JPH06340903A - Production of rare-earth permanent magnet raw powder - Google Patents

Production of rare-earth permanent magnet raw powder

Info

Publication number
JPH06340903A
JPH06340903A JP3381693A JP3381693A JPH06340903A JP H06340903 A JPH06340903 A JP H06340903A JP 3381693 A JP3381693 A JP 3381693A JP 3381693 A JP3381693 A JP 3381693A JP H06340903 A JPH06340903 A JP H06340903A
Authority
JP
Japan
Prior art keywords
permanent magnet
compressor
gaseous nitrogen
nitrogen gas
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3381693A
Other languages
Japanese (ja)
Inventor
Osamu Taira
治 平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP3381693A priority Critical patent/JPH06340903A/en
Publication of JPH06340903A publication Critical patent/JPH06340903A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

PURPOSE:To inexpensively and efficiently produce the raw powder of high quality by pulverizing the coarsely crushed powder of rare-earth permanent magnet alloy with a jet consisting of a nonoxidizing gas with the oxygen concn. specified. CONSTITUTION:Gaseous nitrogen is introduced into a compressor 2 from its source S and circulated through a coller 3, filter 4, bypass regulator 10 and switches 14 and 15. A valve 5 is then opened to introduce compressed gaseous nitrogen into a raw material feeder 8 and crusher 6, the coarsely crushed powder of a rare-earth permanent alloy is pulverized by an ultrasonic jet, and the gaseous nitrogen is returned to the compressor 2 through a filter 7, valve 12 and main pipeline 1 and recylcled. At this time, gaseous nitrogen or air is supplied to the main pipeline 1 through a feed pipe 21 by valves 19 and 20 actuated in accordance with the oxygen concn. in the gaseous nitrogen flowing into an oxygen concn. analyzer constituting an oxygen concn. controller 17 from a sampling pipeline 18, and the oxygen concn. in the recycle gaseous nitrogen is controlled to about 2-4%, for example.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、R(但し、RはYを包
含する希土類元素のうち少なくとも1種、以下同じ),
B,Feを主成分とする希土類系永久磁石等の原料粉末
の製造方法に関するものであり、特に非酸化性ガス雰囲
気中において乾式粉砕を行ない、希土類系永久磁石原料
粉末を製造する方法に関するものである。
The present invention relates to R (provided that R is at least one rare earth element including Y, the same applies hereinafter),
The present invention relates to a method for producing a raw material powder such as a rare earth-based permanent magnet containing B and Fe as a main component, and particularly to a method for producing a rare earth-based permanent magnet raw material powder by dry pulverization in a non-oxidizing gas atmosphere. is there.

【0002】[0002]

【従来の技術】近年の電気・電子機器の小型化および高
効率化の要求に伴って、上記機器の構成材料である永久
磁石材料にも益々高性能化が要請されるようになってい
る。そして従来から広く使用されているアルニコおよび
フェライト磁石に加えて、希土類コバルト磁石の出現に
よって永久磁石の磁気特性が格段に向上し、小型かつ高
付加価値磁気回路に使用されている。
2. Description of the Related Art With the recent demand for miniaturization and high efficiency of electric and electronic equipment, there is an increasing demand for higher performance of permanent magnet materials which are constituent materials of the above equipment. In addition to the Alnico and ferrite magnets that have been widely used, the magnetic properties of permanent magnets have been remarkably improved by the advent of rare earth cobalt magnets, and they are used in small-sized and high-value-added magnetic circuits.

【0003】しかしながら希土類コバルト磁石は高価な
Sm,Co等を含有するものであるため、必ずしも永久
磁石材料の主流を占めるには至っていない。その後、上
記のような高価なSmやCoを含有しない新高性能磁石
としてR−Fe−B系永久磁石、さらにはFeの一部を
Coで置換したR−Fe−B−Co系永久磁石が提案さ
れている(例えば特開昭59−46008号,同59−
64733号等)。
However, since rare earth cobalt magnets contain expensive Sm, Co, etc., they have not necessarily become the mainstream of permanent magnet materials. Then, as a new high-performance magnet containing no expensive Sm or Co as described above, an R-Fe-B system permanent magnet and an R-Fe-B-Co system permanent magnet in which a part of Fe is replaced by Co are proposed. (For example, JP-A-59-46008 and 59-
64733).

