JPH0818870B2 - Method for manufacturing lead zirconate titanate-based piezoelectric ceramic - Google Patents

Method for manufacturing lead zirconate titanate-based piezoelectric ceramic

Info

Publication number
JPH0818870B2
JPH0818870B2 JP61298902A JP29890286A JPH0818870B2 JP H0818870 B2 JPH0818870 B2 JP H0818870B2 JP 61298902 A JP61298902 A JP 61298902A JP 29890286 A JP29890286 A JP 29890286A JP H0818870 B2 JPH0818870 B2 JP H0818870B2
Authority
JP
Japan
Prior art keywords
coprecipitate
component
zirconium
zirconate titanate
lead zirconate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61298902A
Other languages
Japanese (ja)
Other versions
JPS63151673A (en
Inventor
宗男 頼永
信一 白崎
Original Assignee
日本電装株式会社
科学技術庁無機材質研究所長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電装株式会社, 科学技術庁無機材質研究所長 filed Critical 日本電装株式会社
Priority to JP61298902A priority Critical patent/JPH0818870B2/en
Publication of JPS63151673A publication Critical patent/JPS63151673A/en
Priority to US07/418,740 priority patent/US4990324A/en
Publication of JPH0818870B2 publication Critical patent/JPH0818870B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、一般式がPbZrO3−PbTiO3で表わされるジル
コン酸チタン酸鉛(以下これをPZTと略す)及び一般式
がPbZrO3−PbTiO3−Pb(M1/3Nb2/3)O3(但し、MはM
g,Zn,Niの少なくとも1種、Pbの一部はBa,Sr,Caの少な
くとも1種で置換可能)3成分系ジルコン酸チタン酸鉛
(以下これを三成分系PZTと略す)圧電磁器の製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention is directed to lead zirconate titanate represented by the general formula PbZrO 3 —PbTiO 3 (hereinafter abbreviated as PZT) and the general formula PbZrO 3 —PbTiO 3. 3- Pb (M 1/3 Nb 2/3 ) O 3 (However, M is M
At least one of g, Zn, Ni and at least one of Pb can be replaced by at least one of Ba, Sr, Ca) Three-component lead zirconate titanate (hereinafter abbreviated as three-component PZT) piezoelectric ceramic The present invention relates to a manufacturing method.

PZT及び3成分系PZTは、圧電特性に優れ、アクチュエ
ータ、センサとして広範囲の分野で利用されている。
PZT and three-component PZT have excellent piezoelectric characteristics and are used in a wide range of fields as actuators and sensors.

〔従来の技術〕[Conventional technology]

鉛の一部をランタニド元素で置換したPZT及び3成分
系PZT磁器の構成成分である酸化物(酸化鉛、酸化ジル
コニウム、酸化チタン等)の構成成分の原料粉末の中
で、ジルコニア原料粉末は極めて凝集しやすい。その
為、この様なジルコニア原料粉末を使用し、混合して、
乾式法でPZT磁器粉末を作製すると、平均粒径は1〜2
μm以上のものとなる。この程度の粒度の粉末を使用し
ても、高密度且つ高度な機能を有するPZT磁器及び3成
分系磁器を得ることは難しい。
Among the raw material powders of PZT in which a part of lead is replaced with lanthanide element and oxides (lead oxide, zirconium oxide, titanium oxide, etc.) which are constituent components of ternary PZT porcelain, zirconia raw powder is extremely Easy to aggregate. Therefore, using such zirconia raw material powder, mix,
When PZT porcelain powder is produced by the dry method, the average particle size is 1-2.
It is more than μm. It is difficult to obtain a PZT porcelain and a three-component system porcelain having a high density and a high function even if a powder having such a particle size is used.

〔発明が解決しようとする問題点〕 本発明は、前記のランタニド元素で鉛の一部を置換し
たPZT及び3成分系PZT磁器の乾式法による合成における
欠点を解決すべくなされたものであり、その目的は、分
散性の良いサブミクロン級の変成ジルコニア原料粉末を
作製し、該粉末を用いて単なる乾式法によって易焼結性
且つ高嵩密度のPZT及び3成分系磁器粉末を合成し、更
にこれら粉末を焼結して高性能且つ高密度のPZT及び3
成分系PZT磁器を製造する方法を提供するものである。
[Problems to be Solved by the Invention] The present invention has been made to solve the drawbacks in the synthesis by dry method of PZT and ternary PZT porcelain in which a part of lead is substituted with the lanthanide element, The purpose is to prepare a submicron grade modified zirconia raw material powder having good dispersibility, and use the powder to synthesize easily sinterable and high bulk density PZT and three-component porcelain powder, High-performance and high-density PZT and 3 by sintering these powders
A method of manufacturing a component-based PZT porcelain is provided.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは前記目的を達成すべく鋭意研究の結果、
ランタニド元素で鉛の一部を置換したPZT及び3成分系P
ZT磁器の乾式法による製造過程に於いて、ランタニド元
素で鉛の一部を置換したPZT磁器粉末を構成するジルコ
ニウム以外の少なくとも一金属成分の適量とジルコニウ
ム溶液とを含有する溶液と沈殿形成液とを反応させて共
沈体を形成すると系の不均一のためZr含有粒子の凝集が
起こりにくくなり、その後乾燥を行ない、700〜1300℃
で仮焼すると、凝集の極めて少ないサブミクロン級の粉
末(変成ジルコニア粉末)となし得ることが分った。こ
れを原料とし、目的とするランタニド元素で鉛の一部を
置換したPZTまたは3成分系PZT磁器の残りの構成成分の
化合物を乾式法によって混合すれば、サブミクロン級の
粉末特性の優れた原料粉末が容易に得られ、これを成型
して焼結すると、焼結助剤なしに極めて高密度のPZTま
たは3成分系磁器が容易に得られることを究明し得た。
この知見に基いて本発明を完成した。
The present inventors have conducted intensive studies to achieve the above object,
PZT and ternary P with a part of lead replaced by lanthanide element
In the manufacturing process of the ZT porcelain by the dry method, a solution containing a suitable amount of at least one metal component other than zirconium and a zirconium solution constituting a PZT porcelain powder in which a part of lead is replaced with a lanthanide element, and a precipitate forming solution, When a coprecipitate is formed by reacting with, the Zr-containing particles are less likely to agglomerate due to the non-uniformity of the system, and then dried to 700 to 1300 ° C.
It was found that when calcined in (2), a submicron-class powder (modified zirconia powder) with extremely few agglomerates can be obtained. By using this as a raw material and mixing the compounds of the remaining constituents of PZT or the ternary PZT porcelain in which part of the lead has been substituted with the desired lanthanide element, a raw material with excellent sub-micron powder characteristics It has been found that a powder can be easily obtained, and that if it is molded and sintered, an extremely high density PZT or ternary porcelain can be easily obtained without a sintering aid.
The present invention has been completed based on this finding.

