JPS61163692A - Manufacture of one side printed wiring board - Google Patents

Manufacture of one side printed wiring board

Info

Publication number
JPS61163692A
JPS61163692A JP443685A JP443685A JPS61163692A JP S61163692 A JPS61163692 A JP S61163692A JP 443685 A JP443685 A JP 443685A JP 443685 A JP443685 A JP 443685A JP S61163692 A JPS61163692 A JP S61163692A
Authority
JP
Japan
Prior art keywords
wiring board
electroless plating
acid
metal layer
printed wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP443685A
Other languages
Japanese (ja)
Inventor
浦口 良範
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP443685A priority Critical patent/JPS61163692A/en
Publication of JPS61163692A publication Critical patent/JPS61163692A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔技術分野1 本発明は、−フルアディティブ法やセミアディティブ法
による片面プリン)配線板の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field 1] The present invention relates to a method for manufacturing a single-sided printed wiring board by a full-additive method or a semi-additive method.

[背景技術J プリント配線板の電路形成方法の一つとしてフルアディ
ティブ法やセミアディティブ法がある。
[Background Art J There are a full additive method and a semi-additive method as one of the methods for forming electric circuits on printed wiring boards.

フルアディティブ法は無電解メッキのみによって電路を
パターン形状に配線基板の表面に形成するようにしたも
のであり、またセミアディティブ法は無電解メッキによ
って薄い金属層を配線基板の表面に形成したのちに電路
パターンを残してエツチングレジストなどでマスクし、
金属層に通電した状態で電気メッキを施してマスクされ
た部分以外の部分で金属層に電路を形成させ、マスクの
エツチングレジストを除去したのちにエツチングレノス
トの除去で露出する部分において金属層をエツチング除
去してパターン形状で電路を形成するようにしたもので
ある。
The full-additive method uses only electroless plating to form electrical circuits in a pattern shape on the surface of the wiring board, while the semi-additive method uses electroless plating to form a thin metal layer on the surface of the wiring board. Leave the electrical circuit pattern and mask it with etching resist, etc.
Electroplating is performed while the metal layer is energized to form an electric path in the metal layer in areas other than the masked areas, and after removing the etching resist of the mask, the metal layer is removed in the areas exposed by removing the etching resist. Etching is removed to form an electric path in a patterned form.

そして配線基板の両面に電路を形成する場合には待にH
j[はないが、配線基板の片面のみに電路を形成して片
面プリント配線板を製造する場合にフルアディティブ法
やセミアディティブ法においては問題が生ヒる。すなわ
ち、無電解メッキをおこなう場合、配線基板の表面にコ
ロイド状パラジラムの分散溶液などを塗布してパラジウ
ムなどの触媒核を付着させる処理がおこなわれ、無電解
メッキによる金属層は触媒核を中心にして成長して形成
されることになるが、片面プリント配線板の場合におい
ても触媒核が配線基板の両面に付着することになり、こ
のように触媒核が配線基板の両面に付着すると無電解メ
ッキが電路を形成しない面においてもなされ、この面に
無電解メッキされたものが剥がれてトラブルを生じたり
することになるという問題を有するものである。そこで
従来では■配線基板の電路を形成しない面にレノストを
印刷し、触媒核の付着処理ののちにレノストを除去する
、■配線基板の電路を形成しない面にポリエチレンフィ
ルムなどをラミネートし、触媒核の付着処理ののちにフ
ィルムを剥離する、■配線基板の電路を形成しない面に
無電解メッキが生じたときはこの面のみにエツチングを
施して除去する、などの対策がとられている。しかしな
がら■や■の方法では印刷やラミネートのための工程や
除去や剥離のだめの工程が増加することになるために生
産能率に問題が生じると共にコスト高にもなるものであ
り、また■の方法では配線基板の片面のみのエツチング
は技術的に非常に難しく実用化が困難なものである。
And when forming electric circuits on both sides of the wiring board, it is necessary to
However, when manufacturing a single-sided printed wiring board by forming an electric path on only one side of a wiring board, a problem arises in the full additive method or semi-additive method. In other words, when electroless plating is performed, a dispersion solution of colloidal palladium is applied to the surface of the wiring board to attach catalyst nuclei such as palladium, and the metal layer formed by electroless plating is formed around the catalyst nuclei. However, even in the case of a single-sided printed wiring board, catalyst nuclei will adhere to both sides of the wiring board, and if catalyst nuclei adhere to both sides of the wiring board in this way, electroless plating will occur. This is also a problem in that electroless plating on this surface may peel off, causing trouble. Therefore, in the past, the following methods were used: 1) print renost on the side of the wiring board where no electric path is formed, and then remove rennost after adhesion treatment for catalyst nuclei; 2) laminate a polyethylene film, etc. on the side of the wiring board where no electric path is to be formed, and Countermeasures are taken such as peeling off the film after the adhesion process, and (2) When electroless plating occurs on the surface of the wiring board that does not form electric circuits, etching is performed only on this surface to remove it. However, methods (■) and (2) increase the number of steps for printing, laminating, and removal and peeling, which causes problems in production efficiency and increases costs; Etching only one side of a wiring board is technically very difficult and difficult to put into practical use.

