JPS61189667A - Emitter short-circuit structure of semiconductor device - Google Patents

Emitter short-circuit structure of semiconductor device

Info

Publication number
JPS61189667A
JPS61189667A JP2985685A JP2985685A JPS61189667A JP S61189667 A JPS61189667 A JP S61189667A JP 2985685 A JP2985685 A JP 2985685A JP 2985685 A JP2985685 A JP 2985685A JP S61189667 A JPS61189667 A JP S61189667A
Authority
JP
Japan
Prior art keywords
layer
short
emitter
turn
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2985685A
Other languages
Japanese (ja)
Inventor
Naohiro Shimizu
尚博 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP2985685A priority Critical patent/JPS61189667A/en
Publication of JPS61189667A publication Critical patent/JPS61189667A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0834Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thyristors (AREA)

Abstract

PURPOSE:To realize the reduction in turn-off time by rapidly extracting carriers present in the upper part of a P-type emitter at the time of turn-off, by a method wherein an emitter short-circuit auxiliary layer narrower than an emitter short-circuit layer is formed in parallel with the latter layer inside the P-type emitter layer having the emitter short-circuit layer. CONSTITUTION:When reverse bias is impressed across terminals G and K at the time of turn-off, holes (h) are led out of a P<+> layer 4 to a gate electrode 8, and a depletion layer 3 generates at a channel 3a. Then, because of few carriers passing in the neighborhood of the channel 3, the SI thyristor comes toward the off-state. On the other hand, carriers beginning to float in the NB layer 3, particularly electrons (c), are swept away from an N<+> short-circuit layer 2 and an N<+> short-circuit auxiliary layer 11 as shown by arrows (6) and (3). This enables the sweep of electrons (e) determining the suitability of turn-off such as tail time to reduce the turn-off time by providing the layer 11 in addition to the layer 2 of the conventional case.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は半導体装置、特にPまたはNゲート3端子自己
消弧形サイリスタのエミッタ短絡構造の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a semiconductor device, particularly to an improvement in the emitter short-circuit structure of a P or N gate three-terminal self-extinguishing thyristor.

(0)  従来の技術 靜ttS導サイリスタ(以下SIサイリスタという)や
ゲートターンオフサイリスタなどに有するエミッタ短絡
構造としては、スイッチング時間の短絡および高温での
漏れ電流の低減を図るために、特にアノード電極側のP
形エミッタ層に、この膚とは逆のN形の層で、ウェハ基
板と同形の拡散を行ったものが一般的である。
(0) Conventional technology The emitter short-circuit structure of S-conducting thyristors (hereinafter referred to as SI thyristors), gate turn-off thyristors, etc. is designed to shorten the switching time and reduce leakage current at high temperatures, especially on the anode electrode side. P of
Generally, the N-type emitter layer is an N-type layer opposite to the skin, and is diffused in the same shape as the wafer substrate.

そして、このアノード電極表面上でのN形の拡散層の占
める割合をP形エミッタ層短絡率(以下PE短絡率とい
う)と称し、PII短絡率が素子性能に及ぼす影響は次
のようなものである。
The proportion of the N-type diffusion layer on the surface of the anode electrode is called the P-type emitter layer short-circuit rate (hereinafter referred to as PE short-circuit rate), and the influence that the PII short-circuit rate has on device performance is as follows. be.

すなわち長所としては、 (1)  素子をターンオフさせたときに生ずる基板内
の浮遊キャリアを素速く短絡孔から引き出させることが
できるので、ターンオフに要する時間は減少し、スイッ
チングの高速化となる。
That is, the advantages are as follows: (1) Floating carriers in the substrate that are generated when the device is turned off can be quickly drawn out from the shorting hole, so the time required for turn-off is reduced and switching speed is increased.

(2)ターンオフの際、P形エミッタ層からの余計なキ
ャリア注入が減少し、また高温でオフ時の漏れ電流も少
なくなるので電力損失が減少する。
(2) During turn-off, unnecessary carrier injection from the P-type emitter layer is reduced, and leakage current during off-time at high temperatures is also reduced, resulting in reduced power loss.

