JPS6118861B2 - - Google Patents

Info

Publication number
JPS6118861B2
JPS6118861B2 JP52054285A JP5428577A JPS6118861B2 JP S6118861 B2 JPS6118861 B2 JP S6118861B2 JP 52054285 A JP52054285 A JP 52054285A JP 5428577 A JP5428577 A JP 5428577A JP S6118861 B2 JPS6118861 B2 JP S6118861B2
Authority
JP
Japan
Prior art keywords
oxide film
silicon nitride
film
nitride film
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52054285A
Other languages
Japanese (ja)
Other versions
JPS53139977A (en
Inventor
Mitsumasa Koyanagi
Juji Tanida
Shinpei Iijima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5428577A priority Critical patent/JPS53139977A/en
Publication of JPS53139977A publication Critical patent/JPS53139977A/en
Publication of JPS6118861B2 publication Critical patent/JPS6118861B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor

Landscapes

  • Local Oxidation Of Silicon (AREA)
  • Semiconductor Memories (AREA)

Description

【発明の詳細な説明】 (1) 発明の利用分野 本発明は、窒化シリコン膜を利用して選択酸化
を行う半導体装置の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (1) Field of Application of the Invention The present invention relates to a method of manufacturing a semiconductor device that performs selective oxidation using a silicon nitride film.

(2) 従来技術 第1図に断面構造で示すように、従来技術にお
いては、MOSトランジスタを製作する場合、シ
リコン基板1上に素子分離用酸化膜2およびゲー
ト酸化膜3を形成後、多結晶シリコン4を堆積し
(第1図a)、ホトエツチングによりゲート電極を
形成する。その後、不純物拡散またはイオン打込
みによりソースおよびドレイン領域6を形成し
(第1図b)、りんガラスの如き層間絶縁膜7を堆
積した後、ホトエツチングによりコンタクト孔8
を設け(第1図c)、Al電極9を形成している
(第1図d)。このような方法においては、コンタ
クト孔8を設ける場合、ホトエツチング工程のマ
スク合わせ余裕10が必要となるために素子の面
積が大きくなつてしまう。
(2) Prior Art As shown in the cross-sectional structure in Fig. 1, in the conventional technology, when manufacturing a MOS transistor, after forming an element isolation oxide film 2 and a gate oxide film 3 on a silicon substrate 1, polycrystalline Silicon 4 is deposited (FIG. 1a) and a gate electrode is formed by photoetching. Thereafter, source and drain regions 6 are formed by impurity diffusion or ion implantation (FIG. 1b), and after depositing an interlayer insulating film 7 such as phosphorous glass, contact holes 8 are formed by photoetching.
(FIG. 1c), and an Al electrode 9 is formed (FIG. 1d). In such a method, when forming the contact hole 8, a mask alignment margin 10 is required in the photo-etching process, resulting in an increase in the area of the device.