[発明の目的1 本発明は、上記の点に鑑みて為されたものであり、レジ
ストの塗布やフィルムのラミネートの必要なく配線基板
の電路の不要な面に無電解メッキがおこなわれることを
防止することがでさる片面プリント配線板の製造方法を
提供することを目的とするものである。
[Objective of the Invention 1] The present invention has been made in view of the above points, and it is possible to prevent electroless plating from being performed on unnecessary surfaces of electrical circuits of a wiring board without the need for applying resist or laminating a film. It is an object of the present invention to provide a method for manufacturing a single-sided printed wiring board.

[発明の開示] しかして本発明に係る片面プリント配線板の製造方法は
、配線基板1の表面に無電解メッキ用の触媒核2の付着
処理をおこなったのちに配線基板1を酸処理し、このの
ちに配線基板1の電路3を形成すべき片面に無電解メッ
キをおこなうことを特徴とするものであり、酸処理をお
こなって電路3が形成されない片面の触媒核2が除去さ
れるようにし、もって上記目的を達成するようにしたも
のであって、以下本発明を詳述する。
[Disclosure of the Invention] According to the method for manufacturing a single-sided printed wiring board according to the present invention, the wiring board 1 is treated with an acid after the catalyst nuclei 2 for electroless plating are attached to the surface of the wiring board 1, After this, electroless plating is performed on one side of the wiring board 1 on which the electric path 3 is to be formed, and acid treatment is performed to remove the catalyst nuclei 2 on the one side on which the electric path 3 is not formed. The present invention has been made to achieve the above object, and the present invention will be described in detail below.

本発明はフルアディティブ法及びセミアディティブ法の
いずれにおいても適用されるが、以下セミアディティブ
法を例にとって説明する。まずt!LJ1図のように積
層板などで形成される電気絶縁性の配線基板1の片面に
必要に応じて接着剤層8を形成する。接着剤層8は電路
3を形成する面にのみ形成されるものである。次ぎに第
2図のように接着剤層8の表面を混酸によるエツチング
などで粗面化すると共に活性化処理をおこなう。粗面化
は接着剤層8においてのみなされ、接着剤層8を形成し
ない配線基板1の他の片面は平滑な面のままになってい
る。また活性化処理はコロイド状パラジウムの分散溶液
などを塗布してパラジウムの触媒核2を接着剤層8の表
面に付yIIさせることによっておこなうことができる
。このとき接着剤IvI8の表面は粗面となっていて表
面積が非常に大きくなっているために触媒核2は多量に
付着するが、配線基板1の他の片面は平滑面であるため
に触媒核2の付着はわずかになる。またこの活性化処理
は湿潤化、5分間以上のキャラクタライザー処理、アク
セレレータ処理の順の操作によってなされる。
The present invention is applicable to both fully additive and semi-additive methods, and will be explained below using the semi-additive method as an example. First t! As shown in FIG. LJ1, an adhesive layer 8 is formed on one side of an electrically insulating wiring board 1 made of a laminate or the like, if necessary. The adhesive layer 8 is formed only on the surface on which the electric circuit 3 is to be formed. Next, as shown in FIG. 2, the surface of the adhesive layer 8 is roughened by etching with a mixed acid and activated. The surface is roughened only in the adhesive layer 8, and the other side of the wiring board 1 on which the adhesive layer 8 is not formed remains a smooth surface. Further, the activation treatment can be carried out by applying a colloidal palladium dispersion solution or the like to attach the palladium catalyst nuclei 2 to the surface of the adhesive layer 8. At this time, the surface of the adhesive IvI8 is rough and has a very large surface area, so a large amount of catalyst nuclei 2 adhere to it, but the other side of the wiring board 1 is a smooth surface, so the catalyst nuclei 2 adhere to it. The adhesion of 2 becomes slight. Further, this activation treatment is performed by the following operations: wetting, characterizer treatment for 5 minutes or more, and accelerator treatment.