本発明の要旨は次の三つの工程の組み合わせにある。 The gist of the present invention is a combination of the following three steps.

(1)ランタニド元素で鉛の一部を置換したPZTまたは
3成分系磁器を構成するジルコニウム以外の少なくとも
一成分を、共沈体の凝集を抑制するに足る適量を選び、
ジルコニウムを含有する溶液を作り、これと沈殿形成液
と反応せしめて共沈体を形成し、乾燥後700〜1300℃で
仮焼する工程。
(1) Select an appropriate amount of at least one component other than zirconium that constitutes PZT or ternary porcelain in which a part of lead is replaced by a lanthanide element, and that is sufficient to suppress coagulation of coprecipitates.
A step of forming a zirconium-containing solution, reacting it with a precipitate forming solution to form a coprecipitate, drying and calcining at 700 to 1300 ° C.

この工程では、共沈体形成中の凝集が避けられ、また
PLZT,PZTなどの構造にも使用することができる変成ジル
コニアが製造される。
This step avoids agglomeration during coprecipitate formation, and
Modified zirconia is produced that can also be used in structures such as PLZT, PZT.

(2)(1)の工程で得られた仮焼物と、この仮焼物を
構成する成分の内、所定配合比に対して不足する成分の
化合物粉末の必要量と、目的とするランタニド元素で鉛
の一部を置換したPZTまたは3成分系PZT磁器の残りの構
成成分の化合物を混合して500〜1300℃で仮焼する工
程。この工程では、残りの成分の添加によって所望の化
合物組成が得られる。
(2) The required amount of the compound powder of the calcined product obtained in the step (1), the components of the calcined product which are insufficient in a predetermined mixing ratio, and the target lanthanide element, lead. Of the PZT or PZT porcelain with a part thereof replaced, and the mixture of the remaining constituent compounds and calcination at 500 to 1300 ° C. In this step, the desired compound composition is obtained by adding the remaining components.

(3)得られた仮焼粉末を成型して700〜1500℃で焼結
する工程。
(3) A step of molding the obtained calcined powder and sintering at 700 to 1500 ° C.

ジルコニウム溶液を作製するための化合物としては、
オキシ塩化ジルコニウム、オキシ硝酸ジルコニウム、塩
化ジルコニウム、及び硝酸ジルコニウムが挙げられる。
ジルコニウム溶液の溶媒としては上記化合物を溶解させ
る水またはアルコールを用いる。上記化合物はすべて水
に可溶であり、オキシ塩化ジルコニウム、塩化ジルコニ
ウムおよび四塩化チタンはエタノールに可溶である。さ
らに、ジルコニウム溶液を作製するために、金属ジルコ
ニウムを王水、HFで溶解して用いることもできる。ラン
タニド元素で鉛の一部を置換したPZTのジルコニウム以
外の少なくとも一成分の溶液を作製するための化合物と
しては、Pb(NO32,Ti(NO34,TiCl4,Ti(SO42,Mg
(NO32,MgCl2,MgSO4,Zn(NO32,ZnCl2,ZnSO4,Ni(NO
32,NiCl2,NiSO4,NbCl5、が挙げられる。この溶液の溶
媒としては水またはアルコールを用いる。ジルコニウム
溶液とジルコニウム以外の溶液は別々に調製してもよ
く、また同一の溶媒に各化合物を溶解させて調整しても
よい。
Compounds for preparing a zirconium solution include:
Examples include zirconium oxychloride, zirconium oxynitrate, zirconium chloride, and zirconium nitrate.
As a solvent for the zirconium solution, water or alcohol that dissolves the above compound is used. All the above compounds are soluble in water, zirconium oxychloride, zirconium chloride and titanium tetrachloride are soluble in ethanol. Further, in order to prepare a zirconium solution, metal zirconium can be dissolved in aqua regia and HF before use. The compound for preparing a solution of at least one component other than zirconium PZT obtained by replacing part of the lead lanthanide elements, Pb (NO 3) 2, Ti (NO 3) 4, TiCl 4, Ti (SO 4 ) 2 , Mg
(NO 3 ) 2 , MgCl 2 , MgSO 4 ,, Zn (NO 3 ) 2 , ZnCl 2 ,, ZnSO 4 ,, Ni (NO
3 ) 2 , NiCl 2 , NiSO 4 , NbCl 5 and the like. Water or alcohol is used as a solvent for this solution. The zirconium solution and the solution other than zirconium may be prepared separately, or may be prepared by dissolving each compound in the same solvent.

