を含有する金属間化合物を粉砕して微粉化
し、これを磁場中において加圧成形する。つい・で、こ
の成形体を1180°C〜1220℃で焼結したのち急
冷する。そして、800℃前後で2〜10時間時効処理
を行い、徐冷することによって高性能希土類磁石を得る
The general manufacturing method for rare earth magnets is as follows. An intermetallic compound containing a rare earth magnet is pulverized into a fine powder, which is then pressure-molded in a magnetic field. Next, this molded body is sintered at 1180°C to 1220°C and then rapidly cooled. Then, aging treatment is performed at around 800° C. for 2 to 10 hours, followed by slow cooling to obtain a high-performance rare earth magnet.

ところで、モータのロータなどには、薄手及状のリング
磁石が用いられる。通常、このような薄板状磁石を製造
するには、同じ断面形状を持つ厚物を焼結し、これをス
ライスすることによって薄板状物を作る方法を用いてい
る。この方法では、スライスするのに切り代を必要とす
るため、材料のロスが生じる。そこで、最初から薄板状
物を成形し、これを焼結する手法が試みられている。と
ころが、薄板状物(成形体)を焼結すると、反りが発生
しやすいため、薄板状の成形体を基台上に置き、さらに
その成形体の上に金属あるいはセラミックの押え板を置
いて焼結しなければならない。
Incidentally, a thin ring magnet is used for a motor rotor and the like. Normally, in order to manufacture such a thin plate magnet, a method is used in which a thick material having the same cross-sectional shape is sintered and then sliced to create a thin plate material. This method requires a cutting allowance for slicing, resulting in material loss. Therefore, attempts have been made to form a thin plate from the beginning and sinter it. However, when a thin plate-shaped object (molded body) is sintered, warping tends to occur, so the thin plate-shaped formed body is placed on a base, and a metal or ceramic presser plate is placed on top of the formed body and then sintered. must be tied.

このように、基台と押え板で薄板状の成形体を挟み、最
適焼結温度で焼結すると、希土類金属は非常に活性度が
高いので、焼結体と基台および/または押え板との間で
焼付きが発生する場合がある。いったん焼付きが発生す
ると、均一な収縮を妨げるため、焼結体が異常に変形す
る。また、基台や押え板から焼結体を離脱させることが
できないという問題点も生じる。
In this way, when a thin plate shaped body is sandwiched between the base and the holding plate and sintered at the optimum sintering temperature, the rare earth metal has a very high activity, so the sintered body and the base and/or the holding plate are held together. Burn-in may occur between. Once seizure occurs, it prevents uniform shrinkage and causes abnormal deformation of the sintered body. Further, there arises a problem that the sintered body cannot be removed from the base or the presser plate.

この問題を解決するために、数μmの粒径の微粉末(例
えば、Sm20.、の組成の粉末)を介在させ焼結する
方法が開発されたが、この場合でも、なお、成形体と基
板とが極く微小部分でスポット状に焼付き、しばしば成
形体の変形が生じた。
In order to solve this problem, a method was developed in which fine powder with a particle size of several μm (for example, powder with a composition of Sm20. The spots were burned in very small areas, often resulting in deformation of the molded product.

これは、微粉末が粒径数μmの微小粉末であるため、成
形体と基板とが直接接触してしまうことがあるためと推
察される。
This is presumed to be because the fine powder is a fine powder with a particle size of several micrometers, so that the molded body and the substrate may come into direct contact with each other.

以上の問題の他に、成形体の焼結時に希土類元素が酸化
しやすいため、焼結雰囲気中に含まれる微量酸素と反応
して焼結と同時に酸化物が生成し、最終的に得られる磁
気特性を低下させるという問題もあった。
In addition to the above problems, rare earth elements are easily oxidized during sintering of compacts, so they react with trace amounts of oxygen contained in the sintering atmosphere, producing oxides at the same time as sintering, resulting in the final magnetic There was also the problem of deterioration of characteristics.

