JP3828205B2 - Method for manufacturing transfer member and transfer member - Google Patents

Method for manufacturing transfer member and transfer member Download PDF

Info

Publication number
JP3828205B2
JP3828205B2 JP19694696A JP19694696A JP3828205B2 JP 3828205 B2 JP3828205 B2 JP 3828205B2 JP 19694696 A JP19694696 A JP 19694696A JP 19694696 A JP19694696 A JP 19694696A JP 3828205 B2 JP3828205 B2 JP 3828205B2
Authority
JP
Japan
Prior art keywords
layer
transfer member
substrate
transfer
mask pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19694696A
Other languages
Japanese (ja)
Other versions
JPH1027953A (en
Inventor
吉沼  洋人
清 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP19694696A priority Critical patent/JP3828205B2/en
Publication of JPH1027953A publication Critical patent/JPH1027953A/en
Application granted granted Critical
Publication of JP3828205B2 publication Critical patent/JP3828205B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は多層プリント配線板等の製造に好適な、導電性基板上にパターン化された導電層等からなる転写層を高精度で転写することができる転写用部材とその製造方法に関する。
【0002】
【従来の技術】
半導体技術の飛躍的な発展により、半導体パッケージの小型化、多ピン化、ファインピッチ化、電子部品の極小化などが急速に進み、いわゆる高密度実装の時代に突入した。それに伴って、プリント配線板も片面配線から両面配線へ、さらに多層化、薄型化が進められている。
【0003】
現在、プリント配線板の銅パターンの形成には、主としてサブトラクティブ法と、アディティブ法が用いられている。
【0004】
サブトラクティブ法は、銅張り積層板に穴を開けた後に、穴の内部と表面に銅メッキを行い、フォトエッチングによりパターンを形成する方法である。このサブトラクティブ法は技術的に完成度が高く、またコストも安いが、銅箔の厚さ等による制約から微細パターンの形成は困難である。
【0005】
一方、アディティブ法は無電解メッキ用の触媒を含有した積層板上の回路パターン形成部以外の部分にレジストを形成し、積層板の露出している部分に無電解銅メッキ等により回路パターンを形成する方法である。このアディティブ法は、微細パターンの形成が可能であるが、コスト、信頼性の面で難がある。
【0006】
多層基板の場合には、上記の方法等で作製した片面あるいは両面のプリント配線板を、ガラス布にエポキシ樹脂等を含浸させた半硬化状態のプリプレグと一緒に加圧積層する方法が用いられている。この場合、プリプレグは各層の接着剤の役割をなし、層間の接続はスルーホールを作成し、内部に無電解メッキ等を施して行っている。
【0007】
また、高密度実装の進展により、多層基板においては薄型、軽量化と、その一方で単位面積当りの高い配線能力が要求され、一層当たりの基板の薄型化、層間の接続や部品の搭載方法等に工夫がなされている。
【0008】
しかしながら、上記のサブトラクティブ法により作製された両面プリント配線板を用いた多層基板の作製は、両面プリント配線板の穴形成のためのドリル加工の精度と、微細化限界の面から高密度化に限界があり、製造コストの低減も困難であった。
【0009】
一方、近年では上述のような要求を満たすものとして、基材上に導体パターン層と絶縁層とを順次積層して作製される多層配線板が開発されている。この多層配線板は、銅メッキ層のフォトエッチングと感光性樹脂のパターニングを交互に行って作製されるため、高精細な配線と任意の位置での層間接続が可能となっている。
【0010】
しかしながら、この方式では銅メッキとフォトエッチングを交互に複数回行うため、工程が煩雑となり、また、基板上に1層づつ積み上げる直列プロセスのため、中間工程でトラブルが発生すると、製品の再生が困難となり、製造コストの低減に支障を来していた。
【0011】
このような問題点を解決するために、基板上に配線パターン層を形成した転写用原版を作製し、これを導電性基板に圧着し、配線パターン層を導電性基板に転写する操作を繰り返して多層プリント配線板を製造する方法が提案されている。
この方法では、図3に模式的に示されるように転写用原版を作製する際に、導電性基板1上にレジストでマスクパターン層4′を形成し(図3(A))、非マスク層5をエッチングし(図3(B))、エッチング部6に電着によって絶縁性層7を形成させ(図3(C))、その後にマスクパターン層4′を除去し(図3(D))、図4に示されるように導電性基板1上の裸出した部分8に電着によって導電性層2及び粘接着性絶縁層3を順に形成させるものである。
【0012】
エッチング層に形成する絶縁性層の厚さによって得られる転写用原版は、平版、凸版及び凹版と称されるが、模式的に図3に示されるようにいずれの場合も導電層2及び粘接着性絶縁層3の形状はきのこ状(かまぼこ状)となり、直角四辺形の形状とすることが困難であるとともに、転写が安定しない(転写率が変動する)、線太りする(該絶縁層の電着は束縛のない状態で行われるので、生成する該絶縁層の側面がうねった形状となる)、高周波印加時のインピーダンス特性等の電気特性が不安定となる、あるいは該絶縁層が転写時に線幅よりも広がってしまう等の問題がある。また、導電性基板はエッチングされているので、転写後の導電性基板を再使用することができないために製造コスト低減に支障を来す等の問題もあり、改善が要望されている。
【発明が解決しようとする課題】
本発明はこのような実情のもとになされたものであって、本発明の目的は、基材の再利用が可能であり、転写層を高精度に転写することができる転写用部材および転写層を常に一定の形状に、安定的に形成することができる該転写部材の製造方法を提供することにある。
【0013】
【課題を解決するための手段】
上記の目的は以下の本発明によって達成される。即ち、本発明は、少なくとも表面に導電性を備える基板上に、(1)ポジ型レジストを用いて電気絶縁性のマスクパターンを形成する工程、(2)該基板上の非マスク部に電着法により導電層を形成する工程、(3)該導電層上に電着法により粘接着性絶縁層を形成する工程及び(4)該(3)の工程終了後乾燥させずに該基板上の上記マスクパターンを露光後除去する工程を順次行い、該基板上にパターン化された導電層及びその上に形成された粘接着性絶縁層からなる転写層を形成させることを特徴とする転写用部材の製造方法及びこの方法で得られる転写用部材である。
【0014】
【作用】
本発明では、導電性基板上に形成させるマスクパターンを、非マスク部に形成させる導電層及び粘接着性絶縁層からなる転写層の厚さよりも厚く形成することによって、転写層の断面形状を直角四辺形の一定な形状とすることができる。
また、転写層形成後にマスクパターンは除去されるので、本発明の転写用部材を用いることによって、転写層を精度よく、且つ安定した転写率で転写することができる。
【0015】
【発明の実施の形態】
次に発明の好ましい実施形態を挙げて本発明をさらに詳細に説明する。
本発明の転写用部材における導電性基板は、少なくとも表面が導電性を有するものであればいずれでもよく、例えば、アルミニウム、銅、ニッケル、鉄、ステンレス、チタン等の導電性の金属板、あるいはガラス板、ポリエステル、ポリカーボネート、ポリイミド、ポリエチレン、アクリル樹脂等の高分子材料のフィルム等の絶縁性基板の表面に導電性薄膜を形成したもの等を使用することができる。
【0016】
このような導電性基板の厚さは特に制限されないが、通常、0.05〜1.0mm程度が好ましい。また、以下に説明する最後の工程で導電性基板表面のマスクパターンを除去する工程で、導電層が導電性基板から剥離することを防止するために、該基板は適度な表面粗度を有していることが好ましく、0.05〜0.5μm程度の粗度(表面触針式断差計で測定)を有する導電性基材の使用が好ましい。
【0017】
本発明の転写用部材は、以下の(1)から(4)の工程を順次経ることによって製造される。図1及び図2を参照して転写部材の製造方法について説明する。
本発明の転写部材は図1に模式的に示されるように、導電性基板1の表面に任意のパターンの導電層2とその上に積層した粘接着性絶縁層3からなる転写層が形成されたものである。
【0018】
本発明の転写部材を製造するために、先ず、工程(1)で導電性基板表面に、転写すべき任意のパターンの転写層を形成するための電気絶縁性のマスクパターンを形成する。
電気絶縁性のマスクパターンの形成は、通常フォトレジストを用いて行うが、最後の工程(4)で導電性基板表面から該マスクパターンを溶解除去する際に、導電層上の絶縁層が除去されることを防止するうえからポジ型レジストを使用する。ポジ型レジストは従来公知のものが使用可能であり、特に限定されない。
【0019】
図2(A)に示されるように、導電性基板1の表面に公知の方法でフォトレジスト層4を形成する。所定パターンのフォトマスクを介してフォトレジスト層4に紫外線を照射し、露光・現像する。かくして、図2(B)に示されるように導電性基板1の表面に所定パターンのマスクパターン4′及び非マスク部5が形成される。その際、マスクパターンを下記の転写層の厚さよりも厚く形成することによって、転写層の断面形状を直角四辺形の一定した形状とすることができる。
【0020】
次いで、工程(2)において、図2(C)に示されるように非マスク部5に電着により導電層2を形成する。電着による導電層の形成は公知のメッキ法に従って行われ、導電層を形成する材料は、電着法で導電性薄膜が形成されるものであれば特に制限はなく、例えば、銅、銀、金、ニッケル、クロム、亜鉛、錫あるいは白金等が挙げられる。また、電着に際しては、導電層の導電性基板からの剥離を容易にするために、予め、非マスク部に導電性を疎外しない剥離層を形成しておくことができる。
【0021】