そして活性化処理におけるキャラクタライザー処理の次
ぎに、又はアクセレレータ処理の次ぎに配線基板1を酸
処理する。酸処理は酸溶液を配線基板1の電路3を形成
しない面に塗布したりスプレーしたりあるいは配線基板
1を酸溶液に浸漬したりしてなされるものである。この
ように酸処理することによって、酸にパラジウムの触媒
核2が溶解されることになるのであるが、配線基板1の
電路3を形成すべき面は粗面化されていて上記のように
触媒核2の付着吸着量が多いのに対して配線基板1の電
路3を形成しない面は粗面化されていず平滑で触媒核2
の付着吸着量が少なく、電路3を形成する配線基板1の
面における触媒核2は酸処理によって一部が溶解除去さ
れるだけであるが電路3を形成しない配線基板1の面に
おける触媒核2は全部が溶解除去されることになる。ま
た酸処理に用いる酸としては塩酸溶液や塩酸と硫酸の混
酸溶液がよい。塩酸の場合20〜50容量%溶液として
用いるのが、混酸の場合塩酸を5〜40%に硫酸を10
〜30%にして用いるのがよい。
Then, the wiring board 1 is subjected to acid treatment following the characterizer treatment in the activation treatment or after the accelerator treatment. The acid treatment is performed by applying or spraying an acid solution to the surface of the wiring board 1 on which the electric circuit 3 is not formed, or by immersing the wiring board 1 in the acid solution. By performing the acid treatment in this manner, the palladium catalyst core 2 is dissolved in the acid, but the surface of the wiring board 1 on which the electric circuit 3 is to be formed is roughened and the catalyst core 2 is dissolved in the acid as described above. While the amount of adhering and adsorbing nuclei 2 is large, the surface of the wiring board 1 on which the electric circuit 3 is not formed is not roughened and is smooth, and the catalytic nuclei 2
The amount of adhesion and adsorption of catalytic nuclei 2 on the surface of the wiring board 1 that forms the electric circuit 3 is only partially dissolved and removed by the acid treatment. will be completely dissolved and removed. The acid used in the acid treatment is preferably a hydrochloric acid solution or a mixed acid solution of hydrochloric acid and sulfuric acid. In the case of hydrochloric acid, a solution of 20 to 50% by volume is used; in the case of a mixed acid, a solution of 5 to 40% hydrochloric acid and 10% sulfuric acid is used.
It is best to use it at ~30%.

