JPS61159708A - Permanent magnet - Google Patents

Permanent magnet

Info

Publication number
JPS61159708A
JPS61159708A JP59280125A JP28012584A JPS61159708A JP S61159708 A JPS61159708 A JP S61159708A JP 59280125 A JP59280125 A JP 59280125A JP 28012584 A JP28012584 A JP 28012584A JP S61159708 A JPS61159708 A JP S61159708A
Authority
JP
Japan
Prior art keywords
coercive force
permanent magnet
rare earth
composition
ihc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59280125A
Other languages
Japanese (ja)
Other versions
JPH0630295B2 (en
Inventor
Kaneo Mori
佳年雄 毛利
Jiro Yamazaki
山崎 二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP59280125A priority Critical patent/JPH0630295B2/en
Priority to US06/814,183 priority patent/US4765848A/en
Priority to DE8585309532T priority patent/DE3582048D1/en
Priority to EP85309532A priority patent/EP0187538B1/en
Publication of JPS61159708A publication Critical patent/JPS61159708A/en
Priority to US07/572,568 priority patent/USRE34838E/en
Publication of JPH0630295B2 publication Critical patent/JPH0630295B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To manufacture a permanent magnet at extremely low cost by specific component constitution mainly comprising La and Ce. CONSTITUTION:A permanent magnet has a composition (0.4<=x<=0.9, 0.05<=z<=0.3, 0.01<=v<=0.3) represented by a formula (CexLa1-x)z(Fe1-vBv)1-z, and has coercive force (iHc) of 4kOe or more. The magnet may have a composition (Re represents at least one kind of rare earth metals including Y) except Ce and La, 0.4<=x<=0.9, 0.2<y<1.0, 0.05<=z<=0.3, 0.01<=v<=0.3) represented by a formula [(CexLa1-x)yR1-y]z(Fe1-vBv)1- z.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は希土類−鉄永久磁石に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to rare earth-iron permanent magnets.

(従来の技術) 希土類−Fe−Bを基本成分とする永久磁石についての
研究が近年活発になされ、その結果が公開特許公報等に
よシ公表されるようにな郵つつある。
(Prior Art) Research has been actively conducted in recent years on permanent magnets containing rare earth elements -Fe-B as a basic component, and the results are beginning to be published in published patent publications and the like.

特開昭57−141901号公報によると、遷移裏金1
!(T)、メタロイド金1rE (M)、Yおよびラン
タニド元素Rの組み合わせからなる組成を非晶質化し、
次に非晶質組成を熱処理により結晶化することによって
保磁力を発生せしめる永久磁石粉末製法が記載されてい
る。この公報によると、TはTi jV、Cr 、Mn
 *FI +Co +Ni 、Cu 。
According to Japanese Patent Application Laid-open No. 57-141901, transition back metal 1
! (T), metalloid gold 1rE (M), a composition consisting of a combination of Y and lanthanide element R is made amorphous,
Next, a permanent magnet powder manufacturing method is described in which a coercive force is generated by crystallizing an amorphous composition by heat treatment. According to this publication, T is Ti jV, Cr, Mn
*FI +Co +Ni,Cu.

Zr e Nb @ Mo e Hf a Ta +W
よシ選ばれる1種もしくは2種以上の組合せであシ、ま
たMはB。
Zr e Nb @ Mo e Hf a Ta +W
One type or a combination of two or more types selected, and M is B.

st、p、cより選ばれる1種もしくは2種以上の組合
せ、RはYおよびランタニド元素よシ選ばれるINもし
くは2種以上の組合せ、であって、これらを(T、−1
Mx入R1−2なる関係式(但し、O≦x≦0.35.
0,35≦z≦0.90)で含有させた永久磁石粉末に
ついての特許が請求されている。
R is one or a combination of two or more selected from st, p, and c; R is IN or a combination of two or more selected from Y and a lanthanide element;
The relational expression Mx enters R1-2 (however, O≦x≦0.35.
A patent is claimed for a permanent magnet powder containing powder in the range of 0.35≦z≦0.90).