工程(3)では、図2(D)に示されるように、上記の導電層2の表面に電着法で粘接着性絶縁層3が形成される。電着法は、電着塗装として従来から用いられている方法が原形であり、イオン性の被膜形成材料を含有する電着液を用いて行われる。本発明における電着は公知の電着法に従って行われる。
電着液に含有される絶縁層を形成する材料は、常温あるいは加熱により粘接着性を示す電着可能な物質であれば使用可能であり、例えば、イオン性高分子化合物が代表的である。
【0022】
電着液に含有される絶縁性電着樹脂層を形成するイオン性高分子化合物としては、例えば、天然系樹脂、アクリル系樹脂、ポリエステル系樹脂、アルキッド系樹脂、マレイン化油系樹脂、ポリブタジエン系樹脂、エポキシ系樹脂、ポリアミド系樹脂、ポリイミド系樹脂等が挙げられる。アニオン性高分子化合物はカルボキシル基等のアニオン性基を有するものが、カチオン性高分子化合物はアミノ基等のカチオン性基を有するものが用いられる。本発明においては、絶縁被膜に要求される性能に従って最適なイオン性高分子化合物を適宜選択すればよく、イオン性高分子化合物は特に制限されない。
また、必要に応じてこれらのイオン性高分子化合物とともに、ロジン系、テルペン系、石油樹脂系等の粘着付与剤を使用することもできる。
【0023】
上記の高分子化合物は、アルカリ性物質または酸性物質によって中和して水に可溶化された状態で、あるいは水分散状態で電着に供される。アニオン性高分子化合物は、例えば、トリメチルアミン、ジエチルアミン、ジメチルエタノールアミン等のアミン類、アンモニア、苛性カリ等の無機のアルカリで中和する。カチオン性高分子化合物は、例えば、酢酸、蟻酸、プロピオン酸、乳酸等の酸で中和する。
【0024】
最後の工程(4)では、以上の工程を経た導電性基板1表面のマスクパターン4′が除去される。マスクパターンはフォトレジストで形成されているので、フォトレジスト用の通常の現像液を用いて溶解除去される。前記のように、マスクパターンをポジ型フォトレジストで形成した場合には、本工程におけるマスクパターンの除去の際に絶縁層3が剥離されることが防止される。ポジ型フォトレジストの現像液としては、例えば、弱アルカリ性液が使用される。
【0025】
以上の(1)から(4)の工程を経ることによって図1に模式的に示される本発明の転写用部材が製造される。
【0026】
【実施例】
以下に実施例及び比較例を挙げて本発明をさらに具体的に説明する。特に断りのない限り以下では部及び%は重量基準である。
【0027】
実施例1
SUS304の薄板(表面粗度約0.1μm)を導電性基板として転写用部材を以下の工程により作製した。
(1)マスクパターンの形成
上記の基板上にポジ型フォトレジスト(東京応化工業(株)製 PMER P−AR900)を約20μmの厚さに塗布し、80℃のホットプレート上で10分間乾燥した。その後、所定のパターンを有するマスクを用い、下記条件で露光を行い、次いで弱アルカリ性現像液(東京応化工業(株)製 P−6G)で現像してマスクパターンを形成させた。
【0028】
露光条件
密着露光機:大日本スクリーン製造(株)製 P−202−Gを使用
真空引き :60秒
露光時間 :400カウント
【0029】
(2)導電層の形成
上記のマスクパターン層を形成した導電性基板を含燐銅電極と対向させて下記の組成の硫酸銅めっき浴中に浸漬し、該導電性基板を直流電源の陽極に、該電極を陰極にそれぞれ接続し、5A/dm2 の電流密度で10分間通電した。その結果、該導電性基板のフォトレジストで覆われていない非マスク部上に厚さ10μmの銅めっき薄膜からなる導電層が形成された。
【0030】
硫酸銅めっき浴の組成(水1リットル中の)
CuSO4・5H2 O 200g
2SO4 50g
HCl 0.15ml(Clとして60ppm)
【0031】
(3)粘接着性絶縁層の形成
(i)電着液の調製
ブチルアクリレート13.2部、メチルメタアクリレート1.6部、ジビニルベンゼン0.2部とを重合開始剤として過硫酸カリウム1%水溶液85部を用い、乳化剤を使用せずに80℃で5時間乳化重合し、部分架橋ブチルアクリレート/メチルメタアクリレート共重合体のエマルジョンを得た。
上記のエマルジョン65部、電着担体としてのカルボキシル基含有アクリル系共重合体樹脂2部、ヘキサメトキシメラミン0.85部、中和剤としてのトリメチルアミン0.35部、エタノール3部、ブチルセルソルブ3部及びイオン交換水18.8部を混合攪拌し、粘接着性絶縁層形成用の電着液を調製した。
(ii)電着
(2)で作製した導電層を有する導電性基板を白金電極と対向させて上記の電着液中に浸漬し、該導電性基板を直流電源の陽極に、白金電極を陰極にそれぞれ接続し、30Vの電圧で1分間の電着を行い、導電層の上に厚さ10μmの上記共重合体からなる粘接着性絶縁層を形成させた。
【0032】
(4)マスクパターンの除去
(3)の工程終了後、乾燥せずに引き続き、粘接着性絶縁層を形成した導電性基板上のマスクパターンを(1)の場合と同じ条件で露光した。その後80℃で15分乾燥させた。これは、(3)の工程終了時に乾燥を行うとマスクパターンが硬化し、またマスクパターン中には可塑剤が混入されているので、これが揮散することによってマスクパターンに乱れを生じ、マスクパターン層の除去が困難となるだけでなく、マスクパターンの除去時に導電層や絶縁層に影響が及ぶことを避けるためである。
乾燥後、(1)で使用した現像液を用いてマスクパターン層を溶解除去し、本発明の転写用部材を得た。
しかしながら、上記と同じ(1)〜(3)の工程で転写層を形成し工程(4)のマスクパターンの除去にアセトンを使用した場合には該絶縁層の消失、導電層の剥離が生じ良好な転写用部材は得られなかった。また、(3)の工程終了後に上記の条件で乾燥を行ってから(4)の工程を行ったが、該絶縁層の消失、導電層の剥離が生じ良好な転写用部材は得られなかった。
【0033】
(5)転写
以上の工程で得られた転写用部材を厚さ25μmのポリイミドフィルム上に、80℃、圧力10kgf/cm2 の条件で圧着し、剥離して転写を行ったところ、パターンは全て転写された。
また、転写後の導電性基板を用いて上記の(1)〜(4)による転写用部材の作製、転写を繰り返したが、いずれの場合も転写率に変化は見られず、導電性基板の再利用が可能であることが立証された。
【0034】
比較例1
工程(1)でネガ型フォトレジスト(東京応化工業(株)製 OMR−85)及び該フォトレジスト用現像液(東京応化工業(株)製 OMR現像液)を使用し、工程(4)でマスクパターンの除去を100℃の剥離液(東京応化工業(株)製 クリーンストリップ)に浸漬することによって行う以外は実施例1と同様にして転写用部材を作製したが、工程(4)で該絶縁層の消失、導電層の剥離が生じ、良好な転写用部材は得られなかった。
【0035】
【発明の効果】
以上の本発明によれば、転写層の断面形状は直角四辺形の一定した形状とすることができ、高精度且つ安定した転写率で転写層の転写が可能である。また、転写後の導電性基板は転写用部材の基板として繰り返し使用が可能であるので、転写用部材の製造コストの低減も可能である。
【図面の簡単な説明】
【図1】 本発明の転写用部材を説明する概略図である。
【図2】 本発明の転写用部材の製造方法を説明する概略図である。
【図3】 従来法による転写用部材の製造工程を説明する概略図である。
【図4】 従来法による転写用部材を説明する概略図である。
【符号の説明】
1:導電性基板
2:導電層
3:粘接着性絶縁層
4:フォトレジスト層
4′:マスクパターン層
5:非マスク層
6:エッチング部
7:絶縁性層
8:導電性基板の裸出部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a transfer member suitable for manufacturing a multilayer printed wiring board or the like and capable of transferring a transfer layer made of a conductive layer or the like patterned on a conductive substrate with high accuracy and a method for manufacturing the same.
[0002]
[Prior art]
Due to the dramatic development of semiconductor technology, semiconductor packages have rapidly become smaller, more pins, fine pitch, and miniaturized electronic components, and entered the era of so-called high-density packaging. Along with this, printed wiring boards are also being made thinner and thinner from single-sided wiring to double-sided wiring.
[0003]
Currently, a subtractive method and an additive method are mainly used for forming a copper pattern on a printed wiring board.
[0004]
The subtractive method is a method in which a hole is formed in a copper-clad laminate, copper is plated on the inside and the surface of the hole, and a pattern is formed by photoetching. This subtractive method is technically highly complete and low in cost, but it is difficult to form a fine pattern due to restrictions such as the thickness of the copper foil.
[0005]
On the other hand, in the additive method, a resist is formed on a part other than the circuit pattern forming part on the laminated board containing the electroless plating catalyst, and a circuit pattern is formed on the exposed part of the laminated board by electroless copper plating or the like. It is a method to do. Although this additive method can form a fine pattern, it is difficult in terms of cost and reliability.
