JPS61119009A - Manufacture of rare-earth cobalt magnet - Google Patents

Manufacture of rare-earth cobalt magnet

Info

Publication number
JPS61119009A
JPS61119009A JP59241057A JP24105784A JPS61119009A JP S61119009 A JPS61119009 A JP S61119009A JP 59241057 A JP59241057 A JP 59241057A JP 24105784 A JP24105784 A JP 24105784A JP S61119009 A JPS61119009 A JP S61119009A
Authority
JP
Japan
Prior art keywords
sintering
rare earth
container
oxide
earth cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59241057A
Other languages
Japanese (ja)
Inventor
Takayoshi Sato
隆善 佐藤
Kinya Ishihara
石原 欣弥
Hiroyuki Tobe
戸部 博之
Kimio Uchida
内田 公穂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP59241057A priority Critical patent/JPS61119009A/en
Publication of JPS61119009A publication Critical patent/JPS61119009A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Abstract

PURPOSE:To obtain the magnet of high density having high magnetic characteristics by a method wherein a specific oxide is coated on a sintering case. CONSTITUTION:A molded body, obtained by press-molding rare-earth cobalt alloy powder, is placed in a sintering case. When said sintering case is retained in a sintering furnace and a sintering process is goint to be performed thereon, the inside surface of the sintering cas is coated by the oxide such as a rare-earth oxide (Y2O3) or MgO, CaO and the like by performing a coating, a flame spraying, or a vapor deposition method and the like. The molded body is placed in the sintering case, and a sintering treatment is performed. As a result, the baking reaction generating between the sintered body and the sintering case can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は希土類コバルト磁石の製造方法に関するもので
特に焼結体の焼結容器との焼付反応を防止し、高密度で
かつ高磁気特性を有する希土類コバルト磁石を得る焼結
方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a rare earth cobalt magnet, and in particular, a method for manufacturing a rare earth cobalt magnet, which prevents a seizure reaction between a sintered body and a sintered container, and has high density and high magnetic properties. The present invention relates to a sintering method for obtaining a rare earth cobalt magnet.

〔従来の技術〕[Conventional technology]

希土類コバルト金属間化合物は希土類金属の含有量によ
り種々のCoR相(以下RはSm、Pr、Ce等の希土
類金属を表わす)を形成することはよく知られているが
、現在実用化されているのはRCo。
It is well known that rare earth cobalt intermetallic compounds form various CoR phases (hereinafter R represents rare earth metals such as Sm, Pr, Ce, etc.) depending on the content of rare earth metals, but this is not currently in practical use. The one is RCo.

系およびR,Co、、系の希土類コバルト磁石である。and R, Co, rare earth cobalt magnets.

RCO,系永久磁石(例えば特公昭48−364号、特
開昭46−6503〜6505号の各公報参照)は、最
初に実用化され、保磁力(rHc )が高い(一般に1
0KOe以上)という利点を有する。
RCO, type permanent magnets (see, for example, Japanese Patent Publications No. 48-364 and Japanese Patent Application Laid-open Nos. 46-6503 to 6505) were the first to be put to practical use and had a high coercive force (rHc) (generally 1
0 KOe or more).

一方、馬cOty系永久磁石(例えば特開昭50−11
1599号、同52−115000号、同56−156
754号、同57−12E1905号、特公昭55−5
0100号の各公報参照)は、最大エネルギー積が高い
(一般に22MG・00以上)という利点を有する。
On the other hand, horse cOty type permanent magnets (for example,
No. 1599, No. 52-115000, No. 56-156
No. 754, No. 57-12E1905, Special Publication No. 55-5
0100) has the advantage of having a high maximum energy product (generally 22MG·00 or more).