つまりパラジウムの触媒核2の溶解量が大き過、ぎると
電路3を形成すべき配線基板1の面においても触媒核2
が多量に溶解除去されでしまうおそれがあるためであり
、硝酸単独や硫酸単独の酸溶液はパラジウムの触媒核2
の溶解量が大きいため好ましくない。このように酸処理
をおこなったのち、無電解銅メッキなど無電解メッキに
よって接着剤層8を介して配線基板1の片面に厚みが0
.5〜2μ程度の薄い金属/!9を第3図のように形成
させる。無電解メッキは例えば硫酸銅のメッキ浴に浸漬
することによっておこなうことができる。電路3を形成
すべき面と電路3を形成しない面との触媒核2の付着の
絶対量の差で酸処理の際に電路3を形成しない面におい
ては配線基板1に触媒核2が付着されでいないので、無
電解メッキによる金FA層9は電路3を形成すべき面に
おいてのみ触媒核2を中心にして成長して形成され、電
路3を形成しない面では金属層9は形成されない。この
ように配線基板1の片面にのみ薄い金属層9を形成させ
たのちに、第4図のように電路3のためのパターンを残
してメツキレシストの印刷やドライフィルムラミネート
によってマスク10を金属層9の表面に被覆させるにの
後に電気鋼メッキなど電気メッキをおこなって、第5図
のようにマスク10で覆われてない部分において金属層
9の表面に電路3をパターン形状で形成させる。電解メ
ッキは例えば硫酸銅と硫酸のメッキ浴に浸漬して金属層
9に通電させることによっておこなうことができるもの
であり、マスク10で覆われていずメッキ浴に接触する
部分においてのみメッキ金属が析出するためにパターン
形状で電路3を金属層9に形成させることができるもの
である。このとき、配線基板1の電路3を形成しない面
において触媒核2かわずかに残っていてこの面に部分的
に若干無電解メッキがなされていても、この無電解メッ
キによる金属は電解メッキの際のメッキ浴の硫酸に溶解
して消滅してしまう、そして水酸化ナトリウム溶液など
で第6図のようにマスク10を溶解除去したのち、過硫
酸アンモニウムなどの工・ノチング液によって軽くエツ
チングし、第7図のように露出する部分において金属層
9をエツチング除去し、片面プリント配線板として仕上
げるものである。
In other words, if the amount of palladium catalyst nuclei 2 dissolved is too large, catalyst nuclei 2 will also be present on the surface of the wiring board 1 where the electric circuit 3 is to be formed.
This is because there is a risk that a large amount of palladium may be dissolved and removed.
This is not preferred because the amount of dissolved is large. After performing the acid treatment in this way, one side of the wiring board 1 is coated with a thickness of zero through the adhesive layer 8 by electroless plating such as electroless copper plating.
.. Thin metal of about 5-2μ/! 9 is formed as shown in FIG. Electroless plating can be performed, for example, by immersion in a copper sulfate plating bath. Due to the difference in the absolute amount of adhesion of catalyst nuclei 2 between the surface where the electric circuit 3 is to be formed and the surface where the electric path 3 is not formed, the catalyst nuclei 2 are not adhered to the wiring board 1 on the surface where the electric path 3 is not formed during acid treatment. Therefore, the gold FA layer 9 formed by electroless plating grows around the catalyst core 2 only on the surface where the electric path 3 is to be formed, and the metal layer 9 is not formed on the surface where the electric path 3 is not formed. After forming the thin metal layer 9 on only one side of the wiring board 1 in this way, a mask 10 is formed on the metal layer 9 by printing a mesh resist or dry film lamination, leaving a pattern for the electric circuit 3 as shown in FIG. After coating the surface of the metal layer 9, electroplating such as electric steel plating is performed to form an electric path 3 in a pattern shape on the surface of the metal layer 9 in the portion not covered with the mask 10, as shown in FIG. Electrolytic plating can be performed, for example, by immersing the metal layer 9 in a plating bath of copper sulfate and sulfuric acid and applying electricity to the metal layer 9, so that the plating metal is deposited only in the areas not covered by the mask 10 and in contact with the plating bath. In order to do this, the electric path 3 can be formed in the metal layer 9 in a pattern shape. At this time, even if a small amount of catalyst nuclei 2 remain on the surface of the wiring board 1 where the electric path 3 is not formed and some electroless plating is applied to this surface, the metal by this electroless plating will be removed during electrolytic plating. After the mask 10 is dissolved and removed in the sulfuric acid of the plating bath as shown in FIG. As shown in the figure, the exposed portions of the metal layer 9 are removed by etching to form a single-sided printed wiring board.

次ぎに本発明を実施例によって具体的に説明する。Next, the present invention will be specifically explained with reference to Examples.