[0006]
In the case of a multilayer substrate, a method of laminating a single-sided or double-sided printed wiring board produced by the above method together with a semi-cured prepreg in which a glass cloth is impregnated with an epoxy resin or the like is used. Yes. In this case, the prepreg functions as an adhesive for each layer, and the connection between the layers is performed by creating a through hole and applying electroless plating or the like to the inside.
[0007]
Also, due to the progress of high-density packaging, multilayer boards are required to be thinner and lighter, while high wiring capacity per unit area is required, board thickness per layer, interlayer connection and component mounting methods, etc. Has been devised.
[0008]
However, the production of multilayer boards using the double-sided printed wiring board produced by the subtractive method described above will increase the density due to the precision of drilling for the hole formation of the double-sided printed wiring board and the limit of miniaturization. There was a limit and it was difficult to reduce the manufacturing cost.
[0009]
On the other hand, in recent years, a multilayer wiring board produced by sequentially laminating a conductor pattern layer and an insulating layer on a substrate has been developed to satisfy the above requirements. Since this multilayer wiring board is produced by alternately performing photo-etching of the copper plating layer and patterning of the photosensitive resin, high-definition wiring and interlayer connection at an arbitrary position are possible.
[0010]
However, in this method, copper plating and photoetching are alternately performed a plurality of times, which makes the process complicated, and because of the serial process of stacking one layer on the substrate, it is difficult to regenerate the product if trouble occurs in the intermediate process This has hindered the reduction of manufacturing costs.
[0011]
In order to solve such problems, a transfer master having a wiring pattern layer formed on a substrate is prepared, and this operation is repeated by pressing the conductive pattern onto a conductive substrate and transferring the wiring pattern layer to the conductive substrate. A method for manufacturing a multilayer printed wiring board has been proposed.
In this method, as shown schematically in FIG. 3, when producing a transfer master, a mask pattern layer 4 'is formed on the conductive substrate 1 with a resist (FIG. 3A), and a non-mask layer is formed. 5 is etched (FIG. 3B), an insulating layer 7 is formed by electrodeposition on the etched portion 6 (FIG. 3C), and then the mask pattern layer 4 ′ is removed (FIG. 3D). As shown in FIG. 4, the conductive layer 2 and the adhesive adhesive insulating layer 3 are sequentially formed on the bare portion 8 on the conductive substrate 1 by electrodeposition.
[0012]
The master plate for transfer obtained by the thickness of the insulating layer formed on the etching layer is called a lithographic plate, a relief plate and an intaglio plate, but in either case as schematically shown in FIG. The shape of the adhesive insulating layer 3 is mushroom-shaped (kamaboko-shaped), and it is difficult to obtain a right-sided quadrilateral shape, and the transfer is not stable (the transfer rate varies) and the line is thickened (the insulating layer Since the electrodeposition is performed in an unconstrained state, the side surface of the insulating layer to be generated has a wavy shape), electrical characteristics such as impedance characteristics when applying a high frequency become unstable, or the insulating layer is not transferred There is a problem that the line is wider than the line width. In addition, since the conductive substrate is etched, the conductive substrate after transfer cannot be reused, and thus there is a problem that the manufacturing cost is reduced, and improvement is desired.
[Problems to be solved by the invention]
The present invention has been made under such circumstances, and an object of the present invention is to transfer a base material and transfer member capable of transferring a transfer layer with high accuracy and transfer An object of the present invention is to provide a method for producing the transfer member, in which a layer can be stably formed in a constant shape at all times.
[0013]
[Means for Solving the Problems]
