JPS61183913A - Laminate capacitor - Google Patents

Laminate capacitor

Info

Publication number
JPS61183913A
JPS61183913A JP60024251A JP2425185A JPS61183913A JP S61183913 A JPS61183913 A JP S61183913A JP 60024251 A JP60024251 A JP 60024251A JP 2425185 A JP2425185 A JP 2425185A JP S61183913 A JPS61183913 A JP S61183913A
Authority
JP
Japan
Prior art keywords
electrode
dielectric unit
internal
electrodes
dummy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60024251A
Other languages
Japanese (ja)
Inventor
久々津 喜正
後 外茂昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP60024251A priority Critical patent/JPS61183913A/en
Publication of JPS61183913A publication Critical patent/JPS61183913A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/145Organic dielectrics vapour deposited

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は積層コンデンサに関し、特に誘電体ユニット
の側面にその端面が露出するように形成された内部電極
と、誘電体ユニットの側面に形成され内部電極に電気的
に接続される外部電極とを有する、積層コンデンサに関
する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a multilayer capacitor, and particularly to an internal electrode formed on the side surface of a dielectric unit so that its end surface is exposed, and an internal electrode formed on the side surface of the dielectric unit. The present invention relates to a multilayer capacitor having an external electrode electrically connected to an internal electrode.

(従来技術) 従来、この種の積層コンデンサには、内部電極としてた
とえば銀−パラジウムなどの導電材料が用いられている
(Prior Art) Conventionally, in this type of multilayer capacitor, a conductive material such as silver-palladium is used as an internal electrode.

(発明が解決しようとする問題点) このような導電材料は高温で蒸発し易いので、誘電体ユ
ニットの焼成時に内部電極の端部が蒸発し、内部電極と
外部電極との電気的な接続が不良となる場合があった。
(Problem to be Solved by the Invention) Since such conductive materials easily evaporate at high temperatures, the ends of the internal electrodes evaporate when the dielectric unit is fired, and the electrical connection between the internal electrodes and the external electrodes is broken. There were cases where it became defective.

すなわち、第7図に示すように、積層コンデンサ1の内
部電極2の端部が蒸発してしまい、外部電極3との接続
が遮断される。
That is, as shown in FIG. 7, the ends of the internal electrodes 2 of the multilayer capacitor 1 evaporate, and the connection with the external electrodes 3 is cut off.

また、内部電極と外部電極との接続が残っている場合で
も、第8図に示すように、積層コンデンサ1の内部電極
2と外部電極3との接触部分が小さく、その接触抵抗が
大きくなる。
Further, even if the connection between the internal electrode and the external electrode remains, as shown in FIG. 8, the contact portion between the internal electrode 2 and external electrode 3 of the multilayer capacitor 1 is small, and the contact resistance becomes large.

前者の場合には設計通りの静電容量値が得られなくなり
、後者の場合には全体としての等価直列抵抗(ESR)
が大きくなるという問題があった。
In the former case, the designed capacitance value cannot be obtained, and in the latter case, the overall equivalent series resistance (ESR)
The problem was that it became large.

このような対策としては、内部電極層を厚くすることが
考えられるが、これではコストアップが大幅になるばか
りでなく、デラミネーションが発生し易くなる等別の問
題を生じる。
As a countermeasure against this problem, it may be considered to increase the thickness of the internal electrode layer, but this not only significantly increases cost but also causes other problems such as increased likelihood of delamination.

それゆえに、この発明の主たる目的は、別の方法で内部
電極と外部電極との電気的な接続の安定性のよい、積層
コンデンサを提供することである。
Therefore, the main object of the present invention is to provide a multilayer capacitor in which the electrical connection between internal electrodes and external electrodes is stable using another method.

(問題点を解決するたやの手段) この発明は、内部電極と同質の材料で誘電体ユニットの
表面にその一部が露出するようにダミー電極が形成され
た、積層コンデンサである。
(Another Means for Solving the Problems) The present invention is a multilayer capacitor in which a dummy electrode is formed of the same material as the internal electrode so that a portion thereof is exposed on the surface of a dielectric unit.