沈殿形成液作製のための試薬としては、例えばアンモ
ニア水、炭酸アンモニウム、苛性アルカリ、しゅう酸、
しゅう酸アンモニウムやアミン、オキシン等の有機試薬
が挙げられる。沈殿形成反応は常温で行なうことができ
る。共沈体の状態はゾル状ないしスラリー状である。共
沈体はろ過および洗浄により回収する。
Examples of reagents for preparing a precipitate-forming liquid include aqueous ammonia, ammonium carbonate, caustic, oxalic acid,
Examples include organic reagents such as ammonium oxalate, amines, and oxines. The precipitation formation reaction can be carried out at room temperature. The state of the coprecipitate is sol or slurry. The coprecipitate is collected by filtration and washing.

ジルコニウム含有溶液に溶解されるランタニド元素で
鉛の一部を置換したPZT磁器または3成分系PZTの構成成
分の種類とその量は、ジルコニア粉末の凝集を有効に抑
制し得るものが好ましい。
The kind and amount of the constituent components of the PZT porcelain or the ternary PZT in which a part of lead is replaced with the lanthanide element dissolved in the zirconium-containing solution are preferably those capable of effectively suppressing the agglomeration of the zirconia powder.

本発明の方法においては、共沈体の組合せに於いて種
々の変形が可能である。例えば、(Pb,Sm)(Zr,Ti)O3
で表わされるPZT磁器に於いて、オキシ硝酸ジルコニウ
ム水溶液と硝酸サマリウム(Sm(NO)の水溶液を
混合したものからZr4+とSm3+の共沈体を得ても良い。ま
た、オキシ硝酸ジルコニウム水溶液と四塩化チタン水溶
液との混合液からZr4+とTi4+の共沈体を得これと別個
に、硝酸鉛(Pb(NO3)水溶液と硝酸サマリウムの
水溶液から、Zr以外の少なくとも2種の成分であるPb2+
とSm3+の共沈体を得、これら2つの共沈体をそれぞれ仮
焼して得た酸化物粉末と、目的とするPZTの構成成分の
不足分を加えて磁器を作製しても良い。また、オキシ硝
酸ジルコニウム水溶液と四塩化チタン水溶液との混合液
からZr4+とTi4+の共沈体を得、これと別個にオキシ硝酸
ジルコニウム水溶液と硝酸サマリウム水溶液との混合液
からZr4+とSm3+の共沈体を得、これら二つの共沈体をそ
れぞれ仮焼して得た酸化物粉末と、目的とするPZTの構
成成分の不足分を加えて、磁器を作製してもよい。
In the method of the present invention, various modifications can be made in the combination of coprecipitates. For example, (Pb, Sm) (Zr, Ti) O 3
In the PZT porcelain represented by, a coprecipitate of Zr 4+ and Sm 3+ may be obtained from a mixture of an aqueous zirconium oxynitrate solution and an aqueous solution of samarium nitrate (Sm (NO) 3 ) 3 . In addition, a Zr 4+ and Ti 4+ coprecipitate was obtained from a mixed solution of an aqueous zirconium oxynitrate solution and an aqueous titanium tetrachloride solution, and separately from this, an aqueous solution of lead nitrate (Pb (NO 3 ) 2 ) and an aqueous solution of samarium nitrate were separately prepared. From Pb 2+, which is at least two components other than Zr
And Sm 3+ coprecipitates are obtained, and oxide powders obtained by calcination of these two coprecipitates and the shortage of the target PZT constituents may be added to produce porcelain. . Further, to obtain a coprecipitate of Zr 4+ and Ti 4+ from a mixture of aqueous solution of zirconium oxynitrate and titanium tetrachloride aqueous solution, which separately from Zr 4+ from a mixture of aqueous solution of zirconium oxynitrate and samarium nitrate solution And Sm 3+ co-precipitates were obtained, and oxide powders obtained by calcination of these two co-precipitates and shortages of the target PZT constituents were added to produce porcelain. Good.

また、オキシ酢酸ジルコニウム水溶液と四塩化チタン
水溶液との混合液からZr4+とTi4+の共沈体を得、これと
別個にZr以外の1種の成分であるSmを含有する硝酸サマ
リウムの水溶液からSm3+を含む沈殿体を得て、この共沈
体と沈殿体をそれぞれ仮焼して得た酸化物粉末と、目的
とするPZTの構成成分の不足分を加えて磁器を作製して
も良い。
Further, a coprecipitate of Zr 4+ and Ti 4+ was obtained from a mixed solution of an aqueous solution of zirconium oxyacetate and an aqueous solution of titanium tetrachloride, and separately from this, samarium nitrate containing Sm, which is one component other than Zr, was added. A precipitate containing Sm 3+ was obtained from the aqueous solution, and the porcelain was prepared by adding the oxide powder obtained by calcining the coprecipitate and the precipitate, and the shortage of the target PZT constituents. May be.