The above object is achieved by the present invention described below. That is, the present invention includes (1) a step of forming an electrically insulating mask pattern using a positive resist on a substrate having conductivity at least on its surface, and (2) electrodeposition on a non-mask portion on the substrate. law to form a conductive layer in the step, (3) process and (4) to form a tacky adhesive insulation layer by the electrodeposition method conductive layer on the (3) substrate to the process without drying after the completion of sequentially performed steps of removing after exposing the mask pattern of the upper, and characterized in that to form a transfer layer comprising a pressure-sensitive adhesive insulation layer formed on the conductive layer and patterned on the substrate And a transfer member obtained by this method.
[0014]
[Action]
In the present invention, the cross-sectional shape of the transfer layer is formed by forming the mask pattern formed on the conductive substrate thicker than the transfer layer formed of the conductive layer and the adhesive adhesive layer formed on the non-mask portion. It can be a constant shape of a right-angled quadrilateral.
Further, since the mask pattern is removed after the transfer layer is formed, the transfer layer can be transferred with high accuracy and a stable transfer rate by using the transfer member of the present invention.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in more detail with reference to preferred embodiments of the invention.
The conductive substrate in the transfer member of the present invention may be any one as long as the surface has conductivity, for example, a conductive metal plate such as aluminum, copper, nickel, iron, stainless steel, titanium, or glass. It is possible to use a conductive thin film formed on the surface of an insulating substrate such as a plate, a film of a polymer material such as polyester, polycarbonate, polyimide, polyethylene, and acrylic resin.
[0016]
The thickness of such a conductive substrate is not particularly limited, but is usually preferably about 0.05 to 1.0 mm. Further, in order to prevent the conductive layer from peeling off from the conductive substrate in the step of removing the mask pattern on the surface of the conductive substrate in the last step described below, the substrate has an appropriate surface roughness. It is preferable to use a conductive substrate having a roughness of about 0.05 to 0.5 μm (measured with a surface stylus discontinuity meter).
[0017]
The transfer member of the present invention is manufactured by sequentially performing the following steps (1) to (4). A method for manufacturing a transfer member will be described with reference to FIGS.
As schematically shown in FIG. 1, the transfer member of the present invention is formed with a transfer layer composed of a conductive layer 2 having an arbitrary pattern and an adhesive adhesive insulating layer 3 laminated thereon on the surface of a conductive substrate 1. It has been done.
[0018]
In order to manufacture the transfer member of the present invention, first, in step (1), an electrically insulating mask pattern for forming a transfer layer having an arbitrary pattern to be transferred is formed on the surface of the conductive substrate.
The formation of the electrically insulating mask pattern is usually performed using a photoresist, but when the mask pattern is dissolved and removed from the surface of the conductive substrate in the last step (4), the insulating layer on the conductive layer is removed. It wants to use a positive resist from the top to prevent the Rukoto. A conventionally known positive resist can be used and is not particularly limited.
[0019]
As shown in FIG. 2A, a photoresist layer 4 is formed on the surface of the conductive substrate 1 by a known method. The photoresist layer 4 is irradiated with ultraviolet rays through a photomask having a predetermined pattern, and is exposed and developed. Thus, as shown in FIG. 2B, a mask pattern 4 ′ having a predetermined pattern and a non-mask portion 5 are formed on the surface of the conductive substrate 1. At that time, by forming the mask pattern thicker than the thickness of the transfer layer described below, the cross-sectional shape of the transfer layer can be made into a constant shape of a right-angled quadrilateral.
[0020]
Next, in step (2), as shown in FIG. 2C, the conductive layer 2 is formed on the non-mask portion 5 by electrodeposition. The formation of the conductive layer by electrodeposition is performed according to a known plating method, and the material for forming the conductive layer is not particularly limited as long as the conductive thin film is formed by the electrodeposition method. For example, copper, silver, Gold, nickel, chromium, zinc, tin, platinum, etc. are mentioned. In electrodeposition, in order to facilitate peeling of the conductive layer from the conductive substrate, a peeling layer that does not alienate the conductivity can be formed in advance in the non-mask portion.