紙エポキシ積層板を配線基板として用い、この配線基板
の片面にゴム系の接着剤層を形成し、クロム酸と硫酸と
の混酸によってエツチング処理することに上ってゴム系
接着剤層中のブタジェン成分を溶出させて接着剤層の表
面を粗面化した。この配線基板を湿潤化したのちシブレ
イ社のコロイド状バラジツム(商品名キャタボジット4
4)に5〜10分間浸漬し、さらに30容量%の塩酸液
に室温で3〜5分間浸漬処理し、次いでアクセレレータ
浴(商品名アクセレレータ19)に3〜5分間浸漬処理
した。
A paper epoxy laminate is used as a wiring board, a rubber adhesive layer is formed on one side of the wiring board, and the butadiene in the rubber adhesive layer is etched with a mixed acid of chromic acid and sulfuric acid. The surface of the adhesive layer was roughened by eluting the components. After moistening this wiring board, we used Sibley's colloidal Balazitum (product name: Catabosite 4).
4) for 5 to 10 minutes, further immersed in a 30% by volume hydrochloric acid solution at room temperature for 3 to 5 minutes, and then immersed in an accelerator bath (trade name: Accelerator 19) for 3 to 5 minutes.

この処理済みの配線基板を硫酸銅を主成分とする無電解
メッキ浴に浸漬させて配線基板の接着剤層の粗面化表面
に銅の金属層を形成させた。犬ν・で金属層の表面に電
路となる部分を残してエツチングレジストを印刷するこ
とによってマスクを形成させた。この後配線基板を硫酸
銅と硫酸とを主成分とする電解メッキ浴に浸漬して電圧
を印加することによって、マスクが被覆されていない部
分において金属層の表面に銅の電路を形成させた。
This treated wiring board was immersed in an electroless plating bath containing copper sulfate as a main component to form a copper metal layer on the roughened surface of the adhesive layer of the wiring board. A mask was formed by printing an etching resist on the surface of the metal layer, leaving a portion that would serve as an electric path, using a mask. Thereafter, the wiring board was immersed in an electrolytic plating bath containing copper sulfate and sulfuric acid as main components and a voltage was applied to form a copper electrical path on the surface of the metal layer in the areas not covered by the mask.

電解メッキが終了したのちに5%水酸化ナトリウム溶液
にマスクのエツチングレジストを溶解除去し、さらにエ
ツチングレノストの除去で露出する部分の金属層を過硫
酸アンモニウム溶液によって溶解除去して片面プリント
配線板を得た。
After electrolytic plating is completed, the etching resist of the mask is dissolved and removed in a 5% sodium hydroxide solution, and the metal layer exposed by removing the etching resist is further dissolved and removed with an ammonium persulfate solution to form a single-sided printed wiring board. Obtained.

このものにあって、無電解メッキの際に金属層は配線基
板の片面である接着剤層の表面にのみ析出し、配線基板
の他の片面には析出しないものであった。
In this product, during electroless plating, the metal layer was deposited only on the surface of the adhesive layer, which is one side of the wiring board, and was not deposited on the other side of the wiring board.

[発明の効果] 上述のように本発明にあっては、配線基板の表面に無電
解メッキ用の触媒核の付着処理をおこなったのちに配線
基板を酸処理し、こののちに配線基板の電路を形成すべ
き片面に無電解メッキをおこなうようにしたので、配線
基板の電路を形成すべき面は粗面化されていて触媒核の
付着吸着量が多いのに対して配線基板の電路を形成しな
い面は粗面化されていず嘔滑で触媒核の付着吸着量が少
ない二とになっているところ、電路を形成する配線基板
の面における触媒核は酸処理によって一部が溶解除去さ
れるだけであるが電路を形成しない配線基板の面におけ
る触媒核は全部が溶解除去されることになり、レノスト
印刷やフィルムラミネートのような必要なく簡単な操作
で工程が大きく増加することなく電路を形成しない配線
基板の片面に無電解メッキがなされることを防止するこ
とができるらのである。
[Effects of the Invention] As described above, in the present invention, the wiring board is treated with an acid after the catalyst nuclei for electroless plating are attached to the surface of the wiring board, and the electrical circuits of the wiring board are then treated with an acid. Since electroless plating is performed on one side of the wiring board where the electrical circuit is to be formed, the surface on which the electrical circuit of the wiring board is to be formed is roughened and has a large amount of catalytic nuclei attached and adsorbed. On the other hand, the surface of the wiring board that forms the electric circuit is partially dissolved and removed by acid treatment. However, all of the catalyst nuclei on the surface of the wiring board that does not form electric circuits are dissolved and removed, making it possible to form electric circuits with simple operations without the need for lenost printing or film lamination, without significantly increasing the number of processes. This prevents electroless plating from being applied to one side of the wiring board.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第7図は本発明のセミアディティブ法による
工程の一例を示す断面図であり、1は配線基板、2は触
媒核、3は電路である。
1 to 7 are cross-sectional views showing an example of the process by the semi-additive method of the present invention, in which 1 is a wiring board, 2 is a catalyst nucleus, and 3 is an electric circuit.