第2図に従来技術による2層多結晶シリコン構
造の1トランジスタ型メモリの製造工程を断面図
で示す。シリコン基板1上に素子分離用酸化膜
2、蓄積容量形成のための酸化膜31および多結
晶シリコン電極51、絶縁膜11を設けた後(第
2図a)酸化を行い、ゲート酸化膜3、および多
結晶シリコン電極51の側面の酸化膜32を形成
している(第2図b)。その後、ゲート電極5を
形成し、拡散層61を設け(第2図c)、りんガ
ラスの如き層間絶縁膜7を堆積した後、コンタク
ト孔8を設け、Al電極9を形成している(第2
図d)。このような方法においては、多結晶シリ
コン電極51はCVD(Chemical Vapor
Deposition)法などによつて形成したSiO2膜など
をマスクとしてエツチするために加工性が低下す
る。また、多結晶シリコン電極51の側面の酸化
膜32はゲート酸化膜3と同じ酸化工程で形成す
るために厚くすることができず、多結晶シリコン
電極51とゲート電極5の間の耐圧を高くするこ
とができない。
FIG. 2 is a sectional view showing the manufacturing process of a one-transistor type memory having a two-layer polycrystalline silicon structure according to the prior art. After providing an oxide film 2 for element isolation, an oxide film 31 for forming a storage capacitor, a polycrystalline silicon electrode 51, and an insulating film 11 on a silicon substrate 1 (FIG. 2a), oxidation is performed to form a gate oxide film 3, Then, an oxide film 32 is formed on the side surface of the polycrystalline silicon electrode 51 (FIG. 2b). Thereafter, a gate electrode 5 is formed, a diffusion layer 61 is provided (FIG. 2c), an interlayer insulating film 7 such as phosphorous glass is deposited, a contact hole 8 is formed, and an Al electrode 9 is formed (Fig. 2c). 2
Figure d). In such a method, the polycrystalline silicon electrode 51 is heated by chemical vapor deposition (CVD).
Etching is performed using a SiO 2 film formed by a method such as Deposition method as a mask, resulting in poor processability. Furthermore, since the oxide film 32 on the side surface of the polycrystalline silicon electrode 51 is formed in the same oxidation process as the gate oxide film 3, it cannot be made thicker, which increases the breakdown voltage between the polycrystalline silicon electrode 51 and the gate electrode 5. I can't.

(3) 発明の目的 本発明はシリコン基板を窒素やアンモニアの如
き窒素を含む雰囲気中で、1気圧以上の圧力で加
熱することにより形成した窒化シリコン膜を利用
して、該基板上に絶縁膜を介して形成した導電性
電極を厚い酸化膜で覆うことにより前記欠点を取
り除くことのできる半導体装置の製造方法を提供
することを目的とする。
(3) Purpose of the Invention The present invention utilizes a silicon nitride film formed by heating a silicon substrate at a pressure of 1 atmosphere or more in an atmosphere containing nitrogen such as nitrogen or ammonia, and forms an insulating film on the substrate. It is an object of the present invention to provide a method for manufacturing a semiconductor device that can eliminate the aforementioned drawbacks by covering conductive electrodes formed via a thick oxide film.

(4) 発明の総括説明 シリコン基板を窒素中で1気圧以上の圧力で加
熱すると次式で表わされる反応により、基板表面
に窒化シリコン膜が形成される。
(4) General description of the invention When a silicon substrate is heated in nitrogen at a pressure of 1 atmosphere or more, a silicon nitride film is formed on the surface of the substrate by the reaction expressed by the following formula.

3Si+2N2→Si3N4 第3図にシリコン基板を1気圧の窒素ガス中で
加熱した場合の窒化速度の温度依存性の一例を示
す。窒素ガスの圧力を高くすると窒化速度は著し
く増加する。このようにして形成された窒化シリ
コン膜の屈折率は1.8〜2.3(この中でも圧力を高
くするとこの値は大きくなる。)となつており、
気相反応などによつて形成した窒化シリコン膜と
同様に耐酸化性がある。第4図に、上記の方法に
従つて形成した窒化シリコン膜の900℃のwet酸
化に対する耐酸化性について検討した結果の一例
を示す。図から、シリコン基板を窒素中で加熱す
ることによつて形成した窒化シリコン膜は耐酸化
に対するマスクとして充分使用にたえうることが
わかる。なお、NH3ガス中で形成した窒化シリコ
ン膜に対しても同様な効果が得られる。
3Si+2N 2 →Si 3 N 4 Figure 3 shows an example of the temperature dependence of the nitriding rate when a silicon substrate is heated in nitrogen gas at 1 atmosphere. Increasing the nitrogen gas pressure significantly increases the nitriding rate. The refractive index of the silicon nitride film formed in this way is 1.8 to 2.3 (this value increases as the pressure is increased).
It has oxidation resistance similar to a silicon nitride film formed by a gas phase reaction or the like. FIG. 4 shows an example of the results of a study on the oxidation resistance of a silicon nitride film formed according to the above method to wet oxidation at 900°C. The figure shows that a silicon nitride film formed by heating a silicon substrate in nitrogen can be used satisfactorily as a mask for oxidation resistance. Note that a similar effect can be obtained for a silicon nitride film formed in NH 3 gas.