上述した希土類コバルト磁石の製造工程は、一般に次の
とうりである。まず各原料を所定の成分となるように調
整し、これらを溶解して得られたインゴットを、所定の
粒径に粉砕する。この原料粉末あるいは還元拡散法によ
り準備した原料粉末を磁場中でプレス成形して成形体を
得る。この成形体を真空(10″′2〜10″″6 T
orr程度)、水素ガスまたは不活性ガス雰囲気中で焼
結して焼結体を得る。
The manufacturing process of the rare earth cobalt magnet described above is generally as follows. First, each raw material is adjusted to have a predetermined composition, and an ingot obtained by melting these is pulverized to a predetermined particle size. This raw material powder or the raw material powder prepared by the reduction diffusion method is press-molded in a magnetic field to obtain a compact. This molded body is heated under vacuum (10''2 to 10''6 T
orr) in a hydrogen gas or inert gas atmosphere to obtain a sintered body.

そして、得られた焼結体に熱処理を施して永久磁石合金
を得る。
Then, the obtained sintered body is heat treated to obtain a permanent magnet alloy.

〔発明の解決しようとする問題点〕[Problem to be solved by the invention]

上記の焼結工程において、成形体はステンレス鋼等の耐
熱鋼またはモリブデン、タングステン製等の材料からな
る焼結容器内に装填される。この場合、焼結容器内に直
接成形体を装填して且的とする焼結温度で焼結すると焼
結体と焼結容器との間に焼付反応が生じる。この現象を
防止するため、通常は焼結温度を目的とした温度より0
.5〜10%だけ低(して焼結を行なっている。従って
得られた焼結体の密度が低下し、残留磁束密度(Br)
も目標とする値の95〜98%しか得られないという問
題がある。
In the above-mentioned sintering process, the molded body is loaded into a sintering container made of heat-resistant steel such as stainless steel or a material such as molybdenum or tungsten. In this case, when the molded body is directly loaded into the sintering container and sintered at a target sintering temperature, a sintering reaction occurs between the sintered body and the sintering container. To prevent this phenomenon, the sintering temperature is usually set to 0.
.. Sintering is carried out by reducing the residual magnetic flux density (Br) by 5 to 10%.
However, there is a problem in that only 95 to 98% of the target value can be obtained.

本発明は、上記従来焼結方法を鑑み、希土類コバルト磁
石の製造に際して、焼結時に焼結体と焼結容器との焼付
反応を防止し、目的の焼結温度での焼結処理を可能とし
、高密度、高磁気特性を有する希土類コバルト磁石を得
ることができる焼結方法を提供することを且的とする。
In view of the above-mentioned conventional sintering method, the present invention prevents the sintering reaction between the sintered body and the sintering container during sintering and enables the sintering process at the desired sintering temperature when manufacturing rare earth cobalt magnets. It is also an object of the present invention to provide a sintering method capable of obtaining rare earth cobalt magnets with high density and high magnetic properties.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の希土類コバルト磁石の製造方法は、希土類コバ
ルト合金粉末をプレス成形して得られた成形体を焼結容
器内に装填し、この容器を焼結炉内に保持して焼結する
場合に該焼結容器内表面を希土類酸化物(Yt Osも
含む)またはMgO,CaO等の酸化物で塗布、溶射お
よび蒸着等の手法により被覆せしめ、その焼結容器内に
上記成形体を装填して、焼結処理することにより焼結体
と焼結容器間の焼付反応を防止するものである。以下本
発明について詳細に説明する。
The method for producing a rare earth cobalt magnet of the present invention involves loading a compact obtained by press-molding rare earth cobalt alloy powder into a sintering container, and holding the container in a sintering furnace for sintering. The inner surface of the sintered container is coated with a rare earth oxide (including YtOs) or an oxide such as MgO, CaO, etc. by coating, thermal spraying, vapor deposition, etc., and the molded body is loaded into the sintered container. The sintering process prevents a seizure reaction between the sintered body and the sintered container. The present invention will be explained in detail below.