[0021]
In step (3), as shown in FIG. 2D, the adhesive adhesive insulating layer 3 is formed on the surface of the conductive layer 2 by the electrodeposition method. The electrodeposition method is based on a method conventionally used for electrodeposition coating, and is performed using an electrodeposition solution containing an ionic film-forming material. The electrodeposition in the present invention is performed according to a known electrodeposition method.
As the material for forming the insulating layer contained in the electrodeposition liquid, any material that can be electrodeposited that exhibits adhesiveness when heated at room temperature or by heating can be used. For example, ionic polymer compounds are typical. .
[0022]
Examples of the ionic polymer compound that forms the insulating electrodeposition resin layer contained in the electrodeposition liquid include natural resins, acrylic resins, polyester resins, alkyd resins, maleated oil resins, polybutadiene resins, and the like. Examples thereof include resins, epoxy resins, polyamide resins, polyimide resins, and the like. The anionic polymer compound has an anionic group such as a carboxyl group, and the cationic polymer compound has a cationic group such as an amino group. In the present invention, an optimal ionic polymer compound may be appropriately selected according to the performance required for the insulating coating, and the ionic polymer compound is not particularly limited.
In addition, a rosin-based, terpene-based, petroleum resin-based tackifier or the like can be used together with these ionic polymer compounds as necessary.
[0023]
The polymer compound is subjected to electrodeposition in a state of being neutralized with an alkaline substance or an acidic substance and solubilized in water, or in a water-dispersed state. The anionic polymer compound is neutralized with amines such as trimethylamine, diethylamine and dimethylethanolamine, and inorganic alkalis such as ammonia and caustic potash. The cationic polymer compound is neutralized with an acid such as acetic acid, formic acid, propionic acid, or lactic acid.
[0024]
In the last step (4), the mask pattern 4 'on the surface of the conductive substrate 1 that has undergone the above steps is removed. Since the mask pattern is formed of a photoresist, the mask pattern is dissolved and removed using an ordinary developer for photoresist. As described above, when the mask pattern is formed of a positive photoresist, the insulating layer 3 is prevented from being peeled when the mask pattern is removed in this step. As the developer for the positive photoresist, for example, a weak alkaline solution is used.
[0025]
Through the steps (1) to (4) above, the transfer member of the present invention schematically shown in FIG. 1 is manufactured.
[0026]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. Unless otherwise indicated, parts and percentages are by weight below.
[0027]
Example 1
A transfer member was prepared by the following steps using a thin plate of SUS304 (surface roughness of about 0.1 μm) as a conductive substrate.
(1) Formation of mask pattern A positive photoresist (PMER P-AR900, manufactured by Tokyo Ohka Kogyo Co., Ltd.) was applied to a thickness of about 20 μm on the above substrate and dried on a hot plate at 80 ° C. for 10 minutes. . Then, using the mask which has a predetermined pattern, it exposed on the following conditions, Then, it developed with the weak alkaline developing solution (Tokyo Ohka Kogyo Co., Ltd. P-6G), and formed the mask pattern.
[0028]
Exposure conditions Adhesion exposure machine: Uses P-202-G manufactured by Dainippon Screen Mfg. Co., Ltd. Vacuuming: 60 seconds Exposure time: 400 counts
(2) Formation of conductive layer The conductive substrate on which the above mask pattern layer is formed is immersed in a copper sulfate plating bath having the following composition so as to face a phosphorous copper electrode, and the conductive substrate is used as an anode of a DC power source. The electrodes were respectively connected to the cathode and energized for 10 minutes at a current density of 5 A / dm 2 . As a result, a conductive layer made of a copper-plated thin film having a thickness of 10 μm was formed on the non-mask portion not covered with the photoresist of the conductive substrate.
[0030]
Composition of copper sulfate plating bath (in 1 liter of water)
CuSO 4 · 5H 2 O 200g
H 2 SO 4 50g
HCl 0.15 ml (60 ppm as Cl)
[0031]