(作用) ダミー電極が誘電体ユニットの焼成時に蒸発して、焼成
雰囲気たとえば炉内におけるその金泥材料の濃度を高め
、好ましくは飽和状態にする。これによって、内部電極
それ自身からの材料の蒸発が抑えられる。
(Operation) The dummy electrode evaporates during firing of the dielectric unit, increasing the concentration of the gold mud material in the firing atmosphere, for example in the furnace, preferably bringing it to a saturated state. This reduces evaporation of material from the inner electrode itself.

(発明の効果) 内部電極材料の蒸発が抑えられるので、その蒸発に起因
する内部電極と外部電極との電気的な接続の遮断あるい
は不良は生じない。そのため、積層コンデンサ全体の等
価直列抵抗を従来に比べて低く抑えることができ、Qの
劣化や容量のばらつき等が防止できる。しかも、このよ
うな効果を得るために、特に製造方法を変更したりする
必要がないばかりでなく、コストも大幅に上昇すること
はない。
(Effects of the Invention) Since the evaporation of the internal electrode material is suppressed, the electrical connection between the internal electrode and the external electrode will not be interrupted or defective due to the evaporation. Therefore, the equivalent series resistance of the entire multilayer capacitor can be suppressed lower than that of the conventional capacitor, and deterioration of Q and variation in capacitance can be prevented. Moreover, in order to obtain such effects, it is not necessary to particularly change the manufacturing method, and the cost does not increase significantly.

この発明の上述の目的、その他の目的、特徴および利点
は、図面を参照して行なう以下の実施例の詳細な説明か
ら一層明らかとなろう。
The above objects, other objects, features and advantages of the present invention will become more apparent from the following detailed description of embodiments with reference to the drawings.

(実施例) 第1A図および第1B図はこの発明の一実施例を示し、
第1A図はその斜視図であり、第1B図は第1A図の線
IB−IBにおける断面図である。
(Example) FIG. 1A and FIG. 1B show an example of this invention,
FIG. 1A is a perspective view thereof, and FIG. 1B is a sectional view taken along line IB-IB in FIG. 1A.

この積層コンデンサ10は、ブロック状の誘電体ユニッ
ト12を含む。この誘電体ユニット12の内部には、た
とえば銀−パラジウムなどの金属材料で7枚の内部電極
14a、14b、14c、14d、14e、14fおよ
び14gが間隔を隔ててそれぞれ平行に形成される。ま
た、これらの内部電極14a〜14gの端面ば、それぞ
れが交互に誘電体ユニソ)12の対向する側面12aお
よび12bに露出される。すなわち、内部電極14a、
14c、14eおよび14gの端面が誘電体ユニット1
2の一方側面12aから露出され、内部電極14b、1
4dおよび14「の端面が誘電体ユニット12の他方側
面12bから露出される。
This multilayer capacitor 10 includes a block-shaped dielectric unit 12. Inside this dielectric unit 12, seven inner electrodes 14a, 14b, 14c, 14d, 14e, 14f and 14g are formed in parallel at intervals, each made of a metal material such as silver-palladium. Further, the end surfaces of these internal electrodes 14a to 14g are alternately exposed to opposing side surfaces 12a and 12b of the dielectric material 12. That is, the internal electrode 14a,
The end faces of 14c, 14e and 14g are dielectric unit 1.
The internal electrodes 14b, 1 are exposed from one side 12a of the
4d and 14'' are exposed from the other side surface 12b of the dielectric unit 12.

さらに、1つまたは複数の(この実施例では7つの)ダ
ミー電極16a、16b、16c、16d、16e、1
6fおよび16gが、好ましくは、誘電体ユニット12
の内部電極14a−14gと同じ高さ位置に形成される
。そして、これらのダミー電極162〜16gの端面ば
、内部電極14a〜14gの端面が露出する誘電体ユニ
ット12の側面に対向する側面から露出される。すなわ
ち、ダミー電極16b、16dおよび16fの端面は誘
電体ユニット12の一方側面12aから露出され、ダミ
ー電極16a、16c、1’6eおよび16gの端面ば
誘電体ユニッ)12の他方側面12bから露出される。
Furthermore, one or more (seven in this example) dummy electrodes 16a, 16b, 16c, 16d, 16e, 1
6f and 16g are preferably dielectric unit 12
It is formed at the same height position as the internal electrodes 14a-14g. The end surfaces of these dummy electrodes 162 to 16g are exposed from the side surface opposite to the side surface of the dielectric unit 12 where the end surfaces of the internal electrodes 14a to 14g are exposed. That is, the end faces of the dummy electrodes 16b, 16d, and 16f are exposed from one side 12a of the dielectric unit 12, and the end faces of the dummy electrodes 16a, 16c, 1'6e, and 16g are exposed from the other side 12b of the dielectric unit 12. Ru.