従来方法では、焼結進行時に焼結体から希土類蒸気が発
生し、焼結容器の焼結体との接触面を活性化させるため
に両者間に焼付反応が生じることがわかった。本発明者
等はその防止策を種々検討した結果、上記容器の少なく
とも焼結体(容器内への装填時は成形体)と接触する部
分を焼結時に発生する希土類蒸気に還元されずかつ、焼
結の進行を阻害しない物質で防止すれば良いことを見出
した。第1図に希土類および主だった酸化物生成標準エ
ネルギーと温度の関係を示したものである。
It has been found that in the conventional method, rare earth vapor is generated from the sintered body during sintering, and a sintering reaction occurs between the two to activate the contact surface of the sintering container with the sintered body. As a result of studying various preventive measures, the present inventors have found that at least the portion of the container that comes into contact with the sintered body (the molded body when loaded into the container) is not reduced to the rare earth vapor generated during sintering, and It has been found that this can be prevented by using a substance that does not inhibit the progress of sintering. Figure 1 shows the relationship between standard energy of rare earth and major oxide formation and temperature.

第1図よりエネルギーが低いほど酸化しやすく還元しに
くいことがわかる。すなわち第1図は、その物質が酸化
した場合還元されず安定であることを示している。よっ
て、第1図より成形体に含有される希土類元素と同一ま
たは該希土類元素よりもエネルギーの低い希土類元素の
酸化物(YtO。
From Figure 1, it can be seen that the lower the energy, the easier it is to oxidize and the harder it is to reduce. That is, FIG. 1 shows that when the substance is oxidized, it is not reduced and is stable. Therefore, from FIG. 1, an oxide of a rare earth element (YtO) having the same or lower energy than the rare earth element contained in the molded body.

含む)またはMgO、CaOにて焼結容器の内面を被覆
することにより、焼結容器は焼結処理時に焼結体より発
生する希土類蒸気に還元されず焼結体との焼付反応を防
止できる。ここで、焼結容器への上記酸化物の被覆は塗
布、溶射、蒸着方法等の公知等で行なうことができる。
By coating the inner surface of the sintered container with MgO or CaO, the sintered container is not reduced to rare earth vapor generated from the sintered body during the sintering process, and a seizure reaction with the sintered body can be prevented. Here, the sintering container can be coated with the above-mentioned oxide by a known method such as coating, thermal spraying, or vapor deposition.

実施例1 am (Cobal Feo、20 Cuo、+ zr
O,o+2) 7.017)組成を有するブロック状成
形体(重さ1oog)1を、第2Mに云す上へかモリブ
デン朧の溶結容器2内に装填した。この容器2は、その
内面上酸化サマリウム(Smt O3)粉末3を塗布し
たものである。成形体1を装填した後、モリブデン製の
焼結7タ4を載置した。この焼結容器を焼結炉に入れ、
真空中(10−2〜10− Torr )で1200℃
×油の条件にて焼結処理を行なった。このようにして得
られた焼結体は焼付反応は皆無であった。tX1表に最
適熱処理後の磁気特性を示す。
Example 1 am (Cobal Feo, 20 Cuo, + zr
A block-shaped molded body (weight 10og) 1 having the composition 7.017) was loaded into a molybdenum haze welding container 2 as described in No. 2M. This container 2 has samarium oxide (Smt O3) powder 3 coated on its inner surface. After loading the compact 1, a molybdenum sintered 7-piece 4 was placed. Put this sintering container into a sintering furnace,
1200℃ in vacuum (10-2 to 10-Torr)
The sintering treatment was performed under ×oil conditions. The sintered body thus obtained had no seizure reaction. The magnetic properties after the optimum heat treatment are shown in the tX1 table.

比較例として従来法(Sm、 O,で被覆しない容器を
使用し、焼結温度を1195°Cとした)での密度と磁
気特性を示す。第1表から、本発明を適用することによ
り、高い密度が得られまた高磁気特性を有する希土類コ
バルト磁石合金が得られることがわかる。
As a comparative example, the density and magnetic properties of a conventional method (a container not coated with Sm, O, and a sintering temperature of 1195°C) are shown. Table 1 shows that by applying the present invention, rare earth cobalt magnet alloys with high density and high magnetic properties can be obtained.

