JPS61177372A - Production of boron nitride film - Google Patents

Production of boron nitride film

Info

Publication number
JPS61177372A
JPS61177372A JP1906785A JP1906785A JPS61177372A JP S61177372 A JPS61177372 A JP S61177372A JP 1906785 A JP1906785 A JP 1906785A JP 1906785 A JP1906785 A JP 1906785A JP S61177372 A JPS61177372 A JP S61177372A
Authority
JP
Japan
Prior art keywords
boron nitride
reaction chamber
substrate
nitride film
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1906785A
Other languages
Japanese (ja)
Inventor
Koichi Yamaguchi
浩一 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP1906785A priority Critical patent/JPS61177372A/en
Publication of JPS61177372A publication Critical patent/JPS61177372A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/342Boron nitride

Abstract

PURPOSE:To form a dense boron nitride film of high purity at a high rate of film formation when a boron nitride film is produced on the surface of a substrate by a vapor phase reaction in a reaction chamber, by regulating the total amount of oxygen and carbon atoms in the reaction chamber. CONSTITUTION:A substrate is placed in a reaction chamber, gases for producing boron nitride are introduced, and a boron nitride film of pyrolytic boron nitride or hexagonal boron nitride is produced on the surface of the substrate by a vapor phase reaction. At this time, the total amount of oxygen and carbon atoms in the reaction chamber is regulated to <=100ppm, and the substrate is kept at 400-1,400 deg.C, preferably 700-1,300 deg.C. The reaction chamber is evacuated beforehand to <=1X10<-5>mmHg degree or vacuum. A boron nitride film of high quality is produced at a low cost with high productivity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は熱分解窒化ホウ素(以下、PBNと略す)又は
六方晶窒化ホウ素(以下、EmNと略す)から成る窒化
ホウ素(BN)膜の製法に関するもので・ある。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for producing a boron nitride (BN) film made of pyrolytic boron nitride (hereinafter abbreviated as PBN) or hexagonal boron nitride (hereinafter abbreviated as EmN). It is related to.

〔先行技術〕[Prior art]

BNは高い熱伝導率を有して耐熱衝撃性に優れ、そして
電気的絶縁性、化学的安定性、耐酸化性、自己潤滑性に
も優れているため種々の広範な用途に注目されている。
BN has high thermal conductivity and excellent thermal shock resistance, as well as excellent electrical insulation, chemical stability, oxidation resistance, and self-lubricating properties, so it is attracting attention for a wide variety of applications. .

BNの製法には主として粉末を製造して、この粉末を原
料にして焼成する方法が採用されているが、ハロゲン化
硼素とアンモニアを高温で気相反応させる方法も特殊な
目的のために採られている。
The main manufacturing method for BN is to produce powder and then use this powder as a raw material for firing, but a method in which boron halide and ammonia are reacted in a gas phase at high temperatures has also been adopted for special purposes. ing.

この方法においてはBN生成源をガスにして気相反応す
るため比較的高純度でアシ、反応を減圧下で行なうこと
によjD PBNが得られている。かかるBNは、例え
ばPBNでコーティングされたグラファイトから成る真
空蒸着用ボートなどに用いられている。(特開昭54−
101781号公報参照)従来周知の通り、2NHs 
+ BtHs→2.BN + 6H2。
In this method, since the BN generation source is converted into a gas and the gas phase reaction is carried out, jD PBN can be obtained with relatively high purity and the reaction is carried out under reduced pressure. Such BN is used, for example, in vacuum deposition boats made of graphite coated with PBN. (Unexamined Japanese Patent Publication No. 54-
(Refer to Publication No. 101781) As is conventionally known, 2NHs
+ BtHs→2. BN+6H2.