特開昭58−123853号公報によると、Laおよび
Pr含有材料が提案されており、その組成は、(”zB
f−z)y(”z”v”1−z−W)1−3”但し。
According to JP-A-58-123853, a material containing La and Pr has been proposed, and its composition is ("zB
f-z)y("z"v"1-z-W)1-3"However.

RはL’ * Pr以外の希土類金部、  x =0.
75〜0.85゜)r=0.85〜0.95. z =
0.40S−0,75,w=0.25〜0.60. z
 +v≦1.0である。この公報には、液体急冷法によ
シ非晶質化したR−F・−B含有合金を焼鈍して結晶化
させる際の保磁力増大を適切にするために、希土類元素
の種類および割合を上述の(La zP rJ 1− 
z−vr)とする組成調節法が述べられている。
R is L'* rare earth gold part other than Pr, x = 0.
75~0.85°) r=0.85~0.95. z =
0.40S-0.75, w=0.25~0.60. z
+v≦1.0. This publication describes the type and proportion of rare earth elements in order to appropriately increase the coercive force when annealing and crystallizing an R-F/-B-containing alloy that has been made amorphous by a liquid quenching method. (La zP rJ 1-
z-vr) is described.

特開昭59−46008号公報には、8〜30原子チの
R(但し、Rは希土類元素の少なくとも1種)、2〜2
8原子チのB、及び残部F・からなる磁気異方性焼結体
が提案されている。この会報で公開された発明は液体急
冷法によらず焼結法によって任意の形状の永久磁石体を
製造可能にすることをひとつの意図としている。また、
焼結体成分中のRに関しては、Nd単独、Pr単独、 
NdとPrの組合せ、NdとC・の組合せ、SmとPr
の組合せ、PrとYの組合せ、Nd 、 PrとLaの
組合せ、 Tb単独、ay単独、Ho単独、ErとTb
の組合せ等についての焼結体の磁気特性が示されている
JP-A No. 59-46008 discloses 8 to 30 atoms of R (wherein R is at least one rare earth element), 2 to 2
A magnetically anisotropic sintered body consisting of 8 atoms of B and the remainder F. has been proposed. One of the intentions of the invention disclosed in this newsletter is to make it possible to manufacture permanent magnets of arbitrary shapes by the sintering method rather than by the liquid quenching method. Also,
Regarding R in the sintered body components, Nd alone, Pr alone,
Combination of Nd and Pr, combination of Nd and C, Sm and Pr
combination of Pr and Y, Nd, combination of Pr and La, Tb alone, ay alone, Ho alone, Er and Tb
The magnetic properties of the sintered body are shown for combinations of.

上述の如き従来技術をまとめるとR−Fe−B(但し、
Rは希土類金属、以下同じ)系永久磁石においてRがN
dまたはPrであるときに優れた磁石特性が得られてい
たことが分かる。
To summarize the prior art as mentioned above, R-Fe-B (however,
R is a rare earth metal, the same applies hereafter) system permanent magnet, R is N
It can be seen that excellent magnetic properties were obtained when the magnet was d or Pr.

また、従来技術において、希土類元素としてLaおよび
Ceが使用可能であることを特許請求しているものもあ
るが、LaのみをRとして使用するのではな(Laの含
有量上限を制限していることにより多量のLaによる磁
気特性低下が避けられている。
In addition, some prior art patents claim that La and Ce can be used as rare earth elements, but it is not possible to use only La as R (the upper limit of the content of La is limited). This avoids deterioration of magnetic properties due to a large amount of La.

上記従来技術においてはLaおよびC・を主体として希
土類成分を具体的に構成した永久磁石の例はない。
In the above-mentioned prior art, there is no example of a permanent magnet having a specific rare earth component mainly composed of La and C.