(3) Formation of adhesive adhesive insulating layer (i) Preparation of electrodeposition solution Potassium persulfate 1 using 13.2 parts of butyl acrylate, 1.6 parts of methyl methacrylate and 0.2 part of divinylbenzene as a polymerization initiator Emulsion polymerization was carried out at 80 ° C. for 5 hours without using an emulsifier using an aqueous solution of 85 parts by weight to obtain an emulsion of a partially crosslinked butyl acrylate / methyl methacrylate copolymer.
65 parts of the above emulsion, 2 parts of a carboxyl group-containing acrylic copolymer resin as an electrodeposition carrier, 0.85 part of hexamethoxymelamine, 0.35 part of trimethylamine as a neutralizing agent, 3 parts of ethanol, butyl cellosolve 3 And 18.8 parts of ion-exchanged water were mixed and stirred to prepare an electrodeposition solution for forming an adhesive adhesive layer.
(Ii) A conductive substrate having a conductive layer prepared by electrodeposition (2) is immersed in the above electrodeposition liquid so as to face a platinum electrode, and the conductive substrate is used as an anode of a DC power source, and the platinum electrode is used as a cathode. And an electrodeposition for 1 minute at a voltage of 30 V to form an adhesive adhesive layer made of the above copolymer having a thickness of 10 μm on the conductive layer.
[0032]
(4) Removal of mask pattern After the completion of the step (3), the mask pattern on the conductive substrate on which the adhesive adhesive layer was formed was exposed under the same conditions as in (1) without drying. Thereafter, it was dried at 80 ° C. for 15 minutes. This is because the mask pattern is cured when drying is performed at the end of the step (3), and a plasticizer is mixed in the mask pattern. This is because not only the removal of the mask pattern becomes difficult, but also the conductive layer and the insulating layer are not affected when the mask pattern is removed.
After drying, the mask pattern layer was dissolved and removed using the developer used in (1) to obtain a transfer member of the present invention.
However, when the transfer layer is formed in the same steps (1) to (3) as above and acetone is used to remove the mask pattern in step (4), the insulating layer disappears and the conductive layer peels off. A good transfer member could not be obtained. In addition, after the completion of the step (3), drying was performed under the above conditions and then the step (4) was performed. However, the insulating layer disappeared and the conductive layer was peeled off, and a good transfer member could not be obtained. .
[0033]
(5) When the transfer member obtained in the above transfer process was pressure-bonded onto a polyimide film having a thickness of 25 μm under the conditions of 80 ° C. and a pressure of 10 kgf / cm 2 , and peeled and transferred, all the patterns were obtained. It was transcribed.
In addition, the transfer member according to the above (1) to (4) was repeatedly produced and transferred using the transferred conductive substrate. In any case, no change was observed in the transfer rate. It was proved that it can be reused.
[0034]
Comparative Example 1
A negative photoresist (OMR-85 manufactured by Tokyo Ohka Kogyo Co., Ltd.) and the photoresist developer (OMR developer manufactured by Tokyo Ohka Kogyo Co., Ltd.) are used in step (1), and a mask is used in step (4). A transfer member was prepared in the same manner as in Example 1 except that the pattern was removed by immersing it in a stripping solution at 100 ° C. (clean strip manufactured by Tokyo Ohka Kogyo Co., Ltd.). Disappearance of the layer and peeling of the conductive layer occurred, and a good transfer member could not be obtained.
[0035]
【The invention's effect】
According to the present invention described above, the cross-sectional shape of the transfer layer can be a right-angled quadrangle, and the transfer layer can be transferred with high accuracy and a stable transfer rate. Further, since the conductive substrate after transfer can be repeatedly used as a substrate for the transfer member, the manufacturing cost of the transfer member can be reduced.
[Brief description of the drawings]
FIG. 1 is a schematic view illustrating a transfer member of the present invention.
FIG. 2 is a schematic view illustrating a method for producing a transfer member according to the present invention.
FIG. 3 is a schematic diagram for explaining a manufacturing process of a transfer member according to a conventional method.
FIG. 4 is a schematic diagram illustrating a transfer member according to a conventional method.
[Explanation of symbols]
1: Conductive substrate 2: Conductive layer 3: Adhesive adhesive insulating layer 4: Photoresist layer 4 ': Mask pattern layer 5: Non-mask layer 6: Etching portion 7: Insulating layer 8: Naked conductive substrate Part