実施例2 8m (Cobal Feα25Cuα055 Hfα
02)75の組成を有するブロック状成形体(重さ7g
)5を焼結する場合、第3図に示すような構造の焼結容
器を用いた。この焼結容器はモリブデン製の棚板6の上
面、ステンレス製の容器7の内面、7タ8には酸化サマ
リウムを溶射して製作した。この焼結容器内に成形体5
を第3図に示すように装填して、焼結炉に入れ水素ガス
雰囲気中で1185℃X2hの条件にて焼結処理を行な
った。このようにして焼結処理して得られた焼結体はモ
リブデン製の棚板との焼付反応は生じなかった。第2表
に熱処理後の磁気特性の測定結果を示す。
Example 2 8m (Cobal Feα25Cuα055 Hfα
02) Block-shaped molded product having a composition of 75 (weight 7g
) 5, a sintering container having a structure as shown in FIG. 3 was used. This sintered container was manufactured by thermally spraying samarium oxide onto the upper surface of the molybdenum shelf board 6, the inner surface of the stainless steel container 7, and the container 7. A molded body 5 is placed in this sintering container.
were loaded as shown in FIG. 3, placed in a sintering furnace, and sintered at 1185° C. for 2 hours in a hydrogen gas atmosphere. The sintered body obtained by sintering in this manner did not cause any seizure reaction with the molybdenum shelf board. Table 2 shows the measurement results of magnetic properties after heat treatment.

比較例として従来法(Sm103の溶射なしない容器を
用い、焼結温度を1180℃とした)での結果も示す。
As a comparative example, results obtained using a conventional method (using a container without thermal spraying of Sm103 and setting the sintering temperature at 1180° C.) are also shown.

第2表より本発明による方法により高特性な有する希土
類コバルト磁石合金が得られることがわかる。
It can be seen from Table 2 that rare earth cobalt magnet alloys having high properties can be obtained by the method according to the present invention.

実施例3 Smo、s Ceo、s (Cobal Feo、m 
Cuo、o6zro、o+s) 7.4 tn組成を有
するリング状成形体(重さ500g)9を焼結する場合
に、第4図に示すような内面に酸化カルシウム11を塗
布したチタン製の焼結容器10に成形体9を装填して、
酸化カルシウム91:塗布したチタン製の7タ12を載
置した。この焼結容器を焼結炉に装入し水素ガス雰囲気
中で1170’CX2hで焼結を行なった。こうして焼
結処理した焼結体は焼付反応はなく均一に焼結できた。
Example 3 Smo,s CEO,s (Cobal Feo,m
Cuo, o6zro, o+s) 7.4 When sintering a ring-shaped molded body (weight 500 g) 9 having a tn composition, a titanium sintered body coated with calcium oxide 11 on the inner surface as shown in Fig. 4 is used. Loading the molded body 9 into the container 10,
Calcium oxide 91: A coated titanium 7ta 12 was placed. This sintering container was placed in a sintering furnace and sintered at 1170'CX for 2 hours in a hydrogen gas atmosphere. The sintered body thus sintered could be sintered uniformly without any seizure reaction.

第3表に熱処理後の磁気特性を示す。Table 3 shows the magnetic properties after heat treatment.