さらに、本発明における3成分PZTの作製法において
も、共沈体の組合せに於いて種々の変形が可能である。
例えば、PbZrO3−PbTiO3−Pb(M1/3Nb2/3)O3、(Mは
Mg,Zn,Niの内1種)で表わされる3成分系PZT磁器に於
いて、オキシ硝酸ジルコニウム水溶液と硝酸鉛の水溶液
を混合したものからZr4+とPb2+の共沈体を得ても良い。
また、オキシ酢酸ジルコニウム水溶液と四塩化チタン水
溶液との混合液から、Zr4+とTi4+の共沈体を得、これと
別個に、五塩化ニオビウム水溶液と硝酸鉛の水溶液か
ら、Zr以外の少なくとも2種の成分であるNb5+とPb2+
共沈体を得、これら2つの共沈体をそれぞれ仮焼して得
た酸化物粉末と、目的とする3成分系PZTの構成成分の
不足分を加えて、磁器を作製しても良い。また、オキシ
硝酸ジルコニウム水溶液と四塩化チタン水溶液との混合
液からZr4+とTi4+の共沈体を得、これと別個にオキシ硝
酸ジルコニウム水溶液と五塩化ニオビウム水溶液との混
合液からZr4+とNb5+の共沈体を得、これら二つの共沈体
をそれぞれ仮焼して得た酸化物粉末と、目的とするPZT
の構成成分の不足分を加えて、磁器を作製してもよい。
Further, in the method for producing the three-component PZT in the present invention, various modifications can be made in the combination of coprecipitates.
For example, PbZrO 3 -PbTiO 3 -Pb (M 1/3 Nb 2/3) O 3, (M is
In a three-component PZT porcelain represented by (one of Mg, Zn, Ni), a coprecipitate of Zr 4+ and Pb 2+ was obtained from a mixture of zirconium oxynitrate aqueous solution and lead nitrate aqueous solution. Is also good.
In addition, a coprecipitate of Zr 4+ and Ti 4+ was obtained from a mixed solution of a zirconium oxyacetate aqueous solution and a titanium tetrachloride aqueous solution. Separately from this, an aqueous solution of niobium pentachloride aqueous solution and lead nitrate was used to remove other than Zr. An oxide powder obtained by co-precipitating at least two components of Nb 5+ and Pb 2+ , and calcining each of these two co-precipitates, and the target three-component PZT constituents The porcelain may be manufactured by adding the shortage of. Further, to obtain a coprecipitate of Zr 4+ and Ti 4+ from a mixture of aqueous solution of zirconium oxynitrate and titanium tetrachloride aqueous solution, which separately from Zr 4 from a mixture of aqueous solution of zirconium oxynitrate and pentachloride niobium solution A coprecipitate of + and Nb 5+ was obtained, and an oxide powder obtained by calcining each of these two coprecipitates and the target PZT
The porcelain may be manufactured by adding the shortage of the constituent components of.

また、オキシ硝酸ジルコニウム水溶液と四塩化チタン
水溶液との混合液から、Zr4+とTi4+の共沈体を得、これ
と別個に、Mの硝酸化合物(M(NO3)の水溶液か
らM2+を含む沈殿体を得る。Mの沈殿体を得るには、沈
殿形成液はNH4OHよりもジエチルアミンの方が良好な結
果が得られる。Zr4+とTi4+の共沈体とM2+の沈殿体をそ
れぞれ仮焼して得た酸化物粉末と目的とする3成分系PZ
Tの構成成分の不足分を加えて磁器を作製しても良い。
Further, a coprecipitate of Zr 4+ and Ti 4+ was obtained from a mixed solution of an aqueous zirconium oxynitrate solution and an aqueous titanium tetrachloride solution, and separately from this, an aqueous solution of a nitric acid compound of M (M (NO 3 ) 2 ) A precipitate containing M 2+ is obtained from. In order to obtain the M precipitate, diethylamine is more preferable than NH 4 OH as the precipitate forming solution. Oxide powders obtained by calcination of Zr 4+ and Ti 4+ coprecipitates and M 2+ precipitates and the target ternary PZ
You may make a porcelain by adding the shortage of the component of T.

得られた共沈体の仮焼温度は、700〜1300℃である。
仮焼温度が700℃より低いと凝集が顕著に起り、1300℃
を超えると粒子が粗大化する傾向がある。この様にして
得られた粉末に、目的とするランタニド元素で鉛の一部
を置換したPZT及び3成分系PZTの構成成分の不足分を加
えて混合する。もちろん、ジルコニア及びジルコニアに
添加した成分の不足分も補充する必要がある。この場
合、いずれの化合物粉末(主として酸化物)の粒度はサ
ブミクロン級のものを使用する。ただ、酸化鉛粉末は粗
大粒径のものを使用しても得られるPZT及び3成分系PZT
粉末の特性に殆んど影響を与えない。
The calcining temperature of the obtained coprecipitate is 700 to 1300 ° C.
If the calcination temperature is lower than 700 ° C, agglomeration will occur remarkably, resulting in 1300 ° C.
If it exceeds, the particles tend to become coarse. The powder thus obtained is added with a shortage of the constituent components of PZT and ternary PZT in which a part of lead is replaced with the desired lanthanide element, and mixed. Of course, it is also necessary to supplement the deficiency of zirconia and the components added to zirconia. In this case, the particle size of any compound powder (mainly oxide) is of a submicron class. However, PZT and ternary PZT obtained by using coarse-grained lead oxide powder
It has almost no effect on the properties of the powder.

これら混合物の仮焼温度は、固相反応が、ほぼまたは
完全に完了する最低温度以上で、顕著な粒子成長が生じ
ない最高温度範囲内であることが必要であり、500〜130
0℃がよい。
The calcination temperature of these mixtures must be above the lowest temperature at which the solid-phase reaction is almost or completely completed, and within the highest temperature range where significant particle growth does not occur, and the temperature range from 500 to 130
0 ° C is better.

このようにして得られた粉末を成型して焼結する。焼
結温度は、その構成成分の種類によって異なるが、一般
的に700〜1500℃の範囲である。700℃より低いと焼結が
不充分であり、1500℃を超えると粒子が粗大化したり、
あるいは構成成分の揮発が起る。
The powder thus obtained is molded and sintered. The sintering temperature is generally in the range of 700 to 1500 ° C, though it depends on the type of its constituent components. If the temperature is lower than 700 ° C, the sintering is insufficient, and if it exceeds 1500 ° C, the particles become coarse,
Alternatively, volatilization of components occurs.

実施例1 四塩化チタン水溶液(0.751mol/濃度)43.57ccとオ
キシ硝酸ジルコニウム水溶液(0.873mol/濃度)150cc
とを混合した。この混合水溶液を撹拌している6N−アン
モニア水1中に徐々に添加して、Ti4+とZr4+の水酸化
物共沈体を得た。これを洗浄、乾燥した後1100℃で仮焼
して(Ti0.2Zr0.8)O2粉末を作製した。この粉末の平均
粒径は0.32μmであった。
Example 1 Titanium tetrachloride aqueous solution (0.751 mol / concentration) 43.57 cc and zirconium oxynitrate aqueous solution (0.873 mol / concentration) 150 cc
And mixed. This mixed aqueous solution was gradually added to stirring 6N-ammonia water 1 to obtain a hydroxide coprecipitate of Ti 4+ and Zr 4+ . This was washed, dried, and then calcined at 1100 ° C. to prepare (Ti 0.2 Zr 0.8 ) O 2 powder. The average particle size of this powder was 0.32 μm.