第2図はJ、Appl 、Phys、Vol 55 (
1984)第2079頁に掲載されているグラフを再掲
したR−F・−B系永久磁石合金の減磁曲線である。こ
のグラフよシも、Pr、NdがR−Fe−B合金のR成
分として最も望ましく、LaまたはC・をR−F・−B
系合金のR成分とした合金は永久磁石としての特性をも
たなくなる仁とが分かる。このような点からして、上述
の従来技術は、Pr、Nd等の極〈一部をLm 、 C
・で置換することを開示していても、L&またはCaを
主体としてR成分を構成したR−F・−B合金が永久磁
石になることは何ら開示していないと言えよう。
Figure 2 is from J, Appl, Phys, Vol 55 (
1984) This is a demagnetization curve of the R-F·-B permanent magnet alloy, which is a reproduction of the graph published on page 2079. This graph also shows that Pr and Nd are the most desirable R components of the R-Fe-B alloy, and La or C.
It can be seen that the alloy with the R component of the system alloy no longer has the characteristics as a permanent magnet. From this point of view, the above-mentioned conventional technology uses poles such as Pr and Nd (parts of which are Lm, C
Even if it discloses that the R component is replaced by L& or Ca, it can be said that there is no disclosure that the R-F--B alloy in which the R component is mainly composed of L& or Ca becomes a permanent magnet.

最近の希土類−鉄永久磁石に関する注目すべき進展は、
1984年10月のMMMに発表されたre−(32,
5〜34.51)R−(1〜1.6%)B。
Recent notable developments in rare earth-iron permanent magnets include:
re-(32,
5-34.51) R-(1-1.6%)B.

(但しRはジジム(Nd−10%Pr)、5C・−ジジ
ム、または40−C・ジジム)がIHc = 10.2
にG。
(where R is didymium (Nd-10%Pr), 5C・-didymium, or 40-C・didymium), IHc = 10.2
niG.

(BH)m□= 40 MGO・を達成したことである
(BH)m□=40 MGO• was achieved.

(r DIDYMIUM−F・−B  f9INTER
ED PERMANENTMAGNKN−TS J論文
Iが、この永久磁石でもR成分はNdが主体となってい
る。
(r DIDYMIUM-F・-B f9INTER
ED PERMANENT MAGNKN-TS J Paper I shows that even in this permanent magnet, the R component is mainly Nd.

(発明が解決しようとする問題点) R−Fe−8を基本成分とする永久磁石は磁気特性がす
ぐれているものの、そのひとつの問題点はすぐれた磁気
特性を得ようとするとNd 、 Prを希土類金員の主
体とせざるを得す、このために永久磁石が高価になるこ
とでありた。よりて、上記ゾゾム含有永久磁石は、比較
的安価なジジムを使用してもNd、Prと同等の磁気特
性を発揮できるので注目されているのである。
(Problems to be Solved by the Invention) Permanent magnets containing R-Fe-8 as a basic component have excellent magnetic properties, but one problem is that in order to obtain excellent magnetic properties, Nd and Pr must be used. The permanent magnet had to be made mainly of rare earth metals, which made the permanent magnet expensive. Therefore, the zozom-containing permanent magnet is attracting attention because it can exhibit magnetic properties equivalent to those of Nd and Pr even when relatively inexpensive didymium is used.

L&またはC・は他の希土類元素と比較して多量に産出
されそして安価であるために、これらを希土類金属の主
成分として使用可能になれば希土類−鉄永久磁石の大幅
なコストダウンが可能になる。
Since L& or C is produced in large quantities and is inexpensive compared to other rare earth elements, if it were possible to use them as the main component of rare earth metals, it would be possible to significantly reduce the cost of rare earth-iron permanent magnets. Become.