粒径が5μm程度の微粉末を分散散布させるようにした
場合、若干の焼付きの防止効果はあるけれども、成形体
の形状によっては焼結時に目標通りの形状にならないと
いう問題もある。例えば薄板状リング成形体を焼結する
と楕円になりやすい。この原因のひとつに、円周方向の
収縮時の摩擦力の分布がある。一定態上の厚みのあるリ
ング成形体であれば真円に近い形状に収縮焼結するが、
一定収下の薄さのリング成形体では、剛性が小さいため
押え板の押圧による摩擦力の分布の影響を受けやすく、
均一に収縮していかずに変形してしまう。
When fine powder with a particle size of about 5 μm is dispersed, although it has some effect of preventing seizure, there is also the problem that depending on the shape of the compact, the shape may not be as desired during sintering. For example, when a thin ring molded body is sintered, it tends to become an ellipse. One of the causes of this is the distribution of frictional force during contraction in the circumferential direction. If it is a ring molded body with constant thickness, it will shrink and sinter into a shape close to a perfect circle.
A thin ring molded product with a constant yield has low rigidity, so it is easily affected by the distribution of frictional force due to the pressure of the presser plate.
It does not shrink uniformly and becomes deformed.

〔発明の目的〕[Purpose of the invention]

この発明は、以上の問題にかんがみ、成形体と基台との
焼付きを防止し、さらに、必要に応じ、成形体と押え板
との焼付きをも防止して歩留まりおよび寸法精度良く成
形体を焼結させ得る工程を含む希土類磁石の製法を提供
することを目的とする。
In view of the above problems, this invention prevents seizure between the molded body and the base, and furthermore, if necessary, prevents seizure between the molded body and the presser plate, thereby improving the yield and dimensional accuracy of the molded body. An object of the present invention is to provide a method for producing a rare earth magnet, which includes a step of sintering a rare earth magnet.

〔発明の開示〕[Disclosure of the invention]

上記目的を達成するため、この発明は、希土類元素を含
む粉末の成形体を基台の上に置いて焼結する工程を含む
希土類磁石の製法において、前記成形体と前記基台との
間に20μm〜500μmの粒径を有する粒状物質を分
散介在させて前記成形体の焼結を行うようにした希土類
磁石の製法を要旨とする。
In order to achieve the above object, the present invention provides a method for producing a rare earth magnet that includes a step of placing a molded body of powder containing a rare earth element on a base and sintering the molded body, in which there is a gap between the molded body and the base. The gist of the present invention is a method for manufacturing a rare earth magnet in which the molded body is sintered with granular materials having a particle size of 20 μm to 500 μm dispersed therein.

以下に、この発明について、特にその特徴部分を中心に
詳しく説明する。
This invention will be explained in detail below, focusing particularly on its characteristic parts.

この発明で用いられる磁石用の粉末としては希土類元素
を含む粉末が用いられ、一般に、Sm。
The powder for the magnet used in this invention is a powder containing a rare earth element, and is generally Sm.

Ceをはじめとする希土類金属およびコバルトを含む希
土類金属間化合物粉末が用いられるが、この限りではな
い。磁石用の粉末は通常の製法に従って作られたものが
用いられる。この粉末は通常微粉化されている。この磁
石用の粉末は、一般に、加圧方向と平行な方向に磁場を
かけながら薄板状に圧縮成形されるが、必ずしもこれに
限らない。この成形体は、高融金属、ステンレス、また
はセラミック製の基台上に置かれて焼結される。この基
台としては、台状のものに限定されず板状体、シート状
体なと種々用いられ、その材質も、金属、セラミックな
どをはじめ焼結に用いられるものであれば何でもよい。
A rare earth intermetallic compound powder containing a rare earth metal such as Ce and cobalt is used, but is not limited thereto. Powders for magnets are made using conventional manufacturing methods. This powder is usually finely divided. The powder for this magnet is generally compression-molded into a thin plate shape while applying a magnetic field in a direction parallel to the pressing direction, but this is not necessarily the case. This molded body is placed on a base made of refractory metal, stainless steel, or ceramic and sintered. This base is not limited to a table-shaped one, and various materials such as a plate-shaped body and a sheet-shaped body can be used, and the material thereof may be any material used for sintering, including metals and ceramics.

なお、薄板状成形体を焼結する場合、反りの発生を防い
だりするために、上記したように、その成形体を基台の
上に置き、さらに、この成形体の上に押え板を置いたり
して、成形体を基台と押え板とで挟むようにすることが
好ましい。押え板も、その材質など特に限定はなく、金
属、セラミックなどをはじめ焼結に用いられうるもので
あればよく、たとえば、基台と同じ材質であってもよい
In addition, when sintering a thin plate-shaped molded body, in order to prevent the occurrence of warping, the molded body is placed on a base and a presser plate is placed on top of this molded body, as described above. It is preferable that the molded body be sandwiched between the base and the holding plate. The material of the holding plate is not particularly limited, and may be made of metal, ceramic, or any other material that can be used for sintering, and may be made of the same material as the base, for example.