4NHs + BQIs−4BN + 8NHaQJt
等の気相反応法によシ主にPBNが比較的高純度に形成
でき、又、BtOs+ 2NHs →2.BN + 8
HzO、BxOs + sc + Nt →2BN−1
−3CO等の化学反応によシ主にHBNも得られるが、
現在のところ未だ品買上満足できるものが得られておら
ず、 BN自体が有している本来の優れた特性を発揮さ
せんがために高純度且つ緻密なPBNやIIBNが得ら
れるのが望まれている。そこで本発明者がこのBN膜の
製法において鋭意研究に努めた結果、PBN +EIB
Nの生成を阻害する因子を見い出し、本発明を完成する
に至った。
4NHs + BQIs-4BN + 8NHaQJt
PBN can be mainly formed with relatively high purity by gas phase reaction methods such as BtOs + 2NHs → 2. BN+8
HzO, BxOs + sc + Nt →2BN-1
HBN is also mainly obtained through chemical reactions such as -3CO, but
At present, we have not yet been able to obtain a product that satisfies our purchasing needs, and it is desired to obtain highly pure and dense PBN and IIBN in order to bring out the original excellent properties of BN itself. ing. Therefore, as a result of the inventor's intensive research into the manufacturing method of this BN film, PBN + EIB
We have discovered a factor that inhibits the production of N, and have completed the present invention.

〔発明の目的〕 従って本発明の目的は高純度且つ緻密なPBNやHBN
を基体上に合成するBN膜の製造方法を提供せんとする
ものである。
[Object of the invention] Therefore, the object of the present invention is to produce highly pure and dense PBN and HBN.
The present invention aims to provide a method for producing a BN film by synthesizing the above on a substrate.

本発明の他の目的は高純度且つ緻密なPBN −? H
BNから成るBN膜を高い膜生成速度で基体上に形成さ
せる方法を提供するにある。
Another object of the present invention is to produce highly pure and dense PBN-? H
An object of the present invention is to provide a method for forming a BN film made of BN on a substrate at a high film formation rate.

〔発明の要旨〕[Summary of the invention]

本発明によれば、内部に基体が設置された反応室にBN
生成用ガスを導入して気相反応法により基体表面上にP
BN又はHBNを生成させる製法において、反応室内部
の酸素原子及び炭素原子の合計量が100 ppm以下
となるように制御したことを特徴とするBN膜の製造方
法が提供される。
According to the present invention, BN is added to the reaction chamber in which the substrate is installed.
A generation gas is introduced and P is deposited on the substrate surface using a gas phase reaction method.
Provided is a method for producing a BN film, characterized in that in the production method for producing BN or HBN, the total amount of oxygen atoms and carbon atoms inside a reaction chamber is controlled to be 100 ppm or less.

〔問題を解決するための手段〕[Means to solve the problem]

本発明はPBN + E(BNの膜が形成できる薄膜形
成技術のすべてについて適用できると考えられ、この技
術には熱CVD法、プラズマCVD法などの化学蒸着法
、スパッタリング法、真空蒸着法などの物理蒸着法があ
る。
The present invention is considered to be applicable to all thin film formation techniques that can form PBN+E (BN films), and this technology includes chemical vapor deposition methods such as thermal CVD and plasma CVD, sputtering, and vacuum evaporation. There is a physical vapor deposition method.

本発明によれば、かかる気相反応法によってBN膜を製
造するに際して、反応室内部に酸素原子及び炭素原子の
合計量が100 ppm以下になるように制御すること
が重要であることが判った。
According to the present invention, it has been found that when producing a BN film by such a gas phase reaction method, it is important to control the total amount of oxygen atoms and carbon atoms within the reaction chamber to 100 ppm or less. .

即ち、PBN −? HENが生成される反応系におい
ては、BN生成用ガスにホウ素元素含有ガスと窒素元素
含有ガスを用いたシ、或いはホウ素と窒素の両元素を含
有する化合物ガスを用いたシするが、かかるガスに酸素
原子や炭素原子がその構成元素として存在したシ、或い
は不純物として含有しているとこれらがBN生成の阻害
因子として関与するという新規知見に基づくものである
That is, PBN -? In the reaction system where HEN is generated, a boron element-containing gas and a nitrogen element-containing gas are used as the BN generating gas, or a compound gas containing both boron and nitrogen elements is used, but such a gas This is based on the new finding that when oxygen atoms and carbon atoms are present as constituent elements or are contained as impurities, they are involved as inhibitors of BN production.