だが、第2図から分かるようにLa、Coは磁気特性上
有害な元素である。La、C・が磁気特性上有害である
理由は、希土類−鉄永久磁石の強磁性成分はR2Fe1
4B化合物であシ、そしてRがLaであると該化合物が
不安定になるかもしくは生成されず、ま九RがC・であ
る+2((J)、〒e14Bは保磁力が小さいためであ
る。
However, as can be seen from FIG. 2, La and Co are elements harmful to magnetic properties. The reason why La and C are harmful in terms of magnetic properties is that the ferromagnetic component of rare earth-iron permanent magnets is R2Fe1
4B compound, and if R is La, the compound becomes unstable or is not produced, and R is C.+2 ((J), 〒e14B has a small coercive force. .

上述のように、従来技術はLm、Ceを希土類金属の主
成分として使用するに至っていない。
As mentioned above, the prior art has not reached the point where Lm and Ce are used as main components of rare earth metals.

(問題点を暦法するための手R) 第1図は、液体急冷法で製造した板厚20μm、板幅3
mmのF・77(L’1−x C@x)17B6合金の
保磁力を測定した結果を示すグラフである。
(Method for calculating problems) Figure 1 shows a plate manufactured using the liquid quenching method with a thickness of 20 μm and a width of 3.
It is a graph which shows the result of measuring the coercive force of F*77 (L'1-x C@x)17B6 alloy of mm.

Fe2 B (La、−xC@x )、785なる組成
式において!=1(すなわちF* y 7C@ 、7B
 4 )およびx=0(すなわちF・77”17”A 
)のときの保磁力は第2図のそれぞれC・、Laのデー
タとほぼ一致している。なお苔千の差は両図に保磁力が
示された合金の組成の差による。
In the composition formula of Fe2 B (La, -xC@x), 785! = 1 (i.e. F* y 7C@ , 7B
4) and x=0 (i.e. F・77"17"A
), the coercive force almost coincides with the data for C. and La in FIG. 2, respectively. The difference in kosensen is due to the difference in the composition of the alloys whose coercive forces are shown in both figures.

第1図に示されているようにLaとC・の両者が希土類
元素として用いられるとLaまたはC・単独の場合より
も保磁力が格段に高められる。I値が約0.65である
と保磁力(lHe)は約7kO・となる。
As shown in FIG. 1, when both La and C. are used as rare earth elements, the coercive force is much higher than when La or C. is used alone. When the I value is about 0.65, the coercive force (lHe) is about 7 kO·.

この保磁力はPrまたはNdt−Rの主体とする永久磁
石の保磁力の約袖であるが、LA、C・等のみからR成
分を構成できるようになると、かかる永久磁石はPr、
Nd主体永久磁石と十分にコスト・性能の総合面から競
争できるようになる。
This coercive force is about the same as that of a permanent magnet mainly composed of Pr or Ndt-R, but if the R component can be composed only of LA, C, etc., such a permanent magnet will become Pr,
It will be able to fully compete with Nd-based permanent magnets in terms of overall cost and performance.

本発明(以下、第1発明と称する)は第1図の如(La
とC・の共すによって保磁力(iHc )が著しく高め
られるとの発明にもとづいて成立しているものであって
、その特徴とす、るところは。
The present invention (hereinafter referred to as the first invention) is as shown in FIG.
It is based on the invention that the coercive force (iHc) can be significantly increased by the combination of C and C, and its characteristics are as follows.