【0004】而して上記の新規なR,B,Feを主成分
とする材料からなる永久磁石は、溶解、鋳造後の鋳塊を
粗粉砕、微粉砕後、成形、焼結、熱処理等の工程を経て
製造され、使用に供されるのである。
The above-mentioned permanent magnet made of the material containing R, B and Fe as the main components is subjected to melting, casting, ingot crushing, fine crushing, molding, sintering, heat treatment, etc. It is manufactured through the steps and used.

【0005】[0005]

【発明が解決しようとする課題】上記永久磁石用合金の
粉砕に際しては、鋳塊の機械的粉砕および湿式微粉砕を
行うのが、一般である。この湿式微粉砕は、例えば特開
昭60−91601号公報記載のように、粗粉砕した3
5メッシュ程度の粉末を、メタノールその他の有機溶媒
と共にボールミル等の粉砕機中に投入して行うものであ
る。この場合有機溶媒を使用するため、環境汚染、人体
に有毒な危険物に対する安全性等の点で作業上の問題点
があり、更には安全な溶媒を使用したとしても微粉砕後
の溶媒との分離乾燥が必要であるため、粉末の生産効率
が低いという問題点もある。
When the alloy for permanent magnets is pulverized, it is general to mechanically pulverize the ingot and to perform wet pulverization. This wet fine pulverization is performed by coarsely pulverizing as described in JP-A-60-91601, for example.
The powder of about 5 mesh is put into a pulverizer such as a ball mill together with methanol and other organic solvents. In this case, since an organic solvent is used, there are working problems in terms of environmental pollution, safety against hazardous substances toxic to the human body, etc. Since it needs to be separated and dried, there is also a problem that the production efficiency of powder is low.

【0006】一方溶媒を使用しない乾式粉砕法を採用す
る場合において、従来公知の大気中粉砕を行なうと、粉
末の酸化が著しく、これを原料として製造した永久磁石
は、所定の磁気特性を得ることができず、全く使用に耐
えないという問題点がある。
On the other hand, when the dry pulverization method which does not use a solvent is adopted and the conventionally known pulverization is carried out in the atmosphere, the powder is remarkably oxidized, and the permanent magnet produced from this material has a predetermined magnetic property. However, there is a problem that it cannot be used at all.

【0007】本発明は、上記のような従来技術に存在す
る問題点を解決し、希土類系永久磁石原料粉末を乾燥状
態で微粉砕して製造する方法を提供することを目的とす
るものである。
An object of the present invention is to solve the above problems existing in the prior art and to provide a method for producing a rare earth-based permanent magnet raw material powder by finely pulverizing it in a dry state. .

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明においては、希土類系永久磁石合金からなる
鋳塊を粗粉砕した後、この粗粉砕粉を粉砕機内におい
て、酸素濃度を所定範囲内に調製した非酸化性ガスから
なるジェット気流を介して微粉砕する、という技術的手
段を採用した。
In order to achieve the above object, in the present invention, an ingot made of a rare earth permanent magnet alloy is roughly crushed, and then this roughly crushed powder is adjusted to a predetermined oxygen concentration in a crusher. The technical means of pulverizing via a jet stream of non-oxidizing gas prepared within the range was adopted.

【0009】本発明において、非酸化性ガスとして窒素
ガスを使用することができる。また本発明において、希
土類系永久磁石合金としては、R,B,Feを主成分と
する合金を対象とするのが有効である。
In the present invention, nitrogen gas can be used as the non-oxidizing gas. Further, in the present invention, it is effective to target an alloy containing R, B and Fe as main components as the rare earth permanent magnet alloy.

【0010】具体的手段としては、例えばガス圧縮手段
とジェット気流粉砕手段とを備えた無端管路を介して、
非酸化性ガスを循環可能とすると共に、非酸化性ガス中
の酸素濃度分析手段と連動する複数系統のガス供給手段
により、前記非酸化性ガス中の酸素濃度を所定範囲内に
制御するようにし、前記ジェット気流粉砕手段に粗粉砕
粉を供給して乾式微粉砕を行なうのである。
As a concrete means, for example, through an endless pipe provided with a gas compression means and a jet stream crushing means,
The non-oxidizing gas can be circulated, and the oxygen concentration in the non-oxidizing gas is controlled within a predetermined range by a plurality of systems of gas supply means linked with the oxygen concentration analyzing means in the non-oxidizing gas. The coarsely pulverized powder is supplied to the jet air stream pulverizing means to perform dry fine pulverization.