これらのダミー電極163〜16gは、内部電極14a
〜14gと同じ材質の金属材料で形成される。
These dummy electrodes 163 to 16g are the internal electrodes 14a.
It is made of the same metal material as ~14g.

さらに、外部電極18aおよび18bが、誘電体ユニッ
ト12の両側面12aおよび12bにたとえば銀やパラ
ジウムなどの金属材料を印刷し焼付けすることによって
それぞれ形成される。
Furthermore, external electrodes 18a and 18b are formed by printing and baking a metal material such as silver or palladium on both side surfaces 12a and 12b of dielectric unit 12, respectively.

この実施例では、誘電体ユニットを形成するために、た
とえば第2図実線で示すようなセラミックグリーンシー
ト12’が用いられる。このセラミックグリーンシート
12′の一方主面には、内部電極14としてその中央か
ら一端にまで、たとえば銀−パラジウムなどの金属材料
が印刷される。
In this embodiment, a ceramic green sheet 12' as shown by the solid line in FIG. 2, for example, is used to form the dielectric unit. On one main surface of the ceramic green sheet 12', a metal material such as silver-palladium is printed as an internal electrode 14 from the center to one end.

さらに、内部電極14に対向するセラミックグリーンシ
ート12′の他端部分には、ダミー電極16としてたと
えば銀−パラジウムなどの金属材料が印刷される。そし
て、このセラミックグリーンシート12′を数枚準備し
、それらを互い違いに向けて積層し、圧着焼成すれば誘
電体ユニット12が形成される。
Furthermore, a metal material such as silver-palladium is printed as a dummy electrode 16 on the other end portion of the ceramic green sheet 12' facing the internal electrode 14. Then, a dielectric unit 12 is formed by preparing several ceramic green sheets 12', stacking them alternately, and pressing and firing them.

なお、このセラミックグリーンシート12′は、第2図
実線および1点鎖線で示すように、帯状のセラミックグ
リーンシート12 ″の一方主面に一定間隔を隔てて矩
形状にたとえば銀−パラジウムなどの金属材料を印刷し
、その金属材料の端部でセラミックグリーンシート12
“を幅方向に切断することによって製造され得る。その
ため、従来の積層コンデンサの製造方法に比べて、新規
な投資はほとんど不要である。
The ceramic green sheet 12' is made of a metal such as silver-palladium in a rectangular shape at regular intervals on one main surface of the belt-shaped ceramic green sheet 12'', as shown by the solid line and the dashed-dotted line in FIG. Print the material and attach the ceramic green sheet 12 at the edge of the metal material
Therefore, compared to conventional manufacturing methods for multilayer capacitors, almost no new investment is required.

この積層コンデンサ10では、ダミー電極16a〜16
gが形成されているため、誘電体ユニット12の焼成工
程の際に内部電極14a−14gの端部の蒸発が抑えら
れる。なぜなら、焼成炉内では、内部電極材料だけでな
く、ダミー電極材料も蒸発し、そのためダミー電極がな
い場合に比べて、炉内雰囲気のその材料濃度が高くなり
、より短い時間に飽和状態になるので、内部電極材料の
蒸発が比較的少なく抑制されるからである。そのため、
従来のように、内部電極と外部電極との接続不良を起こ
すことがない。このことは、内部電極の材料として高温
で蒸発し易い比較的安価な金属または合金材料を使用で
きるばかりでなく、さらには、誘電体ユニットの焼成工
程における条件を広範囲に選べることを意味する。
In this multilayer capacitor 10, dummy electrodes 16a to 16
g is formed, evaporation of the ends of the internal electrodes 14a-14g is suppressed during the firing process of the dielectric unit 12. This is because in the firing furnace, not only the internal electrode material but also the dummy electrode material evaporates, so the concentration of that material in the furnace atmosphere becomes higher and becomes saturated in a shorter time than if there were no dummy electrode. This is because evaporation of the internal electrode material is suppressed to a relatively low level. Therefore,
Unlike the conventional method, there is no possibility of poor connection between the internal electrode and the external electrode. This means that not only can a relatively inexpensive metal or alloy material that easily evaporates at high temperatures be used as the material for the internal electrodes, but also that conditions in the firing process of the dielectric unit can be selected from a wide range.