また短所としては、 P形エミッタ層からのキャリア注入が前述したごとく減
少するので、ターンオンの際、電流が流れにくい。また
、オン状態で順電圧降下が増して発熱し、電力損失が増
加する。
Another drawback is that carrier injection from the P-type emitter layer is reduced as described above, so current is difficult to flow during turn-on. Further, in the on state, the forward voltage drop increases, heat is generated, and power loss increases.

以上のように、エミッタ短絡構造を有する素子には一長
一短があり、設計に際しては前述パラメーターのトレー
ドオフ関係を基準にして行われる。
As described above, elements having an emitter short-circuit structure have advantages and disadvantages, and the design is performed based on the trade-off relationship among the parameters described above.

また、P形エミッタ層の幅はN形エミッタ層を有するエ
ピタキシャル成長せしめたN形層の狭い側の幅より広く
取られている。すなわち、サイリスタの場合、後述する
PB Na PB Ng構造となっており、NB層がP
a層に向って深いためPa層よりのキャリア注入が少な
いと点弧しなくなる。故に、一般的に知られているV短
絡孔での231層短絡は、PB層の囲って行われている
。従って、後述する本発明はこれらの点を踏えて発明さ
れたものである。
Also, the width of the P-type emitter layer is greater than the width of the narrow side of the epitaxially grown N-type layer with the N-type emitter layer. That is, in the case of a thyristor, it has a PB Na PB Ng structure, which will be described later, and the NB layer is P
Since it is deep toward the a layer, if there is less carrier injection from the Pa layer, ignition will not occur. Therefore, the 231 layer short circuit using the generally known V short circuit hole is performed by surrounding the PB layer. Therefore, the present invention, which will be described later, was invented taking these points into consideration.

さて、従来のPゲート3端子自己消弧形のSIサイリス
タのエミッタ短絡構造の一例を第3図〜第5図に基づい
て説明する。
Now, an example of the emitter short-circuit structure of a conventional P-gate three-terminal self-extinguishing SI thyristor will be described with reference to FIGS. 3 to 5.

第3図(a) 、 (b)は従来のものの一例を示し、
(a)図はその外観を示す平面図、(b)図は(a)図
の部分図であり、第4図(a) 、 (b)は第3図(
a)に示す矢視A −A′。
Figures 3(a) and 3(b) show an example of the conventional one,
Figure (a) is a plan view showing the external appearance, Figure (b) is a partial view of Figure (a), and Figures 4 (a) and (b) are Figure 3 (
Arrow view A-A' shown in a).

B −B’のそれぞれを示す断面図、第5図tal 、
 (b)は第3図(a)に示すものの作用を説明するた
めの説明図である。
A sectional view showing each of B-B', Fig. 5 tal,
(b) is an explanatory diagram for explaining the effect of what is shown in FIG. 3(a).

第3図(a) 、 (b)および第4図(a) 、 (
b)において、1はP形エミッタ層(以下PB層という
)、2!;tN形の短絡層(以下?短絡層という)、3
はN形の高抵抗領域基板(以下N8層という)、4はP
形のゲート拡散層(以下2層という)、3aは2層4に
囲まれたN8層3の部分を示すチャンネル部、5はエピ
タキシャル成長で形成せしめられたN形の層(以下N層
という)、6はN形のエミッタ層(以下N8層という)
、7はアルミニウム蒸着せしめられたカソード電極、8
はアルミニウム蒸着せしめられたゲート電極、9はアル
ミニウム合金のアノード電極、lOはPB層1.N+短
絡層2などから形成された第3図(a)に示すペレット
である。
Figure 3 (a), (b) and Figure 4 (a), (
In b), 1 is a P-type emitter layer (hereinafter referred to as PB layer), 2! ;tN type short circuit layer (hereinafter referred to as ? short circuit layer), 3
4 is an N-type high resistance region substrate (hereinafter referred to as N8 layer), and 4 is a P
a shaped gate diffusion layer (hereinafter referred to as 2 layers); 3a indicates a channel portion of the N8 layer 3 surrounded by 2 layers 4; 5 denotes an N type layer formed by epitaxial growth (hereinafter referred to as N layer); 6 is an N-type emitter layer (hereinafter referred to as N8 layer)
, 7 is a cathode electrode deposited with aluminum, 8
9 is an aluminum alloy anode electrode, IO is a PB layer 1. The pellet shown in FIG. 3(a) is formed from the N+ shorting layer 2 and the like.