Claims (2)

【特許請求の範囲】[Claims] (1)配線基板の表面に無電解メッキ用の触媒核の付着
処理をおこなったのちに配線基板を酸処理し、こののち
に配線基板の電路を形成すべき片面に無電解メッキをお
こなうことを特徴とする片面プリント配線板の製造方法
(1) After applying catalyst nuclei for electroless plating to the surface of the wiring board, the wiring board is treated with acid, and then electroless plating is performed on one side of the wiring board where the electric circuit is to be formed. A manufacturing method for single-sided printed wiring boards.
(2)配線基板の無電解メッキをおこなう片面には粗面
化処理がおこなわれていることを特徴とする特許請求の
範囲第1項記載の片面プリント配線板の製造方法。
(2) The method for manufacturing a single-sided printed wiring board according to claim 1, wherein one side of the wiring board on which electroless plating is applied is subjected to a surface roughening treatment.
JP443685A 1985-01-14 1985-01-14 Manufacture of one side printed wiring board Pending JPS61163692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP443685A JPS61163692A (en) 1985-01-14 1985-01-14 Manufacture of one side printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP443685A JPS61163692A (en) 1985-01-14 1985-01-14 Manufacture of one side printed wiring board

Publications (1)

Publication Number Publication Date
JPS61163692A true JPS61163692A (en) 1986-07-24

Family

ID=11584179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP443685A Pending JPS61163692A (en) 1985-01-14 1985-01-14 Manufacture of one side printed wiring board

Country Status (1)

Country Link
JP (1) JPS61163692A (en)

Similar Documents

Publication Publication Date Title
US4217182A (en) Semi-additive process of manufacturing a printed circuit
US3625758A (en) Base material and method for the manufacture of printed circuits
US4770900A (en) Process and laminate for the manufacture of through-hole plated electric printed-circuit boards
CN107105577B (en) Template transfer process for preparing double-sided and multilayer printed circuit
JP3605520B2 (en) Method of manufacturing multilayer printed circuit board
JPH11186716A (en) Method of forming metal layer
JPS61288489A (en) Manufacture of molded circuit board
JPS63168077A (en) Manufacture of printed wiring board
JPS61163692A (en) Manufacture of one side printed wiring board
JPH04505829A (en) Method for improving insulation resistance of printed circuits
JPH0348494A (en) Multilayer printed circuit board for microscopic conductor and plating method of the same
JP3828205B2 (en) Method for manufacturing transfer member and transfer member
JPH03201592A (en) Manufacture of printed circuit board
JPS59106181A (en) Method of producing printed circuit board
JPH01124286A (en) Manufacture of printed-circuit board
JPS5967692A (en) Method of producing printed circuit board
JPS5850040B2 (en) Manufacturing method of printed circuit board
JPS6064495A (en) Method of producing printed circuit board
JP2006093625A (en) Insulator with metal material, insulator for additive plating, and substrate with additive plated metal film
JPH0864930A (en) Manufacture of printed wiring board
JPS60241291A (en) Method of producing printed circuit board
JPS63188992A (en) Manufacture of printed wiring board
JPH03194992A (en) Manufacture of printed board
JPS62599B2 (en)
JPH10190216A (en) Manufacture of board having no copper foil and manufacture of printed board using the board