【0011】[0011]

【作用】上記のような技術的手段の採用により、例えば
窒素ガスを圧縮機によって無端管路内を循環させた状態
で、弁を開放することにより、粉砕機に窒素ガスによる
ジェット気流を導入することができるから、非酸化雰囲
気における微粉砕を遂行できるのである。窒素ガスは粉
砕機においてエネルギー消失後は、再び圧縮機に返戻さ
れ、再度粉砕に供することができる。
By employing the above-mentioned technical means, for example, the nitrogen gas is circulated in the endless pipe by the compressor and the valve is opened to introduce the jet stream of the nitrogen gas into the crusher. Therefore, fine pulverization in a non-oxidizing atmosphere can be performed. After energy is lost in the pulverizer, the nitrogen gas is returned to the compressor again and can be used for pulverization again.

【0012】一方粉砕機の停止状態若しくは粉砕機にお
ける窒素ガス使用量が減少した場合においては、バイパ
ス管路内においてのみ循環を行わせ得るから、圧縮機の
運転をその都度停止させるような煩雑な作業を回避し得
る。また無端管路内を循環するガス中の酸素濃度を所定
の範囲内に制御することにより、生成粉末の品質を向上
させ得る。
On the other hand, when the crusher is stopped or when the amount of nitrogen gas used in the crusher is reduced, the circulation can be performed only in the bypass line, so that the operation of the compressor is stopped each time. Work can be avoided. Moreover, the quality of the produced powder can be improved by controlling the oxygen concentration in the gas circulating in the endless pipe within a predetermined range.

【0013】[0013]

【実施例】図1は本発明の実施例における乾式微粉砕装
置の例を模式的に示す配管図である。図1において1は
主管路であり、ループ状無端に形成する。次に2,3,
4は夫々圧縮機、冷却機およびフィルターであり、上記
の順に直列に接続して前記主管路1内に介装する。また
5,6,7は夫々弁、粉砕機およびフィルターであり、
上記の順序に直列に接続して、前記フィルター4に続い
て主管路1内に介装する。
EXAMPLE FIG. 1 is a piping diagram schematically showing an example of a dry pulverizing apparatus in an example of the present invention. In FIG. 1, reference numeral 1 denotes a main pipe, which is formed as a loop endless. Next 2, 3,
Reference numeral 4 denotes a compressor, a cooler, and a filter, which are connected in series in the above order and are inserted in the main conduit 1. Also, 5, 6 and 7 are valves, crushers and filters,
The filters 4 are connected in series in the above order, and are inserted in the main pipe line 1 following the filter 4.

【0014】8は原料供給機であり、前記弁5と粉砕機
6との間に、前記主管路1と並列に介装する。次に9は
バイパス管路であり、フィルター4の出口と圧縮機2の
入口との間にバイパスレギュレーター10を介して主管
路1と並列に設ける。また11は前記バイパスレギュレ
ーター10のパイロット管路であり、主管路1から分岐
させたものである。
Reference numeral 8 denotes a raw material supply device, which is interposed between the valve 5 and the crusher 6 in parallel with the main pipe line 1. Next, 9 is a bypass pipe, which is provided in parallel with the main pipe 1 between the outlet of the filter 4 and the inlet of the compressor 2 via the bypass regulator 10. Reference numeral 11 denotes a pilot conduit of the bypass regulator 10, which is branched from the main conduit 1.

【0015】なお主管路1には上記機器の他に、弁12
およびライン安全弁13をフィルター7の次に、ならび
に高圧用圧力スイッチ14および低圧用圧力スイッチ1
5を各々圧縮機2の手前に介装する。16は非酸化性ガ
ス例えば窒素ガスを主管路1に供給するための弁であ
る。
In addition to the above equipment, a valve 12 is provided in the main pipeline 1.
And the line safety valve 13 next to the filter 7, and the high pressure switch 14 and the low pressure switch 1
5 are inserted in front of the compressor 2, respectively. Reference numeral 16 is a valve for supplying a non-oxidizing gas such as nitrogen gas to the main pipe line 1.

【0016】以上の構成により次に作用について記述す
る。まず弁5および弁12を閉じ、弁16を開いて窒素
ガス供給源Sと圧縮機2とを連通させて圧縮機2を運転
すると、窒素ガスはAから圧縮機2内に入り、圧縮され
てBから冷却器3に入って冷却され(例えば20℃前後
まで)、更にフィルター4によって窒素ガス中のダスト
および油分のミストを除去される。
Next, the operation will be described with the above configuration. First, when the valve 5 and the valve 12 are closed and the valve 16 is opened to connect the nitrogen gas supply source S and the compressor 2 to operate the compressor 2, the nitrogen gas enters from A into the compressor 2 and is compressed. From B, it enters the cooler 3 and is cooled (for example, up to around 20 ° C.), and the filter 4 removes dust and oil mist in the nitrogen gas.