ホウ素原子と酸素原子は非常に反応し品い系であシ、本
発明に係る製法の反応系に酸素原子が混入しているとホ
ウ素原子の一部が酸素原子と結合して酸化ホウ素が生成
し、これがPBN −? HENの気相成長を阻害した
シ、PBN −? HBNの結晶粒界に酸化ホウ素が取
シ込まれて膜の安定性を欠く原因となシ、高純度且つ緻
密な膜が形成できないことが判った。
Boron atoms and oxygen atoms are very reactive and have a high quality system.If oxygen atoms are mixed in the reaction system of the production method according to the present invention, some of the boron atoms will combine with oxygen atoms to produce boron oxide. And this is PBN-? PBN-? Which inhibited the vapor phase growth of HEN? It has been found that boron oxide is incorporated into the grain boundaries of HBN and causes the film to lack stability, making it impossible to form a highly pure and dense film.

同様に炭素原子もホウ素原子と非常に反応し易い系であ
り、PBN −? EIBNの気相成長を阻害したシ、
炭化ホウ素として取シ込まれて高純度且つ緻密々膜が形
成できないことが判った。
Similarly, carbon atoms are also highly reactive with boron atoms, and PBN -? which inhibited the vapor phase growth of EIBN,
It was found that a highly pure and dense film could not be formed due to the incorporation of boron carbide.

更に本発明によれば、PBN −? HBNが生成され
る基体の温度を設定するのが望ましい。基体温度が14
00℃を越えると反応室の壁材からその構成ガスが放出
し易くなシ、該ガスがBN膜の形成に伴って混入して高
純度のBN膜が得られない。基体温度が400℃未満で
あれば非晶質BNが形成され易くなる。従って、この基
体温度は400〜1400℃、好適には700〜130
0℃に設定すればよい。
Further according to the invention, PBN-? It is desirable to set the temperature of the substrate at which HBN is produced. Substrate temperature is 14
If the temperature exceeds 00° C., the constituent gas is likely to be released from the wall material of the reaction chamber, and the gas is mixed in with the formation of the BN film, making it impossible to obtain a high-purity BN film. If the substrate temperature is less than 400° C., amorphous BN is likely to be formed. Therefore, the temperature of this substrate is 400 to 1400°C, preferably 700 to 130°C.
It is sufficient to set the temperature to 0°C.

本発明においては減圧下で成膜するに際して反応室にB
N生成用ガスを導入する前に反応室内部を脱気して真空
度を大きくする必要がある。本発明者は種々の実験を繰
9返し行なった結果、この真空度が小さいと反応室の内
部壁面に吸着するHzo、CO2、有機物が多くなシ、
これらはBN膜の成膜に伴って遊離して不純物又は阻害
要因として作用することが判った。本発明者はこの到達
真空度をI X 10  Wm E陪以下に制御すれば
よいことを見い出した。
In the present invention, when forming a film under reduced pressure, B
Before introducing the N-generating gas, it is necessary to evacuate the interior of the reaction chamber to increase the degree of vacuum. As a result of conducting various experiments nine times, the present inventor found that when the degree of vacuum is low, a large amount of Hzo, CO2, and organic substances are adsorbed on the inner wall of the reaction chamber.
It has been found that these are liberated as the BN film is formed and act as impurities or inhibiting factors. The inventors have found that it is sufficient to control the ultimate degree of vacuum to less than I x 10 WmE.