(5) 実施例 以下、本発明を実施例を参照して詳細に説明す
る。第5図は本発明の一例で、自己整合で形成さ
れたコンタクト孔を有するMOSトランジスタの
製造工程を断面図で示したものである。まず、比
抵抗15Ω・cm、結晶軸方向<100>のP形シリコ
ン基板1をH2Oを含む雰囲気中で1000℃、8時
間、局所酸化することにより1.3μmの素子分離
用酸化膜2を設ける。次に、1000℃、100分の
dvy酸化により700Åのゲート酸化膜3を設け、
更に、CVD(Chemicnl Vapor Deposition)法
により、膜厚4000Å、層抵抗30Ω/口の多結晶シ
リコン4を堆積する(第5図a)。その後、ホト
エツチングによりゲート電極5を形成し、ソース
およびドレインとなる基板表面の700Åの酸化膜
を除去する。続いて、800℃、1時間wet酸化を
行つた後、酸化膜をエツチすることによりソース
およびドレインとなる基板表面15の酸化膜を除
去し、かつ、ゲート電極5を1000Åの酸化膜12
で被覆する(第5図b)。第5図bに至る工程は
例えば特願昭50−70830号明細書に詳しく示され
ている。次に、20気圧の窒素ガス中、1100℃で2
時間加熱することにより露出したシリコン基板表
面15に窒化シリコン膜13を形成する(第5図
c)。続いて、窒化シリコン膜13を耐酸化マス
クとして、850℃、4時間酸化することによりゲ
ート電極上に5000Åの酸化膜16を形成し、更に
コンタクト孔8を設けた後りん添加により表面を
りんガラス71に変える。この場合、素子分離酸
化膜の表面もりんガラス72に変化する(第5図
d)。次に、窒化シリコン膜13を除去し、Al電
極9を形成する(第5図e)。第5図eでわかる
ように、本発明によればコンタクト孔81は自己
整合で形成されるために素子の面積が非常に小さ
くなる。
(5) Examples Hereinafter, the present invention will be explained in detail with reference to examples. FIG. 5 is an example of the present invention, which is a sectional view showing the manufacturing process of a MOS transistor having contact holes formed by self-alignment. First, a P-type silicon substrate 1 with a specific resistance of 15 Ω·cm and a crystal axis direction <100> is locally oxidized at 1000°C for 8 hours in an atmosphere containing H 2 O to form a 1.3 μm element isolation oxide film 2. establish. Next, 1000℃, 100 minutes
A gate oxide film 3 of 700 Å is provided by dvy oxidation.
Further, polycrystalline silicon 4 having a film thickness of 4000 Å and a layer resistance of 30 Ω/hole is deposited by CVD (chemical vapor deposition) (FIG. 5a). Thereafter, a gate electrode 5 is formed by photoetching, and a 700 Å thick oxide film on the substrate surface that will become a source and a drain is removed. Subsequently, after performing wet oxidation at 800°C for 1 hour, the oxide film on the substrate surface 15 that will become the source and drain is removed by etching the oxide film, and the gate electrode 5 is covered with an oxide film 12 with a thickness of 1000 Å.
(Figure 5b). The steps leading to FIG. 5b are shown in detail in, for example, Japanese Patent Application No. 70830/1983. Next, at 1100℃ in nitrogen gas at 20 atmospheres,
By heating for a period of time, a silicon nitride film 13 is formed on the exposed silicon substrate surface 15 (FIG. 5c). Next, using the silicon nitride film 13 as an oxidation-resistant mask, oxidation is performed at 850°C for 4 hours to form an oxide film 16 of 5000 Å on the gate electrode, and after forming a contact hole 8, the surface is made of phosphorus glass by adding phosphorus. Change it to 71. In this case, the surface of the element isolation oxide film also changes to phosphor glass 72 (FIG. 5d). Next, the silicon nitride film 13 is removed and an Al electrode 9 is formed (FIG. 5e). As can be seen in FIG. 5e, according to the present invention, the contact hole 81 is formed in a self-aligned manner, so that the area of the device becomes very small.