【0017】ここで圧縮機2は断熱圧縮であるため窒素
ガスの温度が上昇する。また圧縮機2内部に設けた冷却
器のみでは充分な冷却効果が得られない。従って圧縮機
2の後に冷却器3を設けて、窒素ガスの温度を所定の範
囲内に調製することが望ましい。なお圧縮機2が油冷式
でない場合には、フィルター4を省略することができ
る。
Since the compressor 2 is adiabatic compression, the temperature of nitrogen gas rises. Moreover, a sufficient cooling effect cannot be obtained only by the cooler provided inside the compressor 2. Therefore, it is desirable to provide the cooler 3 after the compressor 2 to adjust the temperature of the nitrogen gas within a predetermined range. If the compressor 2 is not of the oil cooling type, the filter 4 can be omitted.

【0018】窒素ガスは更にCからバイパス管路9に至
り、バイパスレギュレーター10によってそれまでの圧
力6〜8 kg f/cm2 (ゲージ圧力、以下同じ)から0.
07〜0.5 kg f/cm2 に減圧され、DおよびEを経由
してAに戻り、バイパスリサイクル運転を行う。この場
合主管路1に介装した弁12は、図1においてPからJ
方向への窒素ガスの流れを阻止する作用があるから、上
記バイパスリサイクル運転には支障がない。
Nitrogen gas further flows from C to the bypass line 9 and is supplied by the bypass regulator 10 from the previous pressure of 6 to 8 kg f / cm 2 (gauge pressure, the same applies hereinafter) to 0.
07~0.5 kg f / cm 2 is reduced to, return to A via D and E, performed bypass recycle operation. In this case, the valve 12 installed in the main pipeline 1 is shown in FIG.
Since it has the effect of blocking the flow of nitrogen gas in the direction, it does not hinder the bypass recycling operation.

【0019】次に弁5を開くと、圧縮窒素ガスはFから
一方はGを経て原料供給機8に至ってその内部の雰囲気
を非酸化性に形成し、他方はHを経て粉砕機6に至る。
なお原料供給機8は、大気中からの酸素の混入を防止す
るために、例えば300〜5000mmH2 Oの加圧状態
に保持する。而して原料供給機8と粉砕機6とは連通し
てあるから、窒素ガスはI方向に流れて粉砕機6に至
る。
Next, when the valve 5 is opened, the compressed nitrogen gas flows from F to G through the G to the raw material feeder 8 so that the internal atmosphere is made non-oxidizing, and the other through H to the pulverizer 6. .
The raw material feeder 8 is kept in a pressurized state of, for example, 300 to 5000 mmH 2 O in order to prevent mixing of oxygen from the atmosphere. Since the raw material feeder 8 and the crusher 6 are in communication with each other, the nitrogen gas flows in the direction I to reach the crusher 6.

【0020】粉砕機6は公知のジェット気流粉砕機をそ
のまま使用できる。而して上記ジェット気流粉砕機は、
粉砕室内に例えばマッハ2.5以上の超音速状態のジェ
ット気流と共に原料粉末を供給し、粉砕室内における高
速旋回気流中で原料粉末相互間の強い衝撃によって粉砕
するものであり、超微粉砕が可能である。機種によって
は前記高速旋回気流中において粗粒を遠心力によって外
側に寄せた後、戻り穴から再び超音速気流中へ加速して
吹き込むものもあり、超微粉砕を更に促進する。
As the crusher 6, a known jet airflow crusher can be used as it is. Thus, the jet stream crusher
Raw powder is supplied into the crushing chamber along with a jet stream in a supersonic state of Mach 2.5 or higher, and is crushed by a strong impact between the raw powders in a high-speed swirling airflow in the crushing chamber. Is. In some models, after the coarse particles are brought to the outside by centrifugal force in the high-speed swirling airflow, they are accelerated and blown again into the supersonic airflow from the return hole, which further promotes ultrafine pulverization.