上述の通シ、酸素原子及び炭素原子の混入量を前述した
レベルに抑制するためBN生成用ガスとして酸素原子や
炭素原子の混入の著しく少ない精製原料を使用し、且つ
反応室の減圧の程度を高める手段が採用される。
As mentioned above, in order to suppress the amount of mixed oxygen atoms and carbon atoms to the above-mentioned level, a purified raw material containing significantly less mixed oxygen atoms and carbon atoms is used as the BN generation gas, and the degree of pressure reduction in the reaction chamber is reduced. Measures to increase this will be adopted.

尚、本発明の実施例においてはBN生成用ガスにNE(
3ガス、BCl3ガヌ及びH2ガスを用いたが、他の原
料ガス、例えばNFIs −BzHs系ガス、f3zQ
s−NFls系ガス、Btus −C−Nz系ガスにつ
いても本発明が適用できると考えられる。
In addition, in the embodiment of the present invention, NE (
3 gas, BCl3Ganu and H2 gas, but other source gases such as NFIs-BzHs-based gas, f3zQ
It is considered that the present invention is also applicable to s-NFls-based gases and Btus-C-Nz-based gases.

次に本発明の実施例を述べる。Next, examples of the present invention will be described.

〔実施例1〕 反応室としての石英管の外側に高周波電流用コイ〜を4
回巻に形成し、その内部には700℃の温度に設定しで
ある81基体を設置した。
[Example 1] Four high-frequency current coils were placed outside the quartz tube as a reaction chamber.
It was formed into a spiral roll, and an 81 base body set at a temperature of 700° C. was installed inside it.

反応室の到達真空度を10  ’rorrに設定すると
共に高周波プラズマCVD法に基いて該コイルに13゜
56 MHzの高周波電流を流した。次いでNHSガス
、BCIガス及びH2ガスをそれぞれ2 ml / s
ea 、 0.5ml / sec及び2ml/BeC
の流量で反応室へ導入して全ガス圧をα2 ’rorr
に設定した。
The ultimate vacuum of the reaction chamber was set to 10'rorr, and a high frequency current of 13°56 MHz was passed through the coil based on the high frequency plasma CVD method. Then NHS gas, BCI gas and H2 gas at 2 ml/s each
ea, 0.5ml/sec and 2ml/BeC
is introduced into the reaction chamber at a flow rate of α2'rorr to increase the total gas pressure.
It was set to

とのBN生成用ガスはいずれのガスについても酸素ガス
及び水蒸気の混入量が1 ppm以下、炭素ガヌ濃19
1ppm以下の高純度ガスを用いた。
All of the gases used for BN generation have a mixed content of oxygen gas and water vapor of 1 ppm or less, and a carbon concentration of 19%.
High purity gas of 1 ppm or less was used.

かくして81基体表面に1時間成膜したところ厚み14
μmの膜を形成した。そしてこの膜をX線ディフライト
メーター法によシ測定したところPBN及びHBNが生
成していることが確認できた。
When the film was formed on the surface of the 81 substrate for 1 hour, the thickness was 14.
A μm film was formed. When this film was measured using an X-ray diffrite meter method, it was confirmed that PBN and HBN were produced.

〔実施例2〕 実施例1において、Nzガスをキャリアーガスとしco
!ガスが400 ppm加えられた阻害要因ガスを第1
表に示す通シに反応室に導入して膜生成速度及び膜安定
性を測ったところ、第1表に示す結果が得られた。
[Example 2] In Example 1, Nz gas was used as a carrier gas and co
! The first inhibitor gas was added at 400 ppm.
When the membrane formation rate and membrane stability were measured by introducing the mixture into the reaction chamber as shown in the table, the results shown in Table 1 were obtained.

尚、膜安定性は本実施例で得られた試料をA!″気流中
SOO℃で2時間加熱して重量の減少比率を求めてその
指標とした。
The membrane stability of the sample obtained in this example was A! ``Heating at SOO°C in an air stream for 2 hours, the weight reduction ratio was determined and used as an index.

第1表 ・印の試料は本発明の範囲外のものである。Table 1 - Samples marked with are outside the scope of the present invention.