希土類金属は、非常に活性度の高い金属であり、100
0度を越える温度では、基台や押え板と反応して、固着
しやすい。厚物の焼結体ならば、焼付きが発生しても、
その部分を削除して最終製品にまで仕上げることも可能
であるが、歩留まりが悪くなる。薄板状物の場合には、
特に、必要最小限の研磨で最終製品に仕上げるように焼
結を行うことが好ましい。
Rare earth metals are highly active metals, with 100
At temperatures above 0 degrees, it tends to react with the base and presser plate and become stuck. If it is a thick sintered body, even if seizure occurs,
Although it is possible to complete the final product by removing that part, the yield will be poor. In the case of thin plate-like objects,
In particular, it is preferable to perform sintering so that the final product is finished with the minimum amount of polishing required.

これらの場合において、焼付によって、焼結体が変形し
たり、破損したりすることは、極力避けなければならな
い。そこで、焼付きを防止するために粉末を成形体と基
台との間に介在させるわけであるが、あまり粉末の粒径
が小さいと先に述べたように十分な効果が得られない。
In these cases, deformation or damage to the sintered body due to seizure must be avoided as much as possible. Therefore, in order to prevent seizure, powder is interposed between the molded body and the base, but if the particle size of the powder is too small, a sufficient effect cannot be obtained as described above.

そこで、ある程度大きい粒径をもつ粉末を散布すると、
成形体と基台とは完全に非接触の状態になり、溶融状態
にならないかぎり焼付は発生しない。焼結時に散布され
た粉末が焼結体に固着するので、後の研磨工程で取り除
く。もっとも、このようにはするものの、できるだけ磁
石特性に悪影響を及ぼさない様な粉末が好ましい。種々
実験の結果、基台と成形体の間に分散介在させる粒状物
質の粒径は20μm以上であることが必要である。他方
、あまり粒径が大きすぎると、反りが発生し、また、固
着した粉末を除去するために研磨量が増加するので、5
00μm以下にすることが必要である。
Therefore, if you sprinkle powder with a somewhat large particle size,
The molded body and the base are in a completely non-contact state, and no seizure occurs unless they are in a molten state. The powder scattered during sintering sticks to the sintered body, so it is removed in the subsequent polishing process. However, it is preferable to use a powder that does not adversely affect the magnetic properties as much as possible. As a result of various experiments, it is necessary that the particle size of the granular material dispersed between the base and the molded body is 20 μm or more. On the other hand, if the particle size is too large, warping will occur and the amount of polishing will increase to remove the fixed powder, so
It is necessary to make it 00 μm or less.

希土類金属は酸化物を生成しやすいため、雰囲気中の微
量酸素を吸収する作用があり、酸素ゲッター材となり得
る。したがって、基台と成形体との間に分散介在させる
粒状物質を希土類金属を含む金属間化合物粉末とすると
、焼結雰囲気中の酸素が吸収され、焼結体の酸化が軽減
できる。さらに、粒状物質が焼結体に近い組成となるた
めに、焼結時に耐着しても磁石特性に悪影響をおよぼす
ような心配もない。特に、成形体と同じ種類の希土類金
属間化合物の粒状物質であれば全く悪影響がない。
Since rare earth metals tend to generate oxides, they have the ability to absorb trace amounts of oxygen in the atmosphere and can serve as oxygen getter materials. Therefore, if the granular material dispersed between the base and the compact is an intermetallic compound powder containing a rare earth metal, oxygen in the sintering atmosphere is absorbed, and oxidation of the sintered compact can be reduced. Furthermore, since the granular material has a composition similar to that of a sintered body, there is no fear that it will adversely affect magnetic properties even if it resists adhesion during sintering. In particular, if it is a granular material of the same type of rare earth intermetallic compound as the molded object, there will be no adverse effect at all.