【0021】上記のようにして原料供給機8から連続的
に供給された原料粉末は、粉砕機6内の非酸化性の窒素
ガス雰囲気中において窒素ガスジェット気流によって微
粉砕されて、例えば粒径2μm 以上の粉末は粉砕機6内
の回収室(図示せず)に収納され、窒素ガスと共に排出
された一部微粉砕(例えば0.3μm 以上)はJからフ
ィルター7に至り、窒素ガスと分離されて回収される。
The raw material powder continuously supplied from the raw material feeder 8 as described above is finely pulverized by a nitrogen gas jet stream in a non-oxidizing nitrogen gas atmosphere in the pulverizer 6, and has, for example, a particle size. The powder of 2 μm or more is stored in a recovery chamber (not shown) in the crusher 6, and a part of fine pulverization (for example, 0.3 μm or more) discharged together with the nitrogen gas reaches the filter 7 from J and is separated from the nitrogen gas. Are collected and collected.

【0022】窒素ガスはその後弁12を経て主管路1か
ら前記圧縮機2に戻り、リサイクルを行う。なお粉砕機
6において窒素ガスの圧力は6〜8 kg f/cm2 から0.
07〜0.5 kg f/cm2 に低下してリサイクルに入る。
なお原料粉末の微粉砕時においては、窒素ガスはFから
H,J,P,K,Eの方向に流れるが、K点における窒
素ガスの圧力が低下すると、バイパスレギュレーター1
0の作用によってバイパス管路9が導通状態となり、同
時に弁5,12が閉じて、窒素ガスはC→Dに流れる。
The nitrogen gas then returns from the main line 1 to the compressor 2 via the valve 12 and is recycled. The pressure of the nitrogen gas in the crusher 6 is 6 to 8 kg f / cm 2 to 0.1.
It falls to 07-0.5 kg f / cm 2 and enters recycling.
When the raw material powder is finely pulverized, the nitrogen gas flows from F to H, J, P, K, and E, but when the pressure of the nitrogen gas at the point K decreases, the bypass regulator 1
By the action of 0, the bypass line 9 is brought into conduction, at the same time, the valves 5 and 12 are closed, and the nitrogen gas flows from C to D.

【0023】一方前記K点における圧力が高くなると、
前記と逆にバイパスレギュレーター10が逆に作動して
バイパス管路9を閉止し、同時に弁5,12を開くか
ら、窒素ガスはFから粉砕機6その他を経て、P,K,
Eの方向に流れるのである。また粉砕機6以後の主管路
1の圧力が異常に上昇した場合には、ライン安全弁13
が作動して窒素ガスを大気中に放出する。
On the other hand, when the pressure at the point K becomes high,
In contrast to the above, the bypass regulator 10 operates in the opposite direction to close the bypass line 9 and simultaneously open the valves 5 and 12, so that the nitrogen gas flows from F through the crusher 6 and others, P, K,
It flows in the direction of E. If the pressure in the main pipe 1 after the crusher 6 rises abnormally, the line safety valve 13
Operates to release nitrogen gas into the atmosphere.

【0024】一方圧縮機2の吸入圧力を例えば0.07
〜0.5 kg f/cm2 内に制御するために、高圧用圧力ス
イッチ14および低圧用圧力スイッチ15を介装し、こ
の圧力範囲を外れた場合には上記何れかのスイッチが作
動して圧縮機2を停止するようにしてある。
On the other hand, the suction pressure of the compressor 2 is, for example, 0.07.
In order to control the pressure within 0.5 kg f / cm 2 , a high pressure pressure switch 14 and a low pressure pressure switch 15 are provided. The compressor 2 is stopped.

【0025】一般に希土類磁石粉末のような微粉砕粉末
は酸化し易いため、微粉砕を行う雰囲気ガスの酸素濃度
を極力低く制御するのが望ましい。しかし原料によって
は粉砕時に若干の酸素を必要とするものもあり、また無
酸素状態で粉砕したものを大気中に排出すると急激に酸
化して発火する場合もある。従って雰囲気ガス中の酸素
濃度を一定範囲に制御する必要がある。
Since finely pulverized powder such as rare earth magnet powder is generally easily oxidized, it is desirable to control the oxygen concentration of the atmosphere gas for fine pulverization as low as possible. However, some raw materials require a small amount of oxygen during pulverization, and when pulverized in an oxygen-free state and discharged into the atmosphere, they may be rapidly oxidized and ignite. Therefore, it is necessary to control the oxygen concentration in the atmospheric gas within a certain range.

【0026】図1において17は酸素濃度制御器であ
り、例えば主管路1内に介装したフィルター4の排気口
付近Lにサンプリング管路18を設けて接続する一方、
弁19,20を介して圧縮窒素ガス供給源Mおよび圧縮
空気源Nと各々接続する。而して酸素濃度制御器17の
他方は供給管21を介してPにて主管路1と接続する。
In FIG. 1, reference numeral 17 denotes an oxygen concentration controller, for example, a sampling pipe 18 is provided and connected near the exhaust port L of the filter 4 provided in the main pipe 1,
A compressed nitrogen gas supply source M and a compressed air source N are connected via valves 19 and 20, respectively. Thus, the other side of the oxygen concentration controller 17 is connected to the main pipeline 1 at P via the supply pipe 21.