比較例として従来法(CaO塗布なしの容器を用い、焼
結温度は1170°Cとした)での密度と磁気特性を示
す。第3表から本発明方法に従って焼結することにより
高い密度と高磁気特性を有する希土類コバルト磁石合金
が得られることがわかる。
As a comparative example, the density and magnetic properties in a conventional method (a container without CaO coating was used, and the sintering temperature was 1170°C) are shown. Table 3 shows that rare earth cobalt magnet alloys having high density and high magnetic properties can be obtained by sintering according to the method of the present invention.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば、焼結容器を特定の醸化
物で被覆するため、焼結時の焼付反応を防止でき、かつ
得られた希土類コバルト磁石合金は従来法により得られ
た磁石合金に比べ高密度でかつ高磁気特性を有するので
、その工業的価値は極めて大である。
As described above, according to the present invention, since the sintering container is coated with a specific compound, the sintering reaction during sintering can be prevented, and the obtained rare earth cobalt magnet alloy is different from the magnet obtained by the conventional method. Since it has higher density and higher magnetic properties than alloys, its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

tX1図は一般的な希土類を主とした醸化物生成標準エ
ネルギーと温度の関係を示す図、第2図。 第3図、第4図は本発明に使用する焼結容器の断面図で
ある。 i、5,9 :成形体、    2:モリブデン製焼結
d器、3二酸化サマリウム粉末、4:モリブデン製フタ
、6:酸化サマリウム溶射モリブデン製板、7二酸化サ
マリウム溶射ステンレス製箱、8:酸化サマリウム溶射
ステンレス製フタ、10:チタン製箱、 11:酸化カルシウム粉末、 12:チタン製フタ。 第 1 コ 第20 馬40
The tX1 diagram is a diagram showing the relationship between standard energy and temperature for producing a common rare earth-based ferment, Figure 2. 3 and 4 are cross-sectional views of the sintered container used in the present invention. i, 5, 9: Molded body, 2: Molybdenum sintered device, 3 Samarium dioxide powder, 4: Molybdenum lid, 6: Samarium oxide sprayed molybdenum plate, 7 Samarium dioxide sprayed stainless steel box, 8: Samarium oxide Sprayed stainless steel lid, 10: Titanium box, 11: Calcium oxide powder, 12: Titanium lid. 1st Co. 20th Horse 40

Claims (1)

【特許請求の範囲】 1、希土類コバルト合金粉末を成形し、得られた成形体
を焼結容器内に装填し、該焼結容器を焼結炉内に保持し
て焼結する希土類コバルト磁石の製造方法において、前
記焼結容器の内面を焼結時に発生する希土類蒸気により
還元されずかつ焼結の進行を阻害しない酸化物で被覆し
、当該焼結容器内に前記成形体を装填することを特徴と
する希土類コバルト磁石の製造方法。 2、酸化物として希土類酸化物、MgO又はCaOの内
から選ばれた1種類を用いる特許請求の範囲第1項記載
の希土類コバルト磁石の製造方法。
[Claims] 1. A rare earth cobalt magnet in which rare earth cobalt alloy powder is molded, the resulting compact is loaded into a sintering container, and the sintering container is held in a sintering furnace for sintering. In the manufacturing method, the inner surface of the sintering container is coated with an oxide that is not reduced by rare earth vapor generated during sintering and does not inhibit the progress of sintering, and the molded body is loaded into the sintering container. A manufacturing method for rare earth cobalt magnets. 2. The method for producing a rare earth cobalt magnet according to claim 1, using one selected from rare earth oxides, MgO, and CaO as the oxide.
JP59241057A 1984-11-15 1984-11-15 Manufacture of rare-earth cobalt magnet Pending JPS61119009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59241057A JPS61119009A (en) 1984-11-15 1984-11-15 Manufacture of rare-earth cobalt magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59241057A JPS61119009A (en) 1984-11-15 1984-11-15 Manufacture of rare-earth cobalt magnet

Publications (1)

Publication Number Publication Date
JPS61119009A true JPS61119009A (en) 1986-06-06

Family

ID=17068664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59241057A Pending JPS61119009A (en) 1984-11-15 1984-11-15 Manufacture of rare-earth cobalt magnet

Country Status (1)