なお、酸化の影響等を考慮する必要のないときは、ステ
ンレス、高融点金属、またはセラミック材からなる20
μm〜500μmの粒径の粉末でもよい。
In addition, when there is no need to take into account the effects of oxidation, etc., use
Powder with a particle size of μm to 500 μm may be used.

ところで、分散介在させる粉末が希土類金属間化合物粉
末であったとしても、組成の違いによって焼結体より融
点の低い粉末である場合には、焼結時にその粉末が溶融
状態になりやすく、その部分を介して基板との間で焼付
きが発生することがある。その点、焼結体(成形体)と
まったく同じ組成かもしくは焼結体の融点より高い融点
を有する希土類金属間化合物粉末であれば、上のような
いわば間接的焼付きも生じない。
By the way, even if the powder to be dispersed is a rare earth intermetallic compound powder, if the powder has a lower melting point than the sintered body due to the difference in composition, the powder tends to become molten during sintering, and the part Burn-in may occur between the board and the board. In this respect, if the rare earth intermetallic compound powder has exactly the same composition as the sintered body (molded body) or has a melting point higher than the melting point of the sintered body, the above-mentioned indirect seizure will not occur.

薄板状の成形体を焼結すると反りが発生することがある
ので、押え板を成形体の上に載せて焼結しなければなら
ない場合がある。そこで、このような場合には、この押
え板と成形体との間の焼付きを阻止するため、基台と成
形体との間の場合と同じように、押え板と成形体との間
にも20μm〜500μmの粒径の粉末を分散介在させ
る。このようにすると、前述したような焼付きを防止す
ることができる。
Since warping may occur when a thin plate-shaped molded body is sintered, it may be necessary to sinter the molded body with a presser plate placed on top of the molded body. Therefore, in such a case, in order to prevent seizure between the presser plate and the molded body, there should be a Powder having a particle size of 20 μm to 500 μm is also dispersed therein. In this way, the burn-in described above can be prevented.

成形体の厚みが薄い場合には、焼結時に成形体が焼付か
ないときでも変形するという問題があったが、この発明
のごとく、粒径20μm以上の粉末を基台と成形体との
間に分散介在させた場合には、成形体が薄くとも、かな
り寸法精度よく焼結体を得ることができる。これは、成
形体と基板との間で、分散された粉末が微粉末の場合と
比べてより動きやすいために、成形体の剛性が小さくと
もうまく収縮焼結することができるからである。
When the thickness of the compact is small, there is a problem that the compact deforms during sintering even when the compact is not sintered, but as in this invention, powder with a particle size of 20 μm or more is placed between the base and the compact. When dispersed, a sintered body can be obtained with fairly high dimensional accuracy even if the molded body is thin. This is because the dispersed powder moves more easily between the molded body and the substrate than in the case of fine powder, so that even if the rigidity of the molded body is small, it can be successfully shrunk and sintered.

以下に、この発明のい(つかの具体的な実施例を詳述す
ることによって、この発明の詳細な説明する。
The present invention will be described in detail below by describing some specific embodiments of the invention.

(実施例1) Sm25.5ivt%、Go51,2wt%、Cu7.
9Wt%、Fe14.1wt%、Zr1.3wt%の組
成で平均粒径4μmの希土類金属間化合物粉末を、次に
示すような成形条件で磁場中成形した。
(Example 1) Sm25.5ivt%, Go51.2wt%, Cu7.
A rare earth intermetallic compound powder having a composition of 9 wt %, Fe 14.1 wt %, and Zr 1.3 wt % and an average particle size of 4 μm was molded in a magnetic field under the following molding conditions.

成形圧カー 1.2 ton/cm” 加圧方向に平行な磁場・・・20KOeリング成形体寸
法・・・厚さ21■、外径40m謂、内径 201鵬 基台・= (SLIS304 45 mX 451mX
 t 1 m)押え板・・・(SUS304 45mx
451nxt 1mm)散布用粉末・・・組成は成形体
と同一の希土類金属間化合物であり、粒径は平均20 0μm 上記の散布用粉末を145メツシユのふるいを用いて基
台および成形体の上面に分散散布した。
Molding pressure car 1.2 ton/cm" Magnetic field parallel to the pressing direction...20KOe Ring molded body dimensions...Thickness 21cm, outer diameter 40m, inner diameter 201mm Base = (SLIS304 45mX 451mX)
t 1 m) Holding plate... (SUS304 45mx
451nxt 1mm) Spreading powder...The composition is the same rare earth intermetallic compound as the compact, and the average particle size is 200 μm.The above scattering powder was applied to the base and the top surface of the compact using a 145 mesh sieve. It was dispersed.