【0027】以上の構成により、サンプリング管路18
から酸素濃度制御器17を構成する酸素濃度分析器(図
示せず)に流入した窒素ガス中の酸素濃度に対応して作
動する弁19,20により、窒素ガス若しくは空気を供
給管21を介してPから主管路1内に供給し、リサイク
ル窒素ガス中の酸素濃度を例えば2〜4%に制御するこ
とができるのである。
With the above configuration, the sampling conduit 18
The nitrogen gas or air is supplied via the supply pipe 21 by the valves 19 and 20 which operate in response to the oxygen concentration in the nitrogen gas flowing into the oxygen concentration analyzer (not shown) that constitutes the oxygen concentration controller 17. The oxygen concentration in the recycled nitrogen gas can be controlled to, for example, 2 to 4% by supplying the oxygen from P into the main pipeline 1.

【0028】次に22はレシーバーであり、その出入口
に設けた弁23,24を介して前記圧縮機2と接続する
と共に、弁23,24は各々圧縮機2の停止および運転
と各々連動して作動するように構成する。
Next, 22 is a receiver, which is connected to the compressor 2 through valves 23 and 24 provided at its inlet and outlet, and the valves 23 and 24 are linked with the stop and operation of the compressor 2, respectively. Configure to work.

【0029】以上の構成により、圧縮機2の停止と同時
に弁23が開、かつ弁24が閉となり、圧縮機2内の内
部セパレータ(図示せず)の窒素ガスがQを経てレシー
バー22内に貯留される。そして圧縮機2の運転時にお
いては、上記と逆に弁23が閉、かつ弁24が開となる
から、レシーバー22内の窒素ガスはRおよびAを経て
圧縮機2に流れ、リサイクル運転ができるのである。
With the above structure, the valve 23 is opened and the valve 24 is closed at the same time when the compressor 2 is stopped, and the nitrogen gas in the internal separator (not shown) in the compressor 2 passes through Q and enters the receiver 22. Be stored. Then, when the compressor 2 is in operation, the valve 23 is closed and the valve 24 is opened contrary to the above, so that the nitrogen gas in the receiver 22 flows to the compressor 2 via R and A, and the recycle operation can be performed. Of.

【0030】すなわち、一般に圧縮機2は停止した場
合、圧縮機内部セパレーターのガスを放出しないと再起
動できない。従って通常は圧縮機の停止と同時に、上記
ガスの大気中への放出が行われるようになっている。し
かしながら本願発明におけるように、リサイクルガスが
高価である場合には、圧縮機2の停止の都度、徒らに大
気中に放出するのは産業経済上好ましくない。この点前
記のような構成にすれば、上記リサイクル窒素ガスをレ
シーバー22内に貯留し、かつ圧縮機2の再起動時にこ
れを再利用することができるのである。
That is, in general, when the compressor 2 is stopped, it cannot be restarted without releasing the gas from the separator inside the compressor. Therefore, the gas is usually released into the atmosphere at the same time when the compressor is stopped. However, as in the present invention, when the recycled gas is expensive, it is not preferable in terms of industrial economy to discharge the compressor 2 into the atmosphere every time the compressor 2 is stopped. In this respect, with the above-mentioned configuration, the recycled nitrogen gas can be stored in the receiver 22 and can be reused when the compressor 2 is restarted.

【0031】本実施例においては、非酸化性ガスとして
窒素ガスを使用する例について記述したが、窒素ガスに
限らず、アルゴンガス、窒素ガスとアルゴンガスとの混
合ガス等の他の非酸化性ガスを使用してもよい。また粉
砕対象がR−Fe−B系若しくはR−Fe−B−Co系
永久磁石合金の場合について記述したが、これら以外の
希土類系永久磁石合金についても適用できることは勿論
である。
In this embodiment, an example in which nitrogen gas is used as the non-oxidizing gas has been described, but not limited to nitrogen gas, other non-oxidizing gases such as argon gas, mixed gas of nitrogen gas and argon gas, etc. Gas may be used. Further, although the case where the object to be crushed is the R-Fe-B system or the R-Fe-B-Co system permanent magnet alloy has been described, it is needless to say that the present invention can be applied to other rare earth system permanent magnet alloys.