(実験例) この実験例では、第3A図および第3B図に示すダミー
電極のないサンプル■ (従来例)と第4図に示すダミ
ー電極を有するサンプル■(実施例)とを形成した。サ
ンプルIおよびHの形成条件は次のとおりである。
(Experimental Example) In this experimental example, a sample (2) without a dummy electrode shown in FIGS. 3A and 3B (conventional example) and a sample (2) having a dummy electrode (example) shown in FIG. 4 were formed. The conditions for forming Samples I and H are as follows.

サンプルI 内部電極延長方向の全体の長さを3.07mmとし、幅
を1.551mとし、内部電極間の厚みすなわち素子厚
を20μmとした。そして、内部電極としては銀:パラ
ジウムを7:3の割合で混合した金属材料を用いて、長
さ2.77m、幅0. 9511の第9A図および第9
B図に示すように1字、      形電極を11枚形
成した。さらに、外部電極には、      銀:パラ
ジウム=9:1の金属材料を用いた。
Sample I The overall length in the internal electrode extension direction was 3.07 mm, the width was 1.551 m, and the thickness between the internal electrodes, that is, the element thickness was 20 μm. The internal electrodes are made of a metal material containing a mixture of silver and palladium at a ratio of 7:3, and are 2.77 m long and 0.6 m wide. Figures 9A and 9 of 9511
As shown in Figure B, 11 single-character-shaped electrodes were formed. Furthermore, a metal material with a ratio of silver:palladium of 9:1 was used for the external electrode.

1′ 、、、      サンプル■ □       全体の長さ9幅および厚さをサンプル
■と同じにした。そして、内部電極は、サンプル■のも
のと比べて長さだけを2.57u+に変えた。さらに、
外部電極は、サンプル■のものと同じにした。また、ダ
ミー電極は内部電極と同じ材料を用いて、長さ0.25
■憩とし幅0.95mmとして、内部電極から0.25
+n離して形成した。
1' Sample ■ □ The overall length, width, and thickness were the same as sample ■. Then, only the length of the internal electrode was changed to 2.57u+ compared to that of sample (2). moreover,
The external electrode was the same as that of sample ①. In addition, the dummy electrode is made of the same material as the internal electrode and has a length of 0.25 mm.
■With a width of 0.95 mm, 0.25 mm from the internal electrode.
+n apart.

そして、この実験例では、サンプルIとサンプル■との
等価直列抵抗ESR(MΩ)、Qおよびサンプルの静電
容量のばらつき程度すなわち3C■(%)を調べた。こ
の結果を表に示す。
In this experimental example, the equivalent series resistance ESR (MΩ) and Q of Sample I and Sample ■ and the degree of variation in capacitance of the samples, that is, 3C■ (%) were investigated. The results are shown in the table.

表 (以下余白) ダミー電極を形成したサンプル■では、ダミー電極を形
成していないサンプル■に比べて、その等価直列抵抗が
40%以上も小さくなり、そのQは3倍以上にもなった
。また、静電容量のばらつきも約3分の1になった。こ
れは、誘電体ユニットを焼成炉で焼成する際、サンプル
■では、前述のように、ダミー電極によって内部電極の
端面から蒸発する金属量を抑えることができたからであ
る。
Table (blank space below) In sample (2) in which a dummy electrode was formed, the equivalent series resistance was more than 40% smaller and its Q was more than three times as large as that in sample (2) in which no dummy electrode was formed. Furthermore, the variation in capacitance was reduced to about one-third. This is because when the dielectric unit was fired in the firing furnace, in sample 1, the amount of metal evaporated from the end face of the internal electrode could be suppressed by the dummy electrode, as described above.