すなわち第4図(a) 、 (b)に示す8Iサイリス
タは、N8層3と8層5の境界部に(a)図に示すごと
く格子状に2層4が埋め込まれており、8層5の上部に
N8層6、更にその上面にカソード電極7が形成され、
N8層3の下部にはPB層1およびPB層1の側面周辺
部にf短絡層2が形成され、更にその下面にアノード電
極9.モリブデン支持電極(図示せず)が形成され、更
にまた、8層5の周辺部は取り除かれ、2層4の表面が
一部露出せしめられ、この露出部分にゲート電極8が形
成されて第3図(a)に示すペレットlOを得るものか
ら構成されている。
In other words, in the 8I thyristor shown in FIGS. 4(a) and 4(b), two layers 4 are embedded in the boundary between the N8 layer 3 and the 8 layer 5 in a grid pattern as shown in FIG. An N8 layer 6 is formed on top of the N8 layer 6, and a cathode electrode 7 is formed on the top surface of the N8 layer 6.
Below the N8 layer 3, a PB layer 1 and an f-shorting layer 2 are formed around the side surfaces of the PB layer 1, and an anode electrode 9. A molybdenum supporting electrode (not shown) is formed, and furthermore, the peripheral part of the 8th layer 5 is removed to expose a part of the surface of the 2nd layer 4, a gate electrode 8 is formed on this exposed part, and a 3rd layer 5 is formed. It consists of what produces the pellets IO shown in Figure (a).

その作用を第5図(a) 、 (b)について詳述する
The effect will be explained in detail with reference to FIGS. 5(a) and 5(b).

第5図(a)はSIサイリスタがオン状態にあるとき、
(b)図はターンオフしたときを示す。
FIG. 5(a) shows when the SI thyristor is in the on state,
(b) The figure shows the state when turned off.

(a)図において、アノード電極9の端子A側を正極、
カソード電極7の端子に側を負極とする順バイアスとし
て電圧を印加すると、主電流がアノード電極9からカソ
ード電極7へ流れるノーマリオン型素子の動作を示す。
(a) In the figure, the terminal A side of the anode electrode 9 is the positive electrode,
When a voltage is applied to the terminal of the cathode electrode 7 as a forward bias with the negative electrode side, the main current flows from the anode electrode 9 to the cathode electrode 7, which shows the operation of a normally-on type element.

すなわち、キャリアとしての正孔りは、PI!1層1か
らN2層6に向って矢印■のごとく流れ、電子eIiN
B層6からPB層1に向って矢印■のごとく、またN8
層3からN短絡層2に向って矢印■のごとく流れる。
In other words, holes as carriers are PI! Flowing from the 1st layer 1 to the N2 layer 6 as shown by the arrow ■, electrons eIiN
From B layer 6 to PB layer 1, as shown by the arrow ■, again N8
It flows from the layer 3 toward the N-shorted layer 2 as shown by the arrow ■.

次にゲート電極8に負バイアスをかけると、SIサイリ
スタは(b)図に示すごとくターンオフとなる。
Next, when a negative bias is applied to the gate electrode 8, the SI thyristor is turned off as shown in FIG.

すなわち、N8層3に有する正孔りはP+層4に向って
矢印■のごとく流れ、電子eはN8層6からチャンネル
部3aに向って矢印■のごとく、またN8層3からr短
絡層2に向って矢印■のごとく流れる。
That is, the holes in the N8 layer 3 flow toward the P+ layer 4 as shown by the arrow (■), and the electrons e flow from the N8 layer 6 toward the channel portion 3a as shown by the arrow (■), and from the N8 layer 3 to the r-shorting layer 2. It flows like an arrow ■ toward .