【0032】[0032]

【発明の効果】本発明は、以上記述のような構成および
作用であるから、下記の効果を奏することができる。 (1)乾燥状態で粉砕するものであり、かつ非酸化性ガ
ス中の酸素濃度を所定範囲内に制御し得るため、高品質
の原料粉末を安価に、かつ効率良く製造できる。 (2)従来の湿式粉砕方法と比較して、有機溶媒を使用
しないため安全であると共に、作業環境を改善し、装置
全体が簡単かつ生産効率が極めて高い。 (3)溶媒と粉末との接触による品質の低下がないた
め、粉末成形品の特性を向上するのみならず、バラツキ
を小さくすることができる。
EFFECTS OF THE INVENTION Since the present invention has the structure and operation as described above, the following effects can be achieved. (1) Since it is pulverized in a dry state, and the oxygen concentration in the non-oxidizing gas can be controlled within a predetermined range, high-quality raw material powder can be manufactured inexpensively and efficiently. (2) Compared with the conventional wet pulverization method, it is safe because it does not use an organic solvent, the working environment is improved, the entire apparatus is simple and the production efficiency is extremely high. (3) Since the quality does not deteriorate due to the contact between the solvent and the powder, not only the characteristics of the powder molded product can be improved but also the variation can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における乾式微粉砕装置の例を
模式的に示す配管図である。
FIG. 1 is a piping diagram schematically showing an example of a dry pulverization apparatus in an example of the present invention.

【符号の説明】[Explanation of symbols]

1 主管路 2 圧縮機 6 粉砕機 9 バイパス管路 17 酸素濃度制御器 1 Main Pipeline 2 Compressor 6 Crusher 9 Bypass Pipeline 17 Oxygen Concentration Controller

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 希土類系永久磁石合金からなる鋳塊を粗
粉砕した後、この粗粉砕粉を粉砕機内において、酸素濃
度を所定範囲内に調製した非酸化性ガスからなるジェッ
ト気流を介して微粉砕することを特徴とする希土類系永
久磁石原料粉末の製造方法。
1. An ingot made of a rare earth-based permanent magnet alloy is roughly pulverized, and the coarsely pulverized powder is finely pulverized in a pulverizer through a jet stream made of a non-oxidizing gas whose oxygen concentration is adjusted within a predetermined range. A method for producing a rare earth-based permanent magnet raw material powder, which comprises pulverizing.
【請求項2】 非酸化性ガスが窒素ガスであることを特
徴とする請求項1記載の希土類系永久磁石原料粉末の製
造方法。
2. The method for producing a rare earth-based permanent magnet raw material powder according to claim 1, wherein the non-oxidizing gas is nitrogen gas.
【請求項3】 希土類系永久磁石合金がR(但し、Rは
Yを包含する希土類元素のうち少なくとも1種),B,
Feを主成分とする合金であることを特徴とする請求項
1若しくは2記載の希土類系永久磁石原料粉末の製造方
法。
3. The rare earth-based permanent magnet alloy is R (where R is at least one of rare earth elements including Y), B,
The method for producing a rare earth-based permanent magnet raw material powder according to claim 1 or 2, which is an alloy containing Fe as a main component.
JP3381693A 1993-02-24 1993-02-24 Production of rare-earth permanent magnet raw powder Pending JPH06340903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3381693A JPH06340903A (en) 1993-02-24 1993-02-24 Production of rare-earth permanent magnet raw powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3381693A JPH06340903A (en) 1993-02-24 1993-02-24 Production of rare-earth permanent magnet raw powder

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP4112186A Division JPH0696125B2 (en) 1986-02-26 1986-02-26 Dry crusher

Publications (1)

Publication Number Publication Date
JPH06340903A true JPH06340903A (en) 1994-12-13

Family

ID=12397008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3381693A Pending JPH06340903A (en) 1993-02-24 1993-02-24 Production of rare-earth permanent magnet raw powder

Country Status (1)