該粉末4.1981g、市販のTiO2微粉末1.2549g、PbO粉末1
1.16g、Sm2O3微粒子0.2739gをボールミルで一昼夜混合
した後、750℃で1時間仮焼して、Pb0.955Sm0.03(Zr
0.56Ti0.44)O3PZT粉末を得た。この平均粒径は約0.42
μmであった。この粉末を1t/cm2で成型した後、1200℃
で1時間鉛蒸気、酸素ガス共存雰囲気下で焼結した。得
られた磁器の密度は、7.82で理論密度にかなり近いもの
であった。
4.1981 g of the powder, 1.2549 g of commercially available TiO 2 fine powder, PbO powder 1
1.16 g of Sm 2 O 3 fine particles of 0.2739 g were mixed in a ball mill for one day and then calcined at 750 ° C. for 1 hour to obtain Pb 0.955 Sm 0.03 (Zr
0.56 Ti 0.44 ) O 3 PZT powder was obtained. This average particle size is about 0.42
μm. After the powder was molded at 1t / cm 2, 1200 ℃
Sintering was performed for 1 hour in an atmosphere containing lead vapor and oxygen gas. The density of the obtained porcelain was 7.82, which was very close to the theoretical density.

また、Sm2O3の代わりに、La2O3,Nd2O3,Gd2O3等のラン
タニド元素の酸化物を用いて同様の工程でPZTを各々作
製した結果Sm2O3の場合とほぼ同様の効果を得た。
Further, instead of the Sm 2 O 3, La 2 O 3, Nd 2 O 3, Gd 2 O 3 or the like results produced respectively PZT by the same steps using an oxide of the lanthanide element in the case of Sm 2 O 3 The effect is almost the same as.

比較例1 市販のPbO,Sm2O3,TiO2,ZrO2、粉末をPb0.955Sm
0.03(Zr0.56Ti0.44)O3の組成になるように混合した。
この混合物をボールミルで一昼夜混合した後、850℃で
2時間仮焼した。得られた粉末を1t/cm2で成型した後、
1200℃で1時間鉛蒸気、酸素ガス共存雰囲気下で焼結し
た。得られた磁器の密度は7.2程度であった。
Comparative Example 1 Commercially available PbO, Sm 2 O 3 , TiO 2 , ZrO 2 and powder were Pb 0.955 Sm.
They were mixed so as to have a composition of 0.03 (Zr 0.56 Ti 0.44 ) O 3 .
This mixture was mixed with a ball mill for a whole day and night, and then calcined at 850 ° C. for 2 hours. After molding the obtained powder at 1 t / cm 2 ,
Sintering was performed at 1200 ° C for 1 hour in an atmosphere containing lead vapor and oxygen gas. The density of the obtained porcelain was about 7.2.

尚、仮焼して得られた粉末は、大きな凝集体からな
り、平均粒径は特定できなかった。
The powder obtained by calcination consisted of large aggregates, and the average particle size could not be specified.

実施例2 四塩化チタン水溶液(0.751mol/濃度)43.57ccとオ
キシ硝酸ジルコニウム水溶液(0.873mol/濃度)150cc
とを混合した。この混合水溶液を撹拌している6N−アン
モニア水1中に徐々に添加して、Ti4+とZr4+の水酸化
物共沈体を得た。これを洗浄、乾燥した後1100℃で仮焼
して(Ti0.2Zr0.8)O2粉末を作製した。この粉末の平均
粒径は0.32μmであった。
Example 2 Titanium tetrachloride aqueous solution (0.751 mol / concentration) 43.57 cc and zirconium oxynitrate aqueous solution (0.873 mol / concentration) 150 cc
And mixed. This mixed aqueous solution was gradually added to stirring 6N-ammonia water 1 to obtain a hydroxide coprecipitate of Ti 4+ and Zr 4+ . This was washed, dried, and then calcined at 1100 ° C. to prepare (Ti 0.2 Zr 0.8 ) O 2 powder. The average particle size of this powder was 0.32 μm.

該粉末2.8639g、市販のTiO2微粉末1.1985g、PbO粉末1
1.16g、Nb2O5微粒子0.8861g、MgO微粒子0.1344gをボー
ルミルで一昼夜混合した後、750℃で1時間仮焼して0.2
Pb(Mg1/3Nb2/3)O3−0.4PbZrO3−0.4PbTiO3成分系PZT
粉末を得た。この平均粒径は約0.39μmであった。この
粉末を1t/cm2で成型した後、1200℃で1時間鉛蒸気、酸
素ガス共存雰囲気下で焼結した。得られた磁器の密度
は、理論密度に極めて近かった。
2.8639 g of the powder, 1.1985 g of commercially available TiO 2 fine powder, PbO powder 1
1.16g, Nb 2 O 5 fine particles 0.8861g, MgO fine particles 0.1344g were mixed in a ball mill for one day and then calcined at 750 ° C for 1 hour to 0.2
Pb (Mg 1/3 Nb 2/3 ) O 3 −0.4PbZrO 3 −0.4PbTiO 3 component system PZT
A powder was obtained. The average particle size was about 0.39 μm. This powder was molded at 1 t / cm 2 and then sintered at 1200 ° C. for 1 hour in an atmosphere containing lead vapor and oxygen gas. The density of the obtained porcelain was very close to the theoretical density.