第6図は本発明の他の一例で2層多結晶シリコ
ン構造の1トランジスタ型メモリの製造工程を断
面図で示している。第6図a,bまでの工程は第
5図a〜cまでの工程と同様である。ただし、第
6図においては、酸化膜で被覆する多結晶シリコ
ン51はMOSトランジスタのゲート電極ではな
く蓄積容量形成のための電極である。第6図bに
おいて、窒化シリコン膜13を形成した後、850
℃、4時間酸化することにより、多結晶シリコン
電極51上に5000Åの酸化膜14を形成する(第
6図c)。次に、窒化シリコン膜13を除去した
後、CVD法により膜厚4000Å、層抵抗30Ω/口
の多結晶シリコン・ゲート電極5を形成し、更
に、1000℃のりん拡散により深さ1.0μm、層抵
抗15Ω/口の拡散層61を設ける(第6図d)。
続いて、8000Åのりんガラス膜(P2O5濃度5mole
%)7を堆積し、コンタクト孔8を設けた後、
1.2μmのAlを形成する。
FIG. 6 is a cross-sectional view showing the manufacturing process of a one-transistor type memory having a two-layer polycrystalline silicon structure, which is another example of the present invention. The steps up to FIGS. 6a and 6b are the same as the steps up to FIGS. 5a to 5c. However, in FIG. 6, the polycrystalline silicon 51 covered with an oxide film is not a gate electrode of a MOS transistor but an electrode for forming a storage capacitor. In FIG. 6b, after forming the silicon nitride film 13, 850
℃ for 4 hours to form an oxide film 14 of 5000 Å on the polycrystalline silicon electrode 51 (FIG. 6c). Next, after removing the silicon nitride film 13, a polycrystalline silicon gate electrode 5 with a film thickness of 4000 Å and a layer resistance of 30 Ω/hole is formed by CVD, and then a layer with a depth of 1.0 μm is formed by phosphorus diffusion at 1000°C. A diffusion layer 61 with a resistance of 15 Ω/hole is provided (FIG. 6d).
Next, a 8000 Å phosphorus glass film (P 2 O 5 concentration 5 mole
After depositing %) 7 and providing contact holes 8,
Form 1.2 μm Al.

以上のようにして、本発明によれば多結晶シリ
コン電極51を従来のように他の絶縁膜をマスク
としてエツチングすることがないため加工精度が
著しく向上し、かつ、多結晶シリコン電極51と
ゲート電極5の間に厚い酸化膜を形成することが
できるために電極間の耐圧を高くすることができ
る。
As described above, according to the present invention, the processing accuracy is significantly improved because the polycrystalline silicon electrode 51 is not etched using another insulating film as a mask as in the conventional method, and the polycrystalline silicon electrode 51 and gate Since a thick oxide film can be formed between the electrodes 5, the breakdown voltage between the electrodes can be increased.