この際、粉末で散布面を完全に覆いつくすのでなく、全
散布面の30%〜40%に相当する面のみを均一に覆う
ように散布した。次に、成形体を基台および押え板で挟
み、密閉のタンタル容器中に入れて焼結した。密閉容器
中に入れて焼結するのは、散布用粉末のゲッター効果を
大きくするためである。焼結条件はアルゴンガス圧10
0 torr。
At this time, instead of completely covering the sprayed surface with the powder, the powder was sprayed so as to uniformly cover only the surface corresponding to 30% to 40% of the total sprayed surface. Next, the molded body was sandwiched between a base and a presser plate, placed in a sealed tantalum container, and sintered. The purpose of sintering the powder in a closed container is to increase the getter effect of the powder for dispersion. Sintering conditions are argon gas pressure 10
0 torr.

1205℃の温度で1時間である。他方、比較例1とし
て、基板上には全く粉末を散布せずに、それ以外の条件
は実施例1と同一にして焼結を行った。
1 hour at a temperature of 1205°C. On the other hand, as Comparative Example 1, sintering was carried out under the same conditions as Example 1 except that no powder was spread on the substrate.

下記第1表に実施例1と比較例1の焼結結果を並べて示
した。明らかに粉末散布の方(実施例1)が良好な結果
となっている。ここでいう真円度とは〔(最大径)−(
最小径)〕を意味する。なお、反りは両者ともほとんど
発生しなかった。焼結後の表面の状態は粉末を散布した
ものの方が酸化が少なく、また密度が約0.2程高くな
っていたが、これも酸化が低減されたため焼結性がよく
なった結果と推察される。
The sintering results of Example 1 and Comparative Example 1 are shown side by side in Table 1 below. Obviously, powder scattering (Example 1) gave better results. Roundness here means [(maximum diameter) - (
minimum diameter)]. Note that almost no warping occurred in either case. The surface condition after sintering was less oxidized and the density was about 0.2 higher in the case where the powder was sprinkled, but this is also presumed to be the result of better sinterability due to reduced oxidation. be done.

(以 下 余 白) (実施例2) 実施例1における焼結条件のうち、ふるいのメツシュを
200メツシユとした以外は全く同じ条件で焼結した。
(Left below) (Example 2) Sintering was carried out under exactly the same conditions as in Example 1, except that the mesh of the sieve was changed to 200 mesh.

比較例2として、平均粒径5μmのsmz 01の粉末
を200メツシユのふるいを用いて散布し、焼結した。
As Comparative Example 2, powder of smz 01 having an average particle size of 5 μm was spread using a 200 mesh sieve and sintered.

下記第2表に実施例2と比較例2の焼結結果を並べて示
した。Sm、Q3の微粉末を用いた場合(比較例2)の
方が、焼付きおよび変形の点で劣っている。すなわち、
明らかにこの発明方法によるものの方がすぐれている。
Table 2 below shows the sintering results of Example 2 and Comparative Example 2 side by side. The case of using fine powder of Sm and Q3 (Comparative Example 2) is inferior in terms of seizure and deformation. That is,
Obviously, the method of this invention is superior.

(以 下 余 白) (実施例3) 実施例1における焼結条件のうち、散布粉末の組成をス
テンレス(SUS310S)に変更した以外は全く同じ
条件で焼結した。下記第3表に実施例3の。
(Margins below) (Example 3) Sintering was performed under exactly the same conditions as in Example 1, except that the composition of the sprinkled powder was changed to stainless steel (SUS310S). Table 3 below shows Example 3.

焼結結果を示した。この結果から明らかなように、ステ
ンレスの粉末でも、焼付きおよび変形は阻止できた。た
だし、表面の酸化度は実施例1の場合の焼結結果と比較
すると若干大きかった。
The sintering results are shown. As is clear from these results, even stainless steel powder was able to prevent seizure and deformation. However, the degree of oxidation on the surface was slightly larger than the sintering results of Example 1.