Country Link
JP (1) JPH06340903A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11347438A (en) * 1998-06-04 1999-12-21 Hitachi Metals Ltd Dry pulverizer and production of rare earth sintered magnet using same
CN1079307C (en) * 1998-07-29 2002-02-20 昆明贵金属研究所 Disintegrating and grading machine for producing flaky metal powder
JP2015137400A (en) * 2014-01-23 2015-07-30 大陽日酸株式会社 Magnet crushing equipment
WO2015146888A1 (en) * 2014-03-27 2015-10-01 日立金属株式会社 R-t-b-based alloy powder and method for producing same, and r-t-b-based sintered magnet and method for producing same
CN106391193A (en) * 2016-11-30 2017-02-15 广东技术师范学院 Rare earth oxide high-efficiency crushing device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527612A (en) * 1978-08-19 1980-02-27 Chiyou Lsi Gijutsu Kenkyu Kumiai Silicon base
JPS61166905A (en) * 1985-01-16 1986-07-28 Sumitomo Special Metals Co Ltd Production of raw material powder for permanent magnet
JPS6227505A (en) * 1985-07-26 1987-02-05 Sumitomo Special Metals Co Ltd Production of rare earth alloy powder
JPS6227506A (en) * 1985-07-26 1987-02-05 Sumitomo Special Metals Co Ltd Production of alloy powder for rare earth-boron-ferrous permanent magnet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527612A (en) * 1978-08-19 1980-02-27 Chiyou Lsi Gijutsu Kenkyu Kumiai Silicon base
JPS61166905A (en) * 1985-01-16 1986-07-28 Sumitomo Special Metals Co Ltd Production of raw material powder for permanent magnet
JPS6227505A (en) * 1985-07-26 1987-02-05 Sumitomo Special Metals Co Ltd Production of rare earth alloy powder
JPS6227506A (en) * 1985-07-26 1987-02-05 Sumitomo Special Metals Co Ltd Production of alloy powder for rare earth-boron-ferrous permanent magnet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11347438A (en) * 1998-06-04 1999-12-21 Hitachi Metals Ltd Dry pulverizer and production of rare earth sintered magnet using same
CN1079307C (en) * 1998-07-29 2002-02-20 昆明贵金属研究所 Disintegrating and grading machine for producing flaky metal powder
JP2015137400A (en) * 2014-01-23 2015-07-30 大陽日酸株式会社 Magnet crushing equipment
WO2015146888A1 (en) * 2014-03-27 2015-10-01 日立金属株式会社 R-t-b-based alloy powder and method for producing same, and r-t-b-based sintered magnet and method for producing same
CN106165026A (en) * 2014-03-27 2016-11-23 日立金属株式会社 R-T-B series alloy powder and manufacture method thereof and R-T-B system sintered magnet and manufacture method thereof
CN106391193A (en) * 2016-11-30 2017-02-15 广东技术师范学院 Rare earth oxide high-efficiency crushing device

Similar Documents

Publication Publication Date Title
CN203750644U (en) Superfine air flow grinding system
JPH06340903A (en) Production of rare-earth permanent magnet raw powder
CN104174857A (en) Airflow grinding method for neodymium iron boron magnetic body
CN106001582A (en) Rare-earth permanent magnet hydrogen storage device for hydrogen demolishing and hydrogen cyclic utilization and system and method thereof
US20230271224A1 (en) Method And Installation For Manufacturing A Starting Material For Producing Rare Earth Magnets
CN105855012A (en) Airflow milling crusher and airflow crushing method
CN102842419B (en) Sintered Nd-Fe-B magnet manufacturing method and device
CN103831435B (en) The manufacturing method of magnet alloy powder and its magnet
CN100595303C (en) Method of manufacturing single-phase Sm2Co17 nanocrystalline block body material
CN102842418B (en) Sintered Nd-Fe-B magnet manufacturing method and device
US4760966A (en) Method of comminuting rare earth magnet alloys into fine particles
JP2012160545A (en) Method for manufacturing hydrogen pulverized powder of raw material alloy for rare-earth magnet, and manufacturing apparatus therefor
JPH0696125B2 (en) Dry crusher
JP3749240B2 (en) Dry crusher
CN105855556B (en) Jet mill pulverizer and jet milling method
CN114974874B (en) Method for preparing regenerated magnet by using waste sintered NdFeB magnet
JP2003117426A (en) Comminuting apparatus and method
JPS6227506A (en) Production of alloy powder for rare earth-boron-ferrous permanent magnet
CN2370958Y (en) Double-grading wheel-type loop running colliding fluidized bed airflow mill
JP2002346532A (en) Waste disposer
JPH05258928A (en) Permanent magnet and powder thereof and manufacturing method thereof
JP2003340308A (en) Fine powder manufacturing method using jet grinder
CN203316722U (en) Iron-based rare earth permanent magnetic material powder manufacturing equipment
JP4069326B2 (en) Dry crusher for rare earth sintered magnet alloy and method for producing rare earth sintered magnet using the same
CN1410205A (en) Neodymium iron boron alloy powder deep processing technology