第5図はこの発明の他の実施例を示す断面図である。こ
の積層コンデンサ10では、誘電体ユニッ1−12の内
部に2層の内部電極14aおよび14bLか形成されて
いない。しかしながら、ダミー電極16は多層(14層
)形成されている。また、第6図はこの発明のさらに他
の実施例を示す断面図である。この積層コンデンサ10
では、内部電極14とダミー電極16との間に、別のダ
ミー電極16′が形成される。第5図および第6図に示
すように、ダミー電極を内部電極の数より多くすれば、
内部電極材料の蒸発の度合をさらに抑えることができ、
内部電極が極端に蒸発しやすい場合や積層コンデンサの
等価直列抵抗をさらに小さくしたい場合などに有利に利
用され得る。
FIG. 5 is a sectional view showing another embodiment of the invention. In this multilayer capacitor 10, only two layers of internal electrodes 14a and 14bL are formed inside the dielectric unit 1-12. However, the dummy electrode 16 is formed in multiple layers (14 layers). Further, FIG. 6 is a sectional view showing still another embodiment of the present invention. This multilayer capacitor 10
Then, another dummy electrode 16' is formed between the internal electrode 14 and the dummy electrode 16. As shown in FIGS. 5 and 6, if the number of dummy electrodes is greater than the number of internal electrodes,
The degree of evaporation of the internal electrode material can be further suppressed,
This method can be advantageously used when the internal electrodes are extremely prone to evaporation or when it is desired to further reduce the equivalent series resistance of the multilayer capacitor.

上述の各実施例では内部電極は第9A図および第9B図
に示すような1字形であったが、この発明では内部電極
の形状は第10A図および第1OB図に示すような丁字
形のものでもよく、任意の形状を選択できることはいう
までもない。さらに、内部電極としては、銀−パラジウ
ムだけでなく、この発明は、すべての金属材料に適用で
きるものであり、たとえば還元雰囲気で焼成される銅に
ついても育効である。
In each of the above-described embodiments, the internal electrodes had a single-shaped shape as shown in FIGS. 9A and 9B, but in this invention, the internal electrodes have a T-shaped shape as shown in FIGS. 10A and 1OB. Needless to say, any shape can be selected. Furthermore, the present invention is applicable not only to silver-palladium as the internal electrode, but also to all metal materials; for example, copper fired in a reducing atmosphere is also effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1A図および第1B図はこの発明の一実施例を示し、
第1A図はその斜視図であり、第1B図は第1A図の線
IB−IBにおける断面図である。 第2図は第1A図および第1B図に示す実施例の誘電体
ユニットを形成し得るセラミックグリーンシートの一例
を示す斜視図である。 第3A図および第3B図は実験例に用いられたサンプル
■の長手方向の断面図および幅方向の断面図である。 第4図は実験例に用いられたサンプル■の長手方向の断
面図である。 第5図はこの発明の他の実施例を示す断面図である。 第6図はこの発明のさらに他の実施例を示す断面図であ
る。 第7図および第8図は従来例の要部を示し、第7図は内
部電極と外部電極とが完全に離れた状態を示す断面図で
あり、第8図は内部電極と外部電極との接触部分が小さ
い状態を示す断面図である。 第9A図および第9B図はI字形電極パターンの一例を
示す。 第1OA図および第10B図は丁字形電極パターンの一
例を示す。 図において、10は積層コンデンサ、12は誘電体ユニ
ット、14.14a=14gは内部電極、16.16’
、16a 〜16gはダミー電極、18aおよび18b
は外部電極を示す。 第3A図        第3B図 第4図 第5図 鴇 第6図 氏
1A and 1B show an embodiment of the present invention,
FIG. 1A is a perspective view thereof, and FIG. 1B is a sectional view taken along line IB-IB in FIG. 1A. FIG. 2 is a perspective view showing an example of a ceramic green sheet that can form the dielectric unit of the embodiment shown in FIGS. 1A and 1B. FIGS. 3A and 3B are a longitudinal sectional view and a width sectional view of Sample 1 used in the experimental example. FIG. 4 is a longitudinal cross-sectional view of Sample 1 used in the experimental example. FIG. 5 is a sectional view showing another embodiment of the invention. FIG. 6 is a sectional view showing still another embodiment of the invention. 7 and 8 show the main parts of the conventional example, FIG. 7 is a sectional view showing the state where the internal electrode and external electrode are completely separated, and FIG. 8 is a cross-sectional view showing the state where the internal electrode and external electrode are FIG. 3 is a cross-sectional view showing a state where the contact portion is small. FIGS. 9A and 9B show an example of an I-shaped electrode pattern. Figures 1OA and 10B show an example of a T-shaped electrode pattern. In the figure, 10 is a multilayer capacitor, 12 is a dielectric unit, 14.14a=14g is an internal electrode, 16.16'
, 16a to 16g are dummy electrodes, 18a and 18b
indicates an external electrode. Figure 3A Figure 3B Figure 4 Figure 5 Toki Figure 6 Mr.