(ハ)発明が解決しようとする問題点 かくして、上述したようなSIサイリスタの短絡構造で
は、ターンオフのときpg層1の上部に有するキャリア
、すなわち電子eを引き抜くことが遅れがちとなり、P
g層lの幅が広くなるとN短絡層2と2の間隔が長くな
って電子eはN+短絡層2に到達しずらくなり、一層遅
れがちとなってターンオフ時間がかかる。
(c) Problems to be Solved by the Invention Thus, in the short-circuit structure of the SI thyristor as described above, the extraction of carriers, that is, electrons e, present in the upper part of the pg layer 1 tends to be delayed during turn-off, and the
As the width of the g layer l increases, the distance between the N shorting layers 2 becomes longer, making it more difficult for the electrons e to reach the N+ shorting layer 2, and the electron e tends to be delayed further, resulting in a longer turn-off time.

よって、本発明の目的とするところは、上述したような
問題点を解決し、ターンオフ時間の短縮されたものを実
現することにある。
Therefore, an object of the present invention is to solve the above-mentioned problems and realize a device with a shortened turn-off time.

に)問題点を解決するための手段 そこで、上記の目的を達成するための本発明の構成は、
エミッタ短絡層を有するP形のエミッタ層の内部に、エ
ミッタ短絡層と並列にエミッタ短線層より幅の狭いエミ
ッタ短絡補助層を形成したものである。以下その作用を
、Pゲート3端子自己消弧形のSIサイリスタを例にと
り第1図、第2図を参照して詳述する。
Therefore, the structure of the present invention to achieve the above object is as follows:
An emitter shorting auxiliary layer having a width narrower than the emitter short line layer is formed in parallel with the emitter shorting layer inside a P-type emitter layer having an emitter shorting layer. The operation will be described below in detail with reference to FIGS. 1 and 2, taking a P-gate three-terminal self-extinguishing type SI thyristor as an example.

(ホ)実施例 第1図(a) 、 (b)は本発明にかかるSIサイリ
スタの一実施例を示し、(a) 、 (b)図は第4図
(a) 、 (b)に類した断面図、第2図(a) 、
 (b)は第5図(a) 、 (b)に類した説明図で
あり、図中、第4図と第5図の符合と同じものは同一構
成部分を示す。
(e) Embodiment FIGS. 1(a) and (b) show an embodiment of the SI thyristor according to the present invention, and FIGS. 1(a) and 1(b) are similar to FIGS. 4(a) and (b). Cross-sectional view, Fig. 2(a),
5(b) is an explanatory diagram similar to FIGS. 5(a) and 5(b), in which the same reference numerals as in FIG. 4 and FIG. 5 indicate the same components.

第1図(a) 、 (b)において、11はN+短絡層
2を有するPK層1′の内部に、N+短絡層2と並列に
t短絡層2の幅Wより狭い幅外のエミ、り短絡補助層(
以下N短絡補助層という)であり、これは所定の間隔で
もって3ケ所に形成されている。
In FIGS. 1(a) and 1(b), reference numeral 11 indicates an emitter layer 11 inside the PK layer 1' having the N+ shorting layer 2, in parallel with the N+ shorting layer 2, and having an outer width narrower than the width W of the t-shorting layer 2. Short circuit auxiliary layer (
(hereinafter referred to as N shorting auxiliary layer), which is formed at three locations at predetermined intervals.

すなわち、SIサイリスタは、定格が順阻止電圧500
 V 、平均オン電流がIOA 、大きさが10m口。
In other words, the SI thyristor has a forward blocking voltage rating of 500
V, average on-current is IOA, and size is 10m.

第3図(a)に示す10ケ所の長方形の単体の大きさが
pg層1′の幅〈が400μm、Y短絡補助層11の幅
外が20μm、PB短絡率が32チのものが使、用され
、−各部の構成はV短絡補助層11および211層1′
を除いて従来のものと同じである。
The size of the 10 rectangular units shown in FIG. 3(a) is such that the width of the pg layer 1' is 400 μm, the outside width of the Y shorting auxiliary layer 11 is 20 μm, and the PB shorting rate is 32 inches. - The structure of each part is V shorting auxiliary layer 11 and 211 layer 1'
It is the same as the conventional one except for.