また、MgOの代わりにZnO,NiOを用いて同様の工程で、
3成分系PZTを各々作製した結果、MgOの場合とほぼ同様
の結果を得た。
Also, instead of MgO, ZnO, NiO in the same process,
As a result of producing each of the three-component PZT, almost the same result as in the case of MgO was obtained.

比較例2 市販のPbO,Nb2O5,TiO2,ZrO2,MgO粉末を0.2Pb(Mg1/3N
b2/3)O3−0.4PbTiO3−0.4PbZrO3の組成になるように混
合した。この混合物をボールミルで一昼夜混合した後、
800℃で2時間仮焼した。得られた粉末を1t/cm2で成型
し、鉛蒸気、酸素ガス共存雰囲気下、1200℃で1時間焼
結した。得られた磁器の密度は7.2程度であった。
Comparative Example 2 Commercially available PbO, Nb 2 O 5 , TiO 2 , ZrO 2 and MgO powders were mixed with 0.2 Pb (Mg 1/3 N
b 2/3 ) O 3 −0.4PbTiO 3 −0.4PbZrO 3 was mixed to have a composition. After mixing this mixture with a ball mill all day and night,
Calcination was performed at 800 ° C for 2 hours. The obtained powder was molded at 1 t / cm 2 and sintered at 1200 ° C. for 1 hour in an atmosphere containing lead vapor and oxygen gas. The density of the obtained porcelain was about 7.2.

尚、仮焼して得られた粉末は大きな凝集体からなり、
平均粒径は特定できなかった。
The powder obtained by calcination consists of large aggregates,
The average particle size could not be specified.

実施例3 オキシ硝酸ジルコニウム水溶液(0.873mol/濃度)3
00ccと5塩化ニオビウム水溶液(0.751mol/濃度)38.
75ccとを混合した。この混合水溶液を撹拌している6N−
アンモニア水1中に徐々に添加して、Nb5+とZr4+の水
酸化物共沈体を得た。これを洗浄、乾燥した後1100℃で
仮焼して(Nb0.1Zr0.9)O2.05粉末を作製した。この粉
末はサブミクロン級の粒子であった。
Example 3 Zirconium oxynitrate aqueous solution (0.873 mol / concentration) 3
00cc and niobium pentachloride aqueous solution (0.751mol / concentration) 38.
Mixed with 75cc. 6N-
Ammonia water 1 was gradually added to obtain a hydroxide coprecipitate of Nb 5+ and Zr 4+ . This was washed, dried, and then calcined at 1100 ° C. to prepare (Nb 0.1 Zr 0.9 ) O 2.05 powder. The powder was submicron grade particles.

該粉末2.760g、市販のTiO2微粉末1.598g、PbO粉末11.
16g、Nb2O5微粒子0.5907g、MgO微粒子0.1344gを実施例
1と同様の方法で0.2Pb(Mg1/3Nb2/3)O3−0.4PbZrO3
0.4PbTiO3成分系PZT磁器を作製した結果、得られた磁器
の密度は、理論密度に極めて近かった。
2.760 g of the powder, 1.598 g of commercially available TiO 2 fine powder, PbO powder 11.
16 g, Nb 2 O 5 fine particles 0.5907 g, and MgO fine particles 0.1344 g were treated in the same manner as in Example 1 with 0.2 Pb (Mg 1/3 Nb 2/3 ) O 3 −0.4PbZrO 3
As a result of making 0.4PbTiO 3 component PZT porcelain, the density of the obtained porcelain was very close to the theoretical density.

〔発明の効果〕〔The invention's effect〕

本発明の方法によると、第1工程によりランタニド元
素で鉛の一部を置換したPZT磁器の構成成分の一種以上
を含むジルコニア粉末(変成ジルコニア粉末)は、二次
粒子の極めて少ないサブミクロン粒子となし得、これを
使用することによって、以後通常の圧粉と焼結工程によ
る単なる乾式法によって、容易にサブミクロン級のPZT
または3成分系PZT磁器粉末が得られ、更にこれを原料
として理論密度に極めて近い高密度の磁器が得られる、
優れた効果を奏し得られる。そのほか次のような効果も
奏し得られる。
According to the method of the present invention, the zirconia powder (modified zirconia powder) containing at least one of the constituents of the PZT porcelain in which a part of lead is replaced by the lanthanide element in the first step is a submicron particle having extremely few secondary particles. It is possible to use it, and by using it, the PZT of sub-micron grade can be easily manufactured by the simple dry method by the ordinary powder compacting and sintering process.
Or, three-component PZT porcelain powder can be obtained, and using this as a raw material, a high-density porcelain extremely close to the theoretical density can be obtained.
Excellent effect can be obtained. In addition, the following effects can be obtained.

1)仮焼によって得られる変成ジルコニア粉末が十分分
散されたものが得られるため、仮焼物の粉砕工程を特に
必要としないで、原料粉末として供結し得られる。
1) Since the modified zirconia powder obtained by calcination is sufficiently dispersed, the calcinated product can be obtained as a raw material powder without requiring a crushing step.

2)該仮焼変成ジルコニア粉末から乾式法で得られるラ
ンタニド元素で鉛の一部を置換したPZTおよび3成分系P
ZT磁器粉末も単分散状態で得られ、従って粉砕工程を除
いても、十分易焼結性且つ高嵩密度の特性を有する。
2) PZT and ternary system P in which a part of lead is replaced with a lanthanide element obtained by a dry method from the calcined modified zirconia powder
The ZT porcelain powder is also obtained in a monodisperse state, and thus has the characteristics of easily sinterability and high bulk density even if the crushing step is omitted.