(以 下 余 白) 〔発明の効果〕 以上詳述したように、この発明にかかる希土類磁石の製
法は、希土類元素を含む粉末の成形体を基台の上に置い
て焼結する工程を含む希土類磁石の製法において、成形
体と基台との間に20μm〜500μmの間の粒径を有
する粒状物質を分散介在させて成形体の焼結を行うよう
にしているので、希土類磁石の焼結時の焼付きおよび変
形が阻止され、歩留まりよく焼結することができるとと
もに、焼結完了時の磁石の寸法精度を向上させることが
できる。粒状物質に希土類金属間化合物を用いる場合に
は、焼付きおよび変形の阻止に加え、成形体の不必要な
酸化をも阻止するので、最終的に作られる永久磁石の性
能をも向上させることができる。
(Margins below) [Effects of the Invention] As detailed above, the method for manufacturing a rare earth magnet according to the present invention includes the step of placing a molded body of powder containing a rare earth element on a base and sintering it. In the method for manufacturing rare earth magnets, sintering of the compact is performed by dispersing granular material having a particle size between 20 μm and 500 μm between the compact and the base. Seizure and deformation during sintering are prevented, sintering can be performed with a high yield, and the dimensional accuracy of the magnet upon completion of sintering can be improved. When rare earth intermetallic compounds are used as particulate matter, they not only prevent seizure and deformation, but also prevent unnecessary oxidation of the compact, which can improve the performance of the final permanent magnet. can.

代理人 弁理士  松 本 武 彦 弓稿萌体甫正書(自如 蒙60年す月73日 、’l;J 特許庁長官 殿                 ゛
21、19牛の耘 昭和60年特剖慄02B787号 事件との関係     特許出願人 住   所    大阪府門真市大字門真1048番地
名 称(583)松下電工株式会社 代表者  ((J暖鍛藤 井 貞 夫 4、代理人 6、補正の対象 明細書 7、補正の内容 (1)  明細書第6頁第14行に「高融金属」とある
を「高融点金属」と訂正する。
Agent Patent Attorney Takehiko Yumi Matsumoto Manuscript Mengtai Fu Seisho (Jiromong 60th year, 73rd month, 'l; Relationship of patent applicant Address: 1048 Oaza Kadoma, Kadoma City, Osaka Name (583) Representative: Matsushita Electric Works Co., Ltd. Contents (1) On page 6, line 14 of the specification, the phrase "high-melting metal" is corrected to "high-melting point metal."

(2)  明細書第11頁第20行の「は、」と「散布
用」の間に、rSmの蒸発を防止するとともに」を挿入
する。
(2) On page 11, line 20 of the specification, insert ``in addition to preventing evaporation of rSm'' between ``is'' and ``for spraying''.

Claims (5)

【特許請求の範囲】[Claims] (1)希土類元素を含む粉末の成形体を基台の上に置い
て焼結する工程を含む希土類磁石の製法において、前記
成形体と前記基台との間に20μm〜500μmの粒径
を有する粒状物質を分散介在させて前記成形体の焼結を
行うようにしたことを特徴とする希土類磁石の製法。
(1) A method for manufacturing a rare earth magnet that includes a step of placing a molded body of powder containing a rare earth element on a base and sintering it, in which a grain size of 20 μm to 500 μm is present between the molded body and the base. A method for producing a rare earth magnet, characterized in that the molded body is sintered with particulate matter dispersed therein.
(2)焼結が、基台と押え板とで成形体を挟んで行われ
、前記成形体と前記押え板との間にも20μm〜500
μmの粒径を有する粒状物質を分散介在させる特許請求
の範囲第1項記載の希土類磁石の製法。
(2) Sintering is performed with the molded body sandwiched between a base and a presser plate, and there is also a gap of 20 μm to 500 μm between the molded body and the presser plate.
A method for producing a rare earth magnet according to claim 1, wherein particulate matter having a particle size of μm is dispersed.
(3)粒状物質が希土類金属を含む金属間化合物粉末で
ある特許請求の範囲第1項または第2項記載の希土類磁
石の製法。
(3) The method for producing a rare earth magnet according to claim 1 or 2, wherein the granular material is an intermetallic compound powder containing a rare earth metal.
(4)金属間化合物粉末が、圧粉成形体と同種の希土類
金属間化合物粉末である特許請求の範囲第3項記載の希
土類磁石の製法。
(4) The method for producing a rare earth magnet according to claim 3, wherein the intermetallic compound powder is the same kind of rare earth intermetallic compound powder as that of the green compact.
(5)粒状物質が、圧粉成形体よりも高い融点の希土類
金属間化合物粉末である特許請求の範囲第1項から第4
項までのいずれかに記載の希土類磁石の製法。
(5) Claims 1 to 4, wherein the granular material is a rare earth intermetallic compound powder having a higher melting point than the green compact.
A method for producing a rare earth magnet as described in any of the preceding paragraphs.
JP2878785A 1985-02-15 1985-02-15 Production of rare earth magnet Pending JPS61190005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2878785A JPS61190005A (en) 1985-02-15 1985-02-15 Production of rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2878785A JPS61190005A (en) 1985-02-15 1985-02-15 Production of rare earth magnet