Claims (1)

【特許請求の範囲】 1 誘電体ユニットと、前記誘電体ユニットの側面にそ
の端面が露出するように形成される内部電極と、前記誘
電体ユニットの側面に形成され前記内部電極に電気的に
接続される外部電極とを含む、積層コンデンサであって
、 前記内部電極と同質の材料からなり、前記誘電体ユニッ
トの内部に、この誘電体ユニットの表面近傍にその一部
が露出するように形成されるダミー電極を含む、積層コ
ンデンサ。 2 前記ダミー電極は、前記内部電極間に形成される、
特許請求の範囲第1項記載の積層コンデンサ。 3 前記内部電極は、交互に、前記誘電体ユニットの一
方側面および他方側面に露出するように形成され、 前記ダミー電極は、前記内部電極と同じ高さでこの内部
電極から間隔を隔てかつこの内部電極が露出する前記誘
電体ユニットの側面に対向する側面に露出するように形
成される、特許請求の範囲第2項記載の積層コンデンサ
[Scope of Claims] 1. A dielectric unit, an internal electrode formed on a side surface of the dielectric unit so that its end surface is exposed, and an internal electrode formed on a side surface of the dielectric unit and electrically connected to the internal electrode. a multilayer capacitor comprising an external electrode made of the same material as the internal electrode, formed inside the dielectric unit so that a part thereof is exposed near the surface of the dielectric unit. A multilayer capacitor including a dummy electrode. 2. The dummy electrode is formed between the internal electrodes,
A multilayer capacitor according to claim 1. 3. The internal electrodes are alternately formed to be exposed on one side and the other side of the dielectric unit, and the dummy electrodes are spaced apart from the internal electrodes at the same height as the internal electrodes, and The multilayer capacitor according to claim 2, wherein the electrode is formed to be exposed on a side surface opposite to the side surface of the dielectric unit where the electrode is exposed.
JP60024251A 1985-02-08 1985-02-08 Laminate capacitor Pending JPS61183913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60024251A JPS61183913A (en) 1985-02-08 1985-02-08 Laminate capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60024251A JPS61183913A (en) 1985-02-08 1985-02-08 Laminate capacitor

Publications (1)

Publication Number Publication Date
JPS61183913A true JPS61183913A (en) 1986-08-16

Family

ID=12133025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60024251A Pending JPS61183913A (en) 1985-02-08 1985-02-08 Laminate capacitor

Country Status (1)