Claims (4)

少なくとも表面に導電性を備える基板上に、(1)ポジ型レジストを用いて電気絶縁性のマスクパターンを形成する工程、(2)該基板上の非マスク部に電着法により導電層を形成する工程、(3)該導電層上に電着法により粘接着性絶縁層を形成する工程及び(4)該(3)の工程終了後乾燥させずに該基板上の上記マスクパターンを露光後除去する工程を順次行い、該基板上にパターン化された導電層及びその上に形成された粘接着性絶縁層からなる転写層を形成させることを特徴とする転写用部材の製造方法。(1) A step of forming an electrically insulating mask pattern using a positive resist on a substrate having conductivity at least on its surface, (2) A conductive layer is formed on the non-mask portion on the substrate by electrodeposition to process the step (3) and (4) to form a tacky adhesive insulation layer by the electrodeposition method conductive layer on the above mask pattern on the substrate in step without drying after the completion of (3) sequentially performed steps of removing after exposure, the manufacture of the transfer member, characterized in that to form a transfer layer comprising a pressure-sensitive adhesive insulation layer formed on the conductive layer and patterned on the substrate Method. 前記マスクパターンを、前記転写層の厚さよりも厚く形成する請求項1に記載の転写用部材の製造方法。The method for manufacturing a transfer member according to claim 1, wherein the mask pattern is formed thicker than a thickness of the transfer layer. 前記基板の表面粗度が0.05〜0.5μmである請求項1又は2に記載の転写用部材の製造方法。Method for manufacturing a transfer member according to claim 1 or 2 surface roughness of the substrate is 0.05 to 0.5 [mu] m. 請求項1〜のいずれか1項に記載の方法で製造されたことを特徴とする転写用部材。Transfer member, characterized in that it is produced by the method according to any one of claims 1-3.
JP19694696A 1996-07-09 1996-07-09 Method for manufacturing transfer member and transfer member Expired - Lifetime JP3828205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19694696A JP3828205B2 (en) 1996-07-09 1996-07-09 Method for manufacturing transfer member and transfer member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19694696A JP3828205B2 (en) 1996-07-09 1996-07-09 Method for manufacturing transfer member and transfer member