3)極めて高密度のものを要求されるランタニド元素で
鉛の一部を置換したPZTおよび3成分系磁器をホットプ
レスやHIP(熱間ガス圧焼結)などの操作を省略して単
なる固相焼結によってかつ焼結助剤を必ずしも必要とせ
ずして、理論密度に極めて近い高密度のものが得られ
る。
3) PZT and ternary porcelain in which a part of lead is replaced with lanthanide element, which is required to have an extremely high density, is simply a solid phase by omitting operations such as hot pressing and HIP (hot gas pressure sintering). A high density is obtained, which is very close to the theoretical density, by sintering and not necessarily requiring a sintering aid.

4)優れた粉末特性を有する変成ジルコニア粉末を大量
生産することにより、高性能PZTおよび3成分系磁器を
極めて安価に供給し得る。
4) Mass production of modified zirconia powder having excellent powder characteristics makes it possible to supply high-performance PZT and ternary porcelain at a very low cost.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】(1)PbZrO3−PbTiO3で表わされ、鉛の一
部をランタニド元素(但し、La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,
Tb,Py,Ho,Er,Tm,Yb,Luのうち少なくとも一種)で置換し
た、ジルコン酸チタン酸鉛磁器を構成するジルコニウム
以外の少なくとも一金属成分の適量と、ジルコニウムと
を含有する溶液及び沈殿形成液を反応させて共沈体を形
成し、共沈体を乾燥後700〜1300℃で仮焼する工程、 (2)この仮焼物と、この仮焼物を構成する成分の内、
所定配合比に対し不足する成分の化合物粉末の必要量
と、目的とするジルコン酸チタン酸鉛組成の残りの構成
成分の化合物を混合して500〜1300℃で仮焼する工程、 (3)得られた仮焼粉末を成型して700〜1500℃で焼結
する工程とからなることを特徴とするジルコン酸チタン
酸鉛磁器の製造方法。
1. A lanthanide element represented by PbZrO 3 --PbTiO 3 wherein a part of lead (provided that La, Ce, Pr, Nd, Pm, Sm, Eu, Gd,
At least one of Tb, Py, Ho, Er, Tm, Yb, and Lu), and a solution and precipitate containing zirconium and an appropriate amount of at least one metal component other than zirconium that constitutes the lead zirconate titanate porcelain. A step of reacting the forming liquid to form a coprecipitate, and then calcining the coprecipitate at 700 to 1300 ° C. (2) Among the calcined product and the components constituting the calcined product,
A step of mixing necessary amounts of compound powders of insufficient components with respect to a predetermined mixing ratio and compounds of the remaining constituent components of the target lead zirconate titanate composition and calcining at 500 to 1300 ° C, (3) obtaining A method for manufacturing lead zirconate titanate porcelain, which comprises a step of molding the obtained calcined powder and sintering at 700 to 1500 ° C.
【請求項2】前記工程(1)において、ジルコニウム
と、ランタニド元素で鉛の一部を置換したジルコン酸チ
タン酸鉛を構成するジルコニウム以外の少なくとも一成
分からなる共沈体と、前記共沈体とは組成が異なりかつ
少なくとも2成分を含む共沈体とを作製する特許請求の
範囲第1項記載の方法。
2. In the step (1), a coprecipitate comprising zirconium and at least one component other than zirconium that constitutes lead zirconate titanate in which a part of lead is replaced with a lanthanide element, and the coprecipitate. The method according to claim 1, wherein a coprecipitate having a different composition from and containing at least two components is prepared.
【請求項3】前記のランタニド元素で鉛の一部を置換し
たジルコン酸チタン酸鉛磁器を構成する一金属成分を含
む溶液と沈殿形成液とを反応させて形成した沈殿体を、
前記(2)工程において、残りの構成成分として用いる
特許請求の範囲第1項記載の方法。
3. A precipitate formed by reacting a solution containing one metal component constituting the lead zirconate titanate porcelain in which lead is partially substituted with the lanthanide element with a precipitate forming liquid,
The method according to claim 1, which is used as a remaining constituent in the step (2).
【請求項4】(1)PbZrO3−PbTiO3−PbMO3(但し、M
はMg,Zn,Ni,Nbの少なくとも1種)で表わされる3成分
系ジルコン酸チタン酸鉛磁器を構成するジルコニウム以
外の少なくとも一金属成分の適量と、ジルコニウムとを
含有する溶液及び沈殿形成液を反応させて共沈体を形成
し、乾燥後共沈体を700〜1300℃で仮焼する工程、 (2)この仮焼物と、この仮焼物を構成する成分の内、
所定配合比に対し不足する成分の化合物粉末の必要量
と、目的とする3成分系ジルコン酸チタン酸鉛組成の残
りの構成成分の化合物を混合して500〜1300℃で仮焼す
る工程、 (3)得られた仮焼粉末を成型して700〜1500℃で焼結
する工程とからなることを特徴とする3成分系ジルコン
酸チタン酸鉛磁器の製造方法。
(1) PbZrO 3 —PbTiO 3 —PbMO 3 (provided that M
Is at least one of Mg, Zn, Ni, Nb) and a solution containing a suitable amount of at least one metal component other than zirconium constituting the three-component lead zirconate titanate porcelain represented by A step of reacting to form a coprecipitate, and calcination of the coprecipitate after drying at 700 to 1300 ° C. (2) This calcined product and the components constituting this calcined product,
A step of mixing necessary amounts of compound powders of insufficient components with respect to a predetermined mixing ratio and the compounds of the remaining constituents of the intended three-component lead zirconate titanate composition and calcining at 500 to 1300 ° C. 3) A method of manufacturing a three-component lead zirconate titanate porcelain, which comprises a step of molding the obtained calcined powder and sintering at 700 to 1500 ° C.
【請求項5】PbZrO3−PbTiO3−PbMO3のPbの一部をBa,S
r,Caの少なくとも一種で置換した3成分系ジルコン酸チ
タン酸鉛磁器を製造する特許請求の範囲第4項記載の方
法。
5. A PbZrO 3 -PbTiO 3 -PbMO part of Pb of 3 Ba, S
The method according to claim 4, wherein a ternary lead zirconate titanate titanate porcelain substituted with at least one of r and Ca is produced.
【請求項6】前記PbMO3のMは1/3モルのMg,Zn,Niのいず
れか1種と2/3モルのNbより構成される特許請求の範囲
第4項または第5項記載の方法。
6. The M according to claim 4, wherein M of PbMO 3 is composed of 1/3 mol of any one of Mg, Zn and Ni and 2/3 mol of Nb. Method.
【請求項7】前記(1)工程において、ジルコニウムと
3成分系ジルコン酸チタン酸鉛を構成するジルコニウム
以外の少なくとも一成分からなる共沈体と、前記共沈体
とは組成が異なりかつ少なくとも2成分を含む共沈体と
を、作製する特許請求の範囲第4項から第6項までの何
れか1項記載の方法。
7. In the step (1), a coprecipitate composed of zirconium and at least one component other than zirconium constituting the ternary lead zirconate titanate, and the coprecipitate have different compositions and at least 2 The method according to any one of claims 4 to 6, wherein a coprecipitate containing a component is produced.
【請求項8】前記3成分系ジルコン酸チタン酸鉛系磁器
を構成するジルコニウム以外の一成分を含む溶液と沈殿
形成液とを反応させて形成した沈殿体を前記(2)工程
において、残りの構成成分として用いる特許請求の範囲
第4項ないし第6項の何れか1項に記載の方法。
8. A precipitate formed by reacting a solution containing one component other than zirconium that composes the three-component lead zirconate titanate-based porcelain with a precipitation-forming liquid in the step (2). The method according to any one of claims 4 to 6, which is used as a constituent component.
JP61298902A 1986-12-17 1986-12-17 Method for manufacturing lead zirconate titanate-based piezoelectric ceramic Expired - Lifetime JPH0818870B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61298902A JPH0818870B2 (en) 1986-12-17 1986-12-17 Method for manufacturing lead zirconate titanate-based piezoelectric ceramic
US07/418,740 US4990324A (en) 1986-12-17 1989-10-04 Method for producing two-component or three-component lead zirconate-titanate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61298902A JPH0818870B2 (en) 1986-12-17 1986-12-17 Method for manufacturing lead zirconate titanate-based piezoelectric ceramic