Country Link
JP (1) JPS61183913A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06151030A (en) * 1992-11-07 1994-05-31 Kanegafuchi Chem Ind Co Ltd Earthing structure and earthing method for laminated heat insulating member
WO1998041999A1 (en) * 1997-03-17 1998-09-24 Matsushita Electric Industrial Co., Ltd. Electronic component
WO1999026259A1 (en) * 1997-11-18 1999-05-27 Matsushita Electric Industrial Co., Ltd. Laminate, capacitor, and method for producing laminate
WO1999026260A1 (en) * 1997-11-18 1999-05-27 Matsushita Electric Industrial Co., Ltd. Laminate and capacitor
JP2000124059A (en) * 1998-10-20 2000-04-28 Denso Corp Mounting structure for electronic component
JP2001035738A (en) * 1999-07-15 2001-02-09 Murata Mfg Co Ltd Laminated ceramic electronic component
JP2002033236A (en) * 2000-07-13 2002-01-31 Matsushita Electric Ind Co Ltd Chip-type electronic component
US7316755B2 (en) * 2003-09-29 2008-01-08 Murata Manufacturing Co., Ltd. Method of producing multi-terminal type laminated ceramic electronic component
US7319582B2 (en) 2004-06-03 2008-01-15 Murata Manufacturing Co., Ltd. Multilayer capacitor and method of manufacturing the same
US7394643B2 (en) 2005-01-31 2008-07-01 Tdk Corporation Laminated electronic component
JP2009188122A (en) * 2008-02-05 2009-08-20 Tdk Corp Multilayered capacitor
US20120229952A1 (en) * 2011-03-09 2012-09-13 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor and method of manufacturing the same
JP2014103371A (en) * 2012-11-20 2014-06-05 Samsung Electro-Mechanics Co Ltd Multilayer ceramic capacitor, circuit board packaging structure of multilayer ceramic capacitor, and packaging body of multilayer ceramic capacitor
US20170084396A1 (en) * 2002-04-15 2017-03-23 Avx Corporation Plated terminations

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2689833B2 (en) * 1992-11-07 1997-12-10 鐘淵化学工業株式会社 Grounding method for laminated insulation
JPH06151030A (en) * 1992-11-07 1994-05-31 Kanegafuchi Chem Ind Co Ltd Earthing structure and earthing method for laminated heat insulating member
US6195249B1 (en) 1997-03-17 2001-02-27 Matsushita Electric Industrial Co., Ltd. Electronic component having gaps between conductive thin films
WO1998041999A1 (en) * 1997-03-17 1998-09-24 Matsushita Electric Industrial Co., Ltd. Electronic component
WO1999026260A1 (en) * 1997-11-18 1999-05-27 Matsushita Electric Industrial Co., Ltd. Laminate and capacitor
US6576523B1 (en) 1997-11-18 2003-06-10 Matsushita Electric Industrial Co., Ltd. Layered product, capacitor and a method for producing the layered product
EP1041590A1 (en) * 1997-11-18 2000-10-04 Matsushita Electric Industrial Co., Ltd. Laminate and capacitor
US6838153B2 (en) 1997-11-18 2005-01-04 Matsushita Electric Industrial Co., Ltd. Layered product, capacitor and a method for producing the layered product
US6879481B2 (en) 1997-11-18 2005-04-12 Matsushita Electric Industrial Co., Ltd. Layered product and capacitor
WO1999026259A1 (en) * 1997-11-18 1999-05-27 Matsushita Electric Industrial Co., Ltd. Laminate, capacitor, and method for producing laminate
US6388865B1 (en) 1997-11-18 2002-05-14 Matsushita Electric Industrial Co., Ltd. Laminate and capacitor
EP1041590A4 (en) * 1997-11-18 2004-09-22 Matsushita Electric Ind Co Ltd Laminate and capacitor
US6577493B2 (en) 1997-11-18 2003-06-10 Matsushita Electric Industrial Co., Ltd. Layered product and capacitor
US6611420B2 (en) 1997-11-18 2003-08-26 Matsushita Electric Industrial Co., Ltd. Layered product and capacitor
US6704190B2 (en) 1997-11-18 2004-03-09 Matsushita Electric Industrial Co., Ltd. Layered product and capacitor
US6710997B2 (en) 1997-11-18 2004-03-23 Matsushita Electric Industrial Co., Ltd. Layered product and capacitor
JP2000124059A (en) * 1998-10-20 2000-04-28 Denso Corp Mounting structure for electronic component
JP2001035738A (en) * 1999-07-15 2001-02-09 Murata Mfg Co Ltd Laminated ceramic electronic component
JP2002033236A (en) * 2000-07-13 2002-01-31 Matsushita Electric Ind Co Ltd Chip-type electronic component
JP4581194B2 (en) * 2000-07-13 2010-11-17 パナソニック株式会社 Chip-type electronic components
US9666366B2 (en) 2002-04-15 2017-05-30 Avx Corporation Method of making multi-layer electronic components with plated terminations
US11195659B2 (en) 2002-04-15 2021-12-07 Avx Corporation Plated terminations
US10366835B2 (en) 2002-04-15 2019-07-30 Avx Corporation Plated terminations
US10020116B2 (en) * 2002-04-15 2018-07-10 Avx Corporation Plated terminations
US20170084396A1 (en) * 2002-04-15 2017-03-23 Avx Corporation Plated terminations
US7316755B2 (en) * 2003-09-29 2008-01-08 Murata Manufacturing Co., Ltd. Method of producing multi-terminal type laminated ceramic electronic component
US7319582B2 (en) 2004-06-03 2008-01-15 Murata Manufacturing Co., Ltd. Multilayer capacitor and method of manufacturing the same
US7394643B2 (en) 2005-01-31 2008-07-01 Tdk Corporation Laminated electronic component
JP2009188122A (en) * 2008-02-05 2009-08-20 Tdk Corp Multilayered capacitor
US9196422B2 (en) * 2011-03-09 2015-11-24 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor having high capacity and method of manufacturing the same
US9779873B2 (en) 2011-03-09 2017-10-03 Samsung Electro-Mechanics Co., Ltd. Method of manufacturing multilayer ceramic capacitor having groove portion on top and/or bottom surface
US10431379B2 (en) 2011-03-09 2019-10-01 Samsung Electro-Mechanics Co., Ltd. Method of manufacturing a multilayer ceramic capacitor
US20120229952A1 (en) * 2011-03-09 2012-09-13 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor and method of manufacturing the same
JP2018085517A (en) * 2012-11-20 2018-05-31 サムソン エレクトロ−メカニックス カンパニーリミテッド. Multilayered ceramic capacitor, mounting structure of circuit board having multilayered ceramic capacitor thereon, and packing unit for multilayered ceramic capacitor
US9099249B2 (en) 2012-11-20 2015-08-04 Samsung Electro-Mechanics Co., Ltd. Multilayered ceramic capacitor, mounting structure of circuit board having multilayered ceramic capacitor thereon, and packing unit for multilayered ceramic capacitor
JP2014103371A (en) * 2012-11-20 2014-06-05 Samsung Electro-Mechanics Co Ltd Multilayer ceramic capacitor, circuit board packaging structure of multilayer ceramic capacitor, and packaging body of multilayer ceramic capacitor