N+短絡補助層11を拡散してPM層1′に形成する際
の最低必要なN+短絡補助層11の幅細は、N+短絡補
助層11の深さをdとした場合の1.6dと、アノード
電極9側に形成されるr短絡補助層11のパターンの最
低幅を加えた寸法となる。なお、パターン最低幅はアノ
ード電極9側の基板表面形状およびパ頌 ターン形成種変に左右されるところがあるが、ここでは
深さdを10μm、パターンの最低幅を4μmで形成さ
れ、N短絡補助層11の輻幅は20μmとなり第3図(
a)に示す長方形の短形側が300μmであることから
(1/15)倍となる。また、PR層1′の全体の幅は
、従来の技術の項で説明したごと<、N層5より広く取
られている。
The minimum required width of the N+ shorting auxiliary layer 11 when forming the N+ shorting auxiliary layer 11 by diffusion into the PM layer 1' is 1.6 d, where d is the depth of the N+ shorting auxiliary layer 11. The dimension is the sum of the minimum width of the pattern of the r-shorting auxiliary layer 11 formed on the anode electrode 9 side. Note that the minimum width of the pattern depends on the surface shape of the substrate on the anode electrode 9 side and the type of pattern formation, but here, the depth d is 10 μm, the minimum width of the pattern is 4 μm, and the N short circuit auxiliary The convergence width of layer 11 is 20 μm, as shown in Figure 3 (
Since the short side of the rectangle shown in a) is 300 μm, it is (1/15) times as large. Further, the overall width of the PR layer 1' is wider than the N layer 5, as explained in the section of the prior art.

次に、これらのものからなるSIサイリスタの作用を第
2図(a) 、 (b)に基づいて詳述する。
Next, the operation of the SI thyristor made of these components will be explained in detail based on FIGS. 2(a) and 2(b).

第2図(a)は素子がオン状態にある場合を示し、主電
流はh層1′からN1層6に向って流れている。
FIG. 2(a) shows a case where the device is in the on state, and the main current flows from the h layer 1' to the N1 layer 6.

このとき、従来のものと相異するところは、電子eがN
8層3かbN短絡補助層11へ矢印■のごとく流れ込ん
でいる。一方、N短絡補助層11を増すとPR短絡率が
増加してオン篭圧降下が増す傾向となるが、従来のもの
のPI短絡率30%が32俤となってもオン゛電圧降下
としての影響は出ない。
At this time, the difference from the conventional method is that the electron e is N
The 8th layer 3 flows into the bN shorting auxiliary layer 11 as shown by the arrow (■). On the other hand, increasing the N shorting auxiliary layer 11 tends to increase the PR short circuit rate and increase the on-line voltage drop, but even if the conventional PI short-circuit rate of 30% becomes 32 lines, there is no effect on the on-line voltage drop. It doesn't appear.

以上のごとく、オン状態においては従来のものとの相異
は殆んどないが、ターンオフ時には下記のごとく相異が
みられる。その様子を(b)図で説明する。
As described above, there is almost no difference from the conventional one in the on state, but the following differences are observed in the turn off state. The situation will be explained using figure (b).

すなわち(b)図において、端子G、に間に逆バイアス
が印加されると、2層4より正孔りがゲート電極8に引
き出され、チャンネル部3aに空乏層が発生し、チャン
ネル部3a付近を通り抜けるキャリアが殆んどなくなっ
て8Iサイリスタはオフ状態に向かう。
That is, in the figure (b), when a reverse bias is applied between the terminals G, holes are extracted from the second layer 4 to the gate electrode 8, a depletion layer is generated in the channel part 3a, and a depletion layer is generated in the vicinity of the channel part 3a. Almost no carrier passes through the 8I thyristor, and the 8I thyristor turns off.