Publications (2)

Publication Number Publication Date
JPS63151673A JPS63151673A (en) 1988-06-24
JPH0818870B2 true JPH0818870B2 (en) 1996-02-28

Family

ID=17865642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61298902A Expired - Lifetime JPH0818870B2 (en) 1986-12-17 1986-12-17 Method for manufacturing lead zirconate titanate-based piezoelectric ceramic

Country Status (1)

Country Link
JP (1) JPH0818870B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5578839A (en) 1992-11-20 1996-11-26 Nichia Chemical Industries, Ltd. Light-emitting gallium nitride-based compound semiconductor device
JPH0920558A (en) * 1995-06-29 1997-01-21 Nec Corp Ceramic composition
JP3827915B2 (en) * 2000-05-11 2006-09-27 株式会社日本自動車部品総合研究所 Piezoelectric material and manufacturing method thereof
JP2006265071A (en) * 2005-03-25 2006-10-05 Nec Tokin Corp Piezoelectric material, its manufacturing method and piezoelectric element using it
DE102007045089A1 (en) * 2007-09-07 2009-03-12 Epcos Ag Ceramic material, method for producing the same and electroceramic component comprising the ceramic material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153115A (en) * 1984-08-18 1986-03-17 Natl Inst For Res In Inorg Mater Production of powdery raw material of easily sintering perovskite solid solution by multiple wet process
JPS6153114A (en) * 1984-08-18 1986-03-17 Natl Inst For Res In Inorg Mater Production of powdery raw material of easily sintering perovskite solid solution

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153115A (en) * 1984-08-18 1986-03-17 Natl Inst For Res In Inorg Mater Production of powdery raw material of easily sintering perovskite solid solution by multiple wet process
JPS6153114A (en) * 1984-08-18 1986-03-17 Natl Inst For Res In Inorg Mater Production of powdery raw material of easily sintering perovskite solid solution

Also Published As

Publication number Publication date
JPS63151673A (en) 1988-06-24

Similar Documents

Publication Publication Date Title
JPS63156057A (en) Manufacture of high density perovskite ceramics
JPS6214489B2 (en)
JP2598786B2 (en) Method for producing perovskite-based functional ceramic
JPS6214490B2 (en)
US4990324A (en) Method for producing two-component or three-component lead zirconate-titanate
JPH0159967B2 (en)
JPH0818870B2 (en) Method for manufacturing lead zirconate titanate-based piezoelectric ceramic
JPH0818871B2 (en) Method for manufacturing lead zirconate titanate-based piezoelectric ceramic
JPS6153113A (en) Production of powdery raw material of easily sintering perovskite and its solid solution by wet process
JPH027906B2 (en)
JPH0159205B2 (en)
JPS6363511B2 (en)
JPH0784345B2 (en) Manufacturing method of perovskite ceramics
JPS6284B2 (en)
JPS6259529A (en) Production of powdery raw material of easily sinterable titanium-containing perovskite and solid solution thereof
JPH0818867B2 (en) Method for producing perovskite ceramics containing zirconium
JPH0331647B2 (en)
JPS6265907A (en) Production of easy-to-sinter perovskite powder
JPH0784350B2 (en) Manufacturing method of perovskite ceramics
JPH01122907A (en) Production of perovskite oxide powder
JPH0678187B2 (en) Method for producing lead zirconate
JPH0427166B2 (en)
JPH0678190B2 (en) Method for producing zirconium titanate-based ceramics
JPH0624978B2 (en) Method for producing raw material powder of ceramics having electro-optical characteristics
JPH0629139B2 (en) Method for producing raw material powder for producing dielectric porcelain

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term