Publications (2)

Publication Number Publication Date
JPH1027953A JPH1027953A (en) 1998-01-27
JP3828205B2 true JP3828205B2 (en) 2006-10-04

Family

ID=16366295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19694696A Expired - Lifetime JP3828205B2 (en) 1996-07-09 1996-07-09 Method for manufacturing transfer member and transfer member

Country Status (1)

Country Link
JP (1) JP3828205B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008283226A (en) * 2000-10-18 2008-11-20 Nec Corp Wiring board for mounting semiconductor device and its manufacturing method, and semiconductor package
JP5266643B2 (en) * 2007-01-10 2013-08-21 凸版印刷株式会社 Letterpress for printing and method for producing letterpress for printing

Also Published As

Publication number Publication date
JPH1027953A (en) 1998-01-27

Similar Documents

Publication Publication Date Title
KR100427794B1 (en) Method of manufacturing multilayer wiring board
KR20060127417A (en) Printed wiring board, its manufacturing method and circuit device
US6515233B1 (en) Method of producing flex circuit with selectively plated gold
WO2007058147A1 (en) Printed wiring board, method for manufacturing same and use of same
US6383401B1 (en) Method of producing flex circuit with selectively plated gold
WO2004039134A2 (en) Printed circuit heaters with ultrathin low resistivity materials
JP3828205B2 (en) Method for manufacturing transfer member and transfer member
JP4480111B2 (en) Wiring forming method and wiring member
JP2001111201A (en) Method of manufacturing wiring board and wiring board using the same
JP4127213B2 (en) Double-sided wiring tape carrier for semiconductor device and manufacturing method thereof
JPH10215072A (en) Manufacture of multilayer printed wiring board
JP4523232B2 (en) Printed coil manufacturing method and printed wiring board manufacturing method
JPH08288603A (en) Printed wiring board, its manufacture, and original plate for transfer
JP3469620B2 (en) Multilayer printed wiring board and method of manufacturing the same
JPS59198792A (en) Method of producing thick film fine pattern circuit
JP3941463B2 (en) Manufacturing method of multilayer printed wiring board
JPH0918119A (en) Wiring pattern layer and formation thereof
JP4168798B2 (en) Method for manufacturing printed wiring board
JPH10335779A (en) Formation of pattern
JPH11266069A (en) Transfer member and manufacture thereof
JPH11266070A (en) Manufacture of transfer member and printed wiring board
JP3178677B2 (en) Method for manufacturing multilayer wiring board
JP3617880B2 (en) Manufacturing method of multilayer printed wiring board
JPH03225894A (en) Manufacture of printed wiring board
JP4582277B2 (en) Method for forming columnar metal body and method for manufacturing multilayer wiring board

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20051115

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060110

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060704

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060706

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4