第1表よシ明らかな通シ、本発明の試料黒1乃至5につ
いては高純度且つ緻密なPBN及びHBNが亮い生成速
度で形成できる。又、阻害要因ガスの導入量が小さくな
るのに伴って高純度且つ緻密なPBN 、 HBN g
が高い生成速度でもって形成できた。
As is clear from Table 1, in Samples Black 1 to 5 of the present invention, highly pure and dense PBN and HBN can be formed at a high production rate. In addition, as the amount of inhibiting gas introduced becomes smaller, high purity and dense PBN, HBN g
could be formed with a high production rate.

〔実施例3〕 実施例1において、 ユ基体の設定温度を第2表に示す
通りにしてBN膜の結晶状態及び膜成長速度、並びにヲ
ザフオードの後方散乱法によシ膜中の不純物の有無を測
定した。
[Example 3] In Example 1, the crystalline state and film growth rate of the BN film, as well as the presence or absence of impurities in the film, were determined using the Ozafoord backscattering method using the set temperature of the substrate as shown in Table 2. It was measured.

第2表 第21表よシ明らかな通シ、基体温度が1400 ’C
以下に設定された試料410乃至14においては膜中に
不純物が全く検出されなかった。又、基体温度が400
℃未満に設定された試料黒14においては非晶質BNが
形成されたにすぎなかった。
It is clear from Table 2 and Table 21 that the substrate temperature is 1400'C.
In samples 410 to 14 set below, no impurities were detected in the films. Also, the substrate temperature is 400
In sample black 14, which was set at a temperature below .degree. C., only amorphous BN was formed.

〔実施例4〕 実施例1において、反応室の到達真空度を第8表に示す
通り幾通りにも設定して1時間成膜し、膜生成速度及び
膜安定性を測定した。
[Example 4] In Example 1, the ultimate vacuum degree of the reaction chamber was set in various ways as shown in Table 8 to form a film for 1 hour, and the film formation rate and film stability were measured.

第8表より明らかな通り、到達真空度が1×10mm 
E(gを越える試料ム17乃至19においては膜生成速
度が小さくなシ、膜の純度及び緻密性も劣る傾向にある
As is clear from Table 8, the ultimate vacuum level is 1 x 10 mm.
In samples 17 to 19 in which the weight exceeds E(g), the film formation rate is low, and the purity and density of the film tend to be poor.

〔実施例5〕 実施例1において、81基体の温度をsoo’cに設定
し、更にN2ガスをキャリアーガスとしO2ガスが40
0 ppm加えられた阻害要因ガスを第4表に示す通υ
に反応室に導入して膜生成速度及び膜安定性を測定した
[Example 5] In Example 1, the temperature of the 81 substrate was set to soo'c, and further, N2 gas was used as a carrier gas, and O2 gas was
0 ppm added inhibitory gas as shown in Table 4
was introduced into the reaction chamber to measure the film formation rate and film stability.

・印の試料は本発明の範囲外のものである第4表より明
らかな通り、本発明の試料五20乃至24については高
純度且つ緻密なPBN及びHBNが高い生成速度で形成
できる。
The samples marked with * are outside the scope of the present invention.As is clear from Table 4, highly pure and dense PBN and HBN can be formed at a high production rate for Samples 520 to 24 of the present invention.

〔実施例6〕 実施例1において、 81基体の温度を800℃に設定
し、更に■2ガスをキャリアーガスとしCF1aガスを
10容量%含む阻害要因ガスを第6表に示す通シに反応
室に導入して膜生成速度及び膜安定性を測定した。
[Example 6] In Example 1, the temperature of the 81 substrate was set at 800°C, and furthermore, the reaction chamber was heated using the 2 gas as a carrier gas and the inhibiting gas containing 10% by volume of CF1a gas as shown in Table 6. The film formation rate and film stability were measured.