一方、N8層3に浮遊しだすキャリア、特iこ電子Cは
、矢印■および■に示すごとく、?短絡層2およびイ短
絡補助層11よりはきだされる。このことによって、テ
ィル時間などターンオフの良否を決定する電子eのはき
だしは、従来のN+短絡層2  ゛のほかに本発明のr
短絡補助層11を設けたことによってターンオフ時間の
短縮を可能ならしめる。
On the other hand, the carriers, especially the electrons C, floating in the N8 layer 3 are as shown by the arrows ■ and ■. It is discharged from the shorting layer 2 and the shorting auxiliary layer 11. As a result, in addition to the conventional N+ shorting layer 2, the release of electrons e, which determines the quality of turn-off such as the till time, is made possible by using the present invention's r
By providing the short-circuit auxiliary layer 11, the turn-off time can be shortened.

すなわち、PR層1の3ケ所にN+短絡補助層11を設
けたことによって、電子流の移動距離が短かくなり、速
く電子eがはきだされるようになった。
That is, by providing the N+ short-circuit auxiliary layer 11 at three locations on the PR layer 1, the distance traveled by the electron flow was shortened, and the electrons e were ejected quickly.

なお、本実施例においてはN”/iを用いて説明を行っ
たが、N層を用いても同様の効果を得ることは周知のこ
とである。また、実施例としては半導体基板としてN形
高抵抗のものを使用したPゲート3端子自己消弧形サイ
リスタのエミッタ短絡構造についてのみ説明したが、N
ゲート3端子自己消弧形サイリスタについても同様の効
果があるこというまでもない。
Although this embodiment has been explained using N''/i, it is well known that the same effect can be obtained by using an N layer.Also, in this embodiment, an N-type semiconductor substrate is used. We have only explained the emitter short-circuit structure of a P-gate 3-terminal self-extinguishing type thyristor using a high-resistance one, but N
Needless to say, a similar effect can be obtained with a gate three-terminal self-extinguishing thyristor.

(へ)発明の効果 以上述べてきたように、本発明によれば、従来ターンオ
フ時間に1.3μSかかっていたものが、0.9μsに
短縮され、本発明のN+短絡補助層11をPR層1内に
設けても、順電圧降下、″tJL圧増幅率などの特性に
おいて従来のものと殆んど変わらずまた他の特性に悪影
響を及ぼさないことが確認された。
(F) Effects of the Invention As described above, according to the present invention, the turn-off time that conventionally took 1.3 μS is shortened to 0.9 μs, and the N+ shorting auxiliary layer 11 of the present invention is connected to the PR layer. It has been confirmed that even if it is provided within 1, the characteristics such as forward voltage drop and tJL pressure amplification factor are almost the same as those of the conventional type, and other characteristics are not adversely affected.

よって、本発明にかかる半導体装置のエミッタ短絡構造
は、実用的に極めて有用なものである。
Therefore, the emitter short circuit structure of the semiconductor device according to the present invention is extremely useful in practice.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) 、 (b)は本発明にかかるものの一実
施例を示し、 (a) 、 (b)図は第4図(a) 
、 (b)に類した断面図、第2図(a) 、 (b)
は第5図(a) 、 (b)に類した説明図、第3図(
a) 、 (b)は従来のものの一例を示し、(a)図
はその外観を示す平面図、(b)図は(a)図の部分図
、第4図(a) 、 (b)は第3図(alに示す矢視
A−A’、B−B’のそれぞれを示す断面図、第5図(
a) 、 (b)は第3図(a)に示すものの作用を説
明するための説明図である。 1・・・・・PR層、2・・・・・N+短絡層、11・
・・・・N+短絡補助層。
FIGS. 1(a) and (b) show an embodiment of the present invention, and FIGS. 1(a) and (b) show FIG. 4(a).
, sectional view similar to (b), Figure 2 (a), (b)
is an explanatory diagram similar to Figures 5(a) and (b), and Figure 3(
Figures a) and (b) show an example of a conventional one, (a) is a plan view showing its appearance, (b) is a partial view of (a), and Figures 4 (a) and (b) are Figure 3 (a sectional view taken along arrows A-A' and B-B' shown in al), Figure 5 (
3a) and 3(b) are explanatory diagrams for explaining the operation of what is shown in FIG. 3(a). 1...PR layer, 2...N+ shorting layer, 11...
...N+ short circuit auxiliary layer.