Publications (1)

Publication Number Publication Date
JPS61190005A true JPS61190005A (en) 1986-08-23

Family

ID=12258137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2878785A Pending JPS61190005A (en) 1985-02-15 1985-02-15 Production of rare earth magnet

Country Status (1)

Country Link
JP (1) JPS61190005A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393105A (en) * 1986-10-08 1988-04-23 Fuji Elelctrochem Co Ltd Manufacture of isotropic bonded magnet
JPS6393104A (en) * 1986-10-08 1988-04-23 Fuji Elelctrochem Co Ltd Manufacture of anisotropic bonded magnet
JPS63155605A (en) * 1986-12-18 1988-06-28 Fuji Elelctrochem Co Ltd Manufacture of radially anisotropic bond magnet
JPH01180905A (en) * 1988-01-12 1989-07-18 Tokin Corp Method for sintering alloy powder
JP2007258377A (en) * 2006-03-22 2007-10-04 Tdk Corp Method of manufacturing rare earth sintered magnet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393105A (en) * 1986-10-08 1988-04-23 Fuji Elelctrochem Co Ltd Manufacture of isotropic bonded magnet
JPS6393104A (en) * 1986-10-08 1988-04-23 Fuji Elelctrochem Co Ltd Manufacture of anisotropic bonded magnet
JPS63155605A (en) * 1986-12-18 1988-06-28 Fuji Elelctrochem Co Ltd Manufacture of radially anisotropic bond magnet
JPH01180905A (en) * 1988-01-12 1989-07-18 Tokin Corp Method for sintering alloy powder
JP2007258377A (en) * 2006-03-22 2007-10-04 Tdk Corp Method of manufacturing rare earth sintered magnet

Similar Documents

Publication Publication Date Title
JP3932143B2 (en) Magnet manufacturing method
US3739445A (en) Powder metal magnetic pole piece
US3814598A (en) Wear resistant powder metal magnetic pole piece made from oxide coated fe-al-si powders
JPS61190005A (en) Production of rare earth magnet
JPS61139637A (en) Target for sputter and its manufacture
JP3693838B2 (en) Alloy ribbon for rare earth magnet, alloy fine powder, and production method thereof
JPS63238268A (en) Production of target for sputtering
JP2001107226A (en) Co SERIES TARGET AND ITS PRODUCTION METHOD
JP2019062153A (en) Method for manufacturing r-t-b-based sintered magnet
JPS61148808A (en) Manufacture of rare earth magnet
JPS5848608A (en) Production of permanent magnet of rare earths
JPS62274033A (en) Manufacture of rare earth-transition metal alloy target
JPH0787132B2 (en) Sm-Co magnet sintering method
KR19980033787A (en) Method for manufacturing iron-silicon sintered soft magnetic alloy
JP3997527B2 (en) Method for producing Ru-Al intermetallic compound target, Ru-Al intermetallic compound target, and magnetic recording medium
JP2002226970A (en) Co TARGET AND PRODUCTION METHOD THEREFOR
JPH0436563B2 (en)
JPS61229314A (en) Target material and manufacture thereof
JP2019062156A (en) Method for manufacturing r-t-b based sintered magnet
JPS61119009A (en) Manufacture of rare-earth cobalt magnet
JP3492884B2 (en) Method for producing soft magnetic sintered metal
JPS5923803A (en) Production of magnet consisting of rare earth element
JPS61195902A (en) Sintering method of rare earth magnet
JPH0768611B2 (en) Method for manufacturing alloy target for sputtering
JPS61117804A (en) Mn-zn system soft ferrite and manufacture thereof