・印の試料は本発明の範囲外のものである第5表よシ明
らかな通シ、本発明の試料&27乃至81については高
純度且つ緻密なPBN及びE(BNが高い生成速度で形
成できる。
The samples marked with ・ are outside the scope of the present invention. It is clear from Table 5 that samples &27 to 81 of the present invention have high purity and dense PBN and E (BN can be formed at a high production rate). .

〔発明の効果〕〔Effect of the invention〕

上述した通夛、本発明によれば酸素原子や炭素原子がB
N生成の阻害要因になることが判シその合計量を反応室
内部にて100 ppm以下に制御することが重要であ
る。これにより、高純度且つ緻密なPBN −? Em
Nを高い膜生成速度で形成でき、その結果、BN自体の
有する高熱伝導性、耐熱衝撃性、電気的絶縁性、化学的
安定性、耐酸化性及び自己潤滑性を更に向上せしめるこ
とができる。加えて生産性を高めて高品質BN膜を低コ
ストで供給できるという利点も有する。
As mentioned above, according to the present invention, oxygen atoms and carbon atoms are
It is important to control the total amount within the reaction chamber to 100 ppm or less since it is likely to become an inhibiting factor for N production. As a result, highly pure and dense PBN-? Em
N can be formed at a high rate of film formation, and as a result, the high thermal conductivity, thermal shock resistance, electrical insulation, chemical stability, oxidation resistance, and self-lubricating properties of BN itself can be further improved. In addition, it also has the advantage of increasing productivity and supplying high quality BN films at low cost.

Claims (4)

【特許請求の範囲】[Claims] (1)内部に基体が設置された反応室に窒化ホウ素生成
用ガスを導入して気相反応法により該基体表面上に熱分
解窒化ホウ素又は六方晶窒化ホウ素を生成させる製法に
おいて、該反応室内部の酸素原子及び炭素原子の合計量
が100ppm以下となるように制御したことを特徴と
する窒化ホウ素膜の製造方法。
(1) In a manufacturing method in which a boron nitride generating gas is introduced into a reaction chamber in which a substrate is installed and pyrolytic boron nitride or hexagonal boron nitride is generated on the surface of the substrate by a gas phase reaction method, the reaction chamber A method for producing a boron nitride film, characterized in that the total amount of internal oxygen atoms and carbon atoms is controlled to be 100 ppm or less.
(2)前記基体の温度を400〜1400℃の範囲内に
設定したことを特徴とする特許請求の範囲第(1)項記
載の窒化ホウ素膜の製造方法。
(2) The method for manufacturing a boron nitride film according to claim (1), wherein the temperature of the substrate is set within a range of 400 to 1400°C.
(3)前記基体の温度を700〜1300℃の範囲内に
設定したことを特徴とする特許請求の範囲第(1)項記
載の窒化ホウ素膜の製造方法。
(3) The method for manufacturing a boron nitride film according to claim (1), wherein the temperature of the substrate is set within a range of 700 to 1300°C.
(4)前記反応室に窒化ホウ素生成用ガスを導入する前
の該反応内部の到達真空度を1×10^−^5mmHg
以下に制御したことを特徴とする特許請求の範囲第(1
)項記載の窒化ホウ素膜の製造方法。
(4) The ultimate vacuum inside the reaction chamber before introducing the boron nitride generating gas into the reaction chamber is 1 x 10^-^5 mmHg.
Claim No. 1 (1) characterized by the following control:
) The method for manufacturing a boron nitride film described in item 2.
JP1906785A 1985-01-31 1985-01-31 Production of boron nitride film Pending JPS61177372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1906785A JPS61177372A (en) 1985-01-31 1985-01-31 Production of boron nitride film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1906785A JPS61177372A (en) 1985-01-31 1985-01-31 Production of boron nitride film

Publications (1)

Publication Number Publication Date
JPS61177372A true JPS61177372A (en) 1986-08-09

Family

ID=11989082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1906785A Pending JPS61177372A (en) 1985-01-31 1985-01-31 Production of boron nitride film

Country Status (1)