Country Link
JP (1) JPS61119009A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02272711A (en) * 1989-04-14 1990-11-07 Hitachi Metals Ltd Manufacture of r-tm-b radial anisotropic magnet
WO2003005383A1 (en) * 2001-07-02 2003-01-16 Sumitomo Special Metals Co., Ltd. Method for producing rare earth sintered magnets
US6548014B2 (en) 2000-06-21 2003-04-15 Sumitomo Special Metals Co., Ltd. Suspension application apparatus and method for manufacturing rare earth magnet
JP2014145129A (en) * 2013-01-29 2014-08-14 Yantai Shougang Magnetic Materials Inc Method of manufacturing r-t-b-m-c-based sintered magnet, magnet manufactured by the method, and manufacturing device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02272711A (en) * 1989-04-14 1990-11-07 Hitachi Metals Ltd Manufacture of r-tm-b radial anisotropic magnet
US6548014B2 (en) 2000-06-21 2003-04-15 Sumitomo Special Metals Co., Ltd. Suspension application apparatus and method for manufacturing rare earth magnet
WO2003005383A1 (en) * 2001-07-02 2003-01-16 Sumitomo Special Metals Co., Ltd. Method for producing rare earth sintered magnets
US7014811B2 (en) 2001-07-02 2006-03-21 Neomax Co., Ltd. Method for producing rare earth sintered magnets
JP2014145129A (en) * 2013-01-29 2014-08-14 Yantai Shougang Magnetic Materials Inc Method of manufacturing r-t-b-m-c-based sintered magnet, magnet manufactured by the method, and manufacturing device
US9672980B2 (en) 2013-01-29 2017-06-06 Yantai Shougang Magnetic Materials Inc. R-T-B-M-C sintered magnet and production method and an apparatus for manufacturing the R-T-B-M-C sintered magnet

Similar Documents

Publication Publication Date Title
US7871474B2 (en) Method for manufacturing of insulated soft magnetic metal powder formed body
CN101927344B (en) Method for producing soft magnetic metal powder coated with mg-containing oxidized film and method for producing composite soft magnetic material using the powder
JP4010296B2 (en) Method for producing soft magnetic powder material
WO2016093173A1 (en) Production method for r-t-b-based sintered magnet
JPWO2016093174A1 (en) Method for producing RTB-based sintered magnet
US6723179B2 (en) Soft magnetism alloy powder, treating method thereof, soft magnetism alloy formed body, and production method thereof
JPS61119009A (en) Manufacture of rare-earth cobalt magnet
US3775328A (en) Composite soft magnetic materials
JP4883755B2 (en) Oxide film-coated Fe-Si-based iron-based soft magnetic powder, manufacturing method thereof, composite soft magnetic material, reactor core, reactor, electromagnetic circuit component, and electrical equipment
JPH04311543A (en) Ag-sno-ino electrical contact material and production thereof
KR101620032B1 (en) FeSiAl soft magnetic composite powders on which an heat-resistant oxide insulation film is formed, and powder core thereof
US3892600A (en) Annealed coated air-stable cobalt-rare earth alloy particles
EP0541887B1 (en) Method of making a composite soft magnetic material and composite soft magnetic material
JPH0475304B2 (en)
JP2002231518A (en) Soft magnetic powder and dust core formed thereof
JP2002075721A (en) Dust core
JPS5848608A (en) Production of permanent magnet of rare earths
US3892601A (en) Coated air-stable cobalt-rare earth alloy particles and method
JP4480627B2 (en) Composite soft magnetic powder and method for producing the same
JP2006233325A (en) IRON POWDER COATED WITH OXIDE FILM CONTAINING Mg
JPS63219548A (en) Production of permanent magnet
JPS61190005A (en) Production of rare earth magnet
JPS6362204A (en) Permanent magnet having improved corrosion resistance and its manufacture
JPH0237081B2 (en) EIKYUJISHAKUNOSEIZOHOHO
US2873512A (en) Ferro magnetic core materials and methods of producing same