(6) まとめ 以上説明したごとく本発明によればシリコン基
板を直接窒化してできた窒化シリコン膜を耐酸化
のマスクとして酸化することにより導電性電極を
その酸化膜で厚く被覆できるので、自己整合によ
るコンタクト孔の形成、多層ゲート電極をもつ半
導体装置の製造が可能となる。
(6) Summary As explained above, according to the present invention, by oxidizing the silicon nitride film produced by directly nitriding the silicon substrate as an oxidation-resistant mask, the conductive electrode can be thickly covered with the oxide film, thereby achieving self-alignment. This makes it possible to form contact holes and manufacture semiconductor devices with multilayer gate electrodes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のMOSトランジスタの製造工程
を示す断面図、第2図は従来の2層多結晶シリコ
ンゲート構造の1トランジスタ型MOSメモリの
製造工程を示す断面図、第3図は窒化シリコン膜
の形成速度を示す図、第4図は窒化シリコン膜の
酸化特性を示す図、第5図は本発明によるMOS
トランジスタの製造工程を示す図、第6図は本発
明による2層多結晶シリコンゲート構造の1トラ
ンジスタ型MOSメモリの製造工程を示す図であ
る。
Figure 1 is a cross-sectional view showing the manufacturing process of a conventional MOS transistor, Figure 2 is a cross-sectional view showing the manufacturing process of a conventional 1-transistor MOS memory with a two-layer polycrystalline silicon gate structure, and Figure 3 is a silicon nitride film. FIG. 4 is a diagram showing the oxidation characteristics of silicon nitride film, and FIG. 5 is a diagram showing the formation rate of MOS according to the present invention.
FIG. 6 is a diagram showing the manufacturing process of a transistor, and FIG. 6 is a diagram showing the manufacturing process of a one-transistor type MOS memory having a two-layer polycrystalline silicon gate structure according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基板主表面に絶縁膜および、導電物質
を順次形成した後、所望箇所の該絶縁膜および導
電物質を除去し、前記導電物質露出面を絶縁膜で
被覆した後、窒素を含む雰囲気中で、加熱するこ
とによつて、前記絶縁膜を除去した部分の基板表
面に窒化シリコン膜を形成し、しかる後に酸化を
行う工程を含むことを特徴とする半導体装置の製
造方法。
1. After sequentially forming an insulating film and a conductive material on the main surface of a semiconductor substrate, removing the insulating film and conductive material at desired locations, and coating the exposed surface of the conductive material with an insulating film, the method is performed in an atmosphere containing nitrogen. 1. A method of manufacturing a semiconductor device, comprising the steps of: forming a silicon nitride film on the surface of the substrate from which the insulating film has been removed by heating, and then oxidizing the silicon nitride film.
JP5428577A 1977-05-13 1977-05-13 Production of semiconductor device Granted JPS53139977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5428577A JPS53139977A (en) 1977-05-13 1977-05-13 Production of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5428577A JPS53139977A (en) 1977-05-13 1977-05-13 Production of semiconductor device

Publications (2)

Publication Number Publication Date
JPS53139977A JPS53139977A (en) 1978-12-06
JPS6118861B2 true JPS6118861B2 (en) 1986-05-14

Family

ID=12966281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5428577A Granted JPS53139977A (en) 1977-05-13 1977-05-13 Production of semiconductor device

Country Status (1)

Country Link
JP (1) JPS53139977A (en)

Also Published As

Publication number Publication date
JPS53139977A (en) 1978-12-06

Similar Documents

Publication Publication Date Title
JP3600326B2 (en) Nonvolatile semiconductor memory device and manufacturing method thereof
JPS6410107B2 (en)
US20030029839A1 (en) Method of reducing wet etch rate of silicon nitride
KR100234379B1 (en) Manufacturing method of semiconductor memory device with preventible oxidation of bit-line
JPS6235268B2 (en)
JPS6118861B2 (en)
JPH0415619B2 (en)
JP3127866B2 (en) Method for manufacturing semiconductor device
JPS6315749B2 (en)
JP2707536B2 (en) Method for manufacturing semiconductor device
JPH0454390B2 (en)
JPH10335500A (en) Manufacture of semiconductor device
JP2685448B2 (en) Method for manufacturing semiconductor device
JPH01260857A (en) Semiconductor device and manufacture thereof
KR960011816B1 (en) Method of making a capacitor in semiconductor device
JP2717661B2 (en) Method of forming insulating film
JPH0567751A (en) Semiconductor device and manufacture thereof
JP3196373B2 (en) Method for manufacturing semiconductor device
JP3123182B2 (en) Semiconductor device and manufacturing method thereof
JPH0669518A (en) Manufacture of semiconductor device
JPH0341775A (en) Manufacture of semiconductor memory
JPS6384156A (en) Forming method of bipolar transistor
JPH11204738A (en) Manufacture of semiconductor device
JP2001358318A (en) Method for manufacturing semiconductor device
JPH0232790B2 (en)