Similar Documents

Publication Publication Date Title
US6829134B2 (en) Laminated ceramic electronic component and method for manufacturing the same
JPS61183913A (en) Laminate capacitor
US3740624A (en) Monolithic capacitor having corner internal electrode terminations
JPH10261544A (en) Chip type laminate ceramic capacitor
EP1950776B1 (en) Monolithic ceramic electronic component
US11784007B2 (en) Capacitor component including reinforcing pattern in a margin/cover portion
KR20150019732A (en) Multi-layered ceramic capacitor and board for mounting the same
US6292353B1 (en) Laminated ceramic electronic component
JP2000058376A (en) Ceramic capacitor
KR100271910B1 (en) Laminate ceramic electronic parts
JP2005136131A (en) Laminated capacitor
JP2006222441A (en) Capacitor, wiring board, decoupling circuit, and high-frequency circuit
JPH05335174A (en) Laminated ceramic electronic component
JP2000195742A (en) Laminated ceramic capacitor
JPS6320010B2 (en)
JPS636121B2 (en)
JPS6225873Y2 (en)
JPH04278508A (en) Chip type stacked ceramic capacitor
JPH0945830A (en) Chip electronic component
JPH0338812A (en) Laminated capacitor
JP3823484B2 (en) Thermistor
JP3131004B2 (en) Manufacturing method of laminated porcelain electronic components
JPH09102437A (en) Manufacturing method for lamination electronic component
JPS5934114Y2 (en) multilayer capacitor
JPH035646B2 (en)