Country Link
JP (1) JPS61177372A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT387988B (en) * 1987-08-31 1989-04-10 Plansee Tizit Gmbh METHOD FOR PRODUCING MULTI-LAYER COATED HARD METAL PARTS
JP2021020848A (en) * 2016-05-12 2021-02-18 グローバルウェーハズ カンパニー リミテッドGlobalWafers Co.,Ltd. Direct formation of hexagonal boron nitride on silicon based dielectric

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5547379A (en) * 1978-10-02 1980-04-03 Takehiko Takahashi Manufacture of boron nitride coated film by chemical vapor deposition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5547379A (en) * 1978-10-02 1980-04-03 Takehiko Takahashi Manufacture of boron nitride coated film by chemical vapor deposition

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT387988B (en) * 1987-08-31 1989-04-10 Plansee Tizit Gmbh METHOD FOR PRODUCING MULTI-LAYER COATED HARD METAL PARTS
US4895770A (en) * 1987-08-31 1990-01-23 Schwarzkopf Development Corporation Process for the manufacture of multi-layered, coated hardmetal parts
JP2021020848A (en) * 2016-05-12 2021-02-18 グローバルウェーハズ カンパニー リミテッドGlobalWafers Co.,Ltd. Direct formation of hexagonal boron nitride on silicon based dielectric
US11276759B2 (en) 2016-05-12 2022-03-15 Globalwafers Co., Ltd. Direct formation of hexagonal boron nitride on silicon based dielectrics
US11289577B2 (en) 2016-05-12 2022-03-29 Globalwafers Co., Ltd. Direct formation of hexagonal boron nitride on silicon based dielectrics
JP2022121422A (en) * 2016-05-12 2022-08-19 グローバルウェーハズ カンパニー リミテッド Direct formation of hexagonal boron nitride on silicon based dielectrics

Similar Documents

Publication Publication Date Title
US4565747A (en) Boron nitride containing titanium nitride, method of producing the same and composite ceramics produced therefrom
US4845054A (en) Low temperature chemical vapor deposition of silicon dioxide films
JPS6047202B2 (en) Super hard high purity oriented polycrystalline silicon nitride
US4632849A (en) Method for making a fine powder of a metal compound having ceramic coatings thereon
JP2001316821A (en) Low resistivity silicon carbide
JPS643948B2 (en)
US5064686A (en) Sub-valent molybdenum, tungsten, and chromium amides as sources for thermal chemical vapor deposition of metal-containing films
Hong et al. Low-temperature deposition of diamond using chloromethane in a hot-filament chemical vapor deposition reactor
Burgess et al. Solid precursor MOCVD of heteroepitaxial rutile phase TiO2
JPS61177372A (en) Production of boron nitride film
JPH02225317A (en) Production of oxide superconductor by chemical gas phase deposition method
Pai et al. Preparation of SiC hollow particles by gas-phase reaction in the SiH 4-CH 4-H 2 system
US5437891A (en) Chemical vapor deposition of polycrystalline diamond with &lt;100&gt; orientation and &lt;100&gt; growth facets
KR100249825B1 (en) Method of copper chemical vapor deposition using metalorganic precursor
JP2569423B2 (en) Gas phase synthesis of boron nitride
JPH03243776A (en) Graphite member for cvd
Wang et al. Effect of heat treatment on phase transformation of aluminum nitride ultrafine powder prepared by chemical vapor deposition
JPH07116606B2 (en) Diamond coated carbon material
JP2003183076A (en) Method for manufacturing pyrolytic carbon or graphite- coated carbon material
JP2619888B2 (en) Manufacturing method of aluminum nitride
JPS6250466A (en) Production of article having silicon nitride film
JPH01123074A (en) Method for supplying raw material for gaseous phase chemical reaction
JP2615409B2 (en) Synthesis of boron nitride by pyrolysis
JPH061695A (en) Method for synthesizing diamond
JPH04300291A (en) Method for preparing diamond film