Claims (1)

【特許請求の範囲】[Claims]  PまたはNゲート3端子自己消弧形サイリスタのエミ
ッタ短絡構造において、エミッタ短絡層を有するP形の
エミッタ層の内部に、エミッタ短絡層と並列に前記エミ
ッタ短絡層より幅の狭いエミッタ短絡補助層を設けるこ
とを特徴とする半導体装置のエミッタ短絡構造。
In the emitter short-circuit structure of a P- or N-gate three-terminal self-extinguishing thyristor, an emitter short-circuit auxiliary layer having a width narrower than the emitter short-circuit layer is provided inside the P-type emitter layer having an emitter short-circuit layer in parallel with the emitter short-circuit layer. An emitter short-circuit structure for a semiconductor device, characterized in that it is provided with an emitter short-circuit structure.
JP2985685A 1985-02-18 1985-02-18 Emitter short-circuit structure of semiconductor device Pending JPS61189667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2985685A JPS61189667A (en) 1985-02-18 1985-02-18 Emitter short-circuit structure of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2985685A JPS61189667A (en) 1985-02-18 1985-02-18 Emitter short-circuit structure of semiconductor device

Publications (1)

Publication Number Publication Date
JPS61189667A true JPS61189667A (en) 1986-08-23

Family

ID=12287606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2985685A Pending JPS61189667A (en) 1985-02-18 1985-02-18 Emitter short-circuit structure of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61189667A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63257274A (en) * 1987-04-14 1988-10-25 Toyota Central Res & Dev Lab Inc Electrostatic induction semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527641A (en) * 1978-08-18 1980-02-27 Meidensha Electric Mfg Co Ltd Semiconductor control element
JPS56112753A (en) * 1980-02-13 1981-09-05 Hitachi Ltd Gate turn-off thyristor
JPS5940303A (en) * 1982-08-31 1984-03-06 Sony Corp Magnetic head device for magnetization of magnetic material
JPS59189672A (en) * 1983-04-13 1984-10-27 Hitachi Ltd Gate turn off thyristor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527641A (en) * 1978-08-18 1980-02-27 Meidensha Electric Mfg Co Ltd Semiconductor control element
JPS56112753A (en) * 1980-02-13 1981-09-05 Hitachi Ltd Gate turn-off thyristor
JPS5940303A (en) * 1982-08-31 1984-03-06 Sony Corp Magnetic head device for magnetization of magnetic material
JPS59189672A (en) * 1983-04-13 1984-10-27 Hitachi Ltd Gate turn off thyristor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63257274A (en) * 1987-04-14 1988-10-25 Toyota Central Res & Dev Lab Inc Electrostatic induction semiconductor device

Similar Documents

Publication Publication Date Title
EP0009367A1 (en) Gate turn-off thyristor
JPH02188967A (en) Semiconductor device
US4617583A (en) Gate turn-off thyristor
CN109065448A (en) Form method, the method for underlay pattern and the transistor of transistor
US3166448A (en) Method for producing rib transistor
JPS6074677A (en) Composite type thyristor
JP2007027440A (en) Semiconductor device
JPS61189667A (en) Emitter short-circuit structure of semiconductor device
JP3327571B2 (en) Semiconductor device
JP2513640B2 (en) Conduction modulation type MOSFET
JPS63289871A (en) Semiconductor device
JPS6153877B2 (en)
JPS6042624B2 (en) Field effect switching element
JP2604175B2 (en) High-speed switching thyristor
JPH026229B2 (en)
JPH0666043U (en) Semiconductor light emitting element
US2936410A (en) Silicon power transistor
JPH0832049A (en) Semiconductor device
JPS6013311B2 (en) Semiconductor controlled rectifier
KR100320676B1 (en) Thyristor device
JP2772215B2 (en) Static induction semiconductor device
JPH0878702A (en) Semiconductor device
JPS60189261A (en) Gate turn-off thyristor
JPS59197171A (en) Gate turnoff thyristor
JP3941335B2 (en) Junction field effect transistor