(Cs x La、−x入(F・1−vBv)1−1但
し0.4≦I≦明において、Iが0.4未満もしくは0
.9を越えるとそれぞれLa単独またはC・単独の組成
と同等程度の保磁力しか得られないためK s x =
o、 4〜0.9とした。また2が0.05未満である
と角型比および保磁力が低下し、2が0.3を越えると
残留磁束密度が低下するために、z=0.05〜0.3
とした。さらに、マが0.01未満であると保磁力が低
下し、またマが0.3を越えると残留磁束密度が低下す
るためマ=0.01〜0.3とした。さらに、よシ高い
保磁力を得るためには、0.6≦I≦0.8.0.02
≦v≦0.15.0.1≦z≦0.2の範囲であること
が好ましい。よシ好ましくは、0.03≦v≦0.12
である。
(Cs x La, -x included (F・1-vBv) 1-1 However, when 0.4≦I≦light, I is less than 0.4 or 0
.. If it exceeds 9, a coercive force comparable to that of La alone or C alone can be obtained, so K s x =
o, 4 to 0.9. Also, if 2 is less than 0.05, the squareness ratio and coercive force will decrease, and if 2 exceeds 0.3, the residual magnetic flux density will decrease, so z = 0.05 to 0.3.
And so. Further, if Ma is less than 0.01, the coercive force will decrease, and if Ma exceeds 0.3, the residual magnetic flux density will decrease, so Ma was set to 0.01 to 0.3. Furthermore, in order to obtain a higher coercive force, 0.6≦I≦0.8.0.02
It is preferable that the range is ≦v≦0.15.0.1≦z≦0.2. Preferably, 0.03≦v≦0.12
It is.

本発明において保磁力(iHc )を4kO・以上とし
九のは、4kO・の保磁力が達成されると、C・とLa
の顕著な相乗効果が認められるからであシ、また4kO
・以上の保磁力(tic )を有するF・−B−(Lm
、Co)系磁石は、市場において各種永久磁石に代替し
うる特性を有するからである。前者の点はWX1図から
明らかであ〕、後者の点についてはF@−Bという安価
な元素を用いかつ希土類金属中でも多量に産出されるL
a、C・を用いて、4kO・以上の保磁力を具備する本
発明の永久磁石は希土類コノ4ルト系およびF*−B−
Pr(Nd)系?よび傾→H←会雫4袖フェライト系永
久磁石と十二分に対抗しうるものであるから、これらの
点から4kO・以上を本発明の構成要件とする。
In the present invention, when the coercive force (iHc) is set to 4 kO. or more, and the coercive force of 4 kO. is achieved, C. and La
This is because a remarkable synergistic effect of 4kO is observed.
・F・-B−(Lm
, Co) type magnets have characteristics that allow them to be substituted for various permanent magnets on the market. The former point is clear from the WX1 diagram], and the latter point is based on L, which uses an inexpensive element called F@-B and is produced in large quantities among rare earth metals.
The permanent magnet of the present invention having a coercive force of 4 kO or more using a, C, and F*-B-
Pr(Nd) type? Since it can more than compete with the four-sleeve ferrite permanent magnet, from these points, 4 kO. or more is a constituent requirement of the present invention.

第3図および第4図は、それぞれ、”75M15B?。Figures 3 and 4 respectively show "75M15B?".

およびF・78M17B1.なる組成式の合金を液体急
冷法で、単ロールの周速(V)を変化させて薄帯化した
材料の保磁力(IHc )を示すグ27である(図中−
急冷後、Oとして示す)、なお上記組成式中のMは、約
3296 La、約48%Ce、約15%Nd、約4.
5%のPr、約0.3%Sm、残部Paその他の不純物
からなるミヅシュメタルである。
and F.78M17B1. Figure 27 shows the coercive force (IHc) of a material obtained by forming an alloy with the following composition formula into a thin ribbon by changing the circumferential speed (V) of a single roll using the liquid quenching method (-
After quenching, M in the above composition formula is approximately 3296 La, approximately 48% Ce, approximately 15% Nd, approximately 4.
It is a medium metal consisting of 5% Pr, about 0.3% Sm, and the balance Pa and other impurities.

第3図および第4図から分かるように、単ロールの周速
(V)が約303/sにおいて保磁力が最大の約8kO
・になっている。
As can be seen from Figures 3 and 4, when the circumferential speed (V) of a single roll is approximately 303/s, the coercive force is at its maximum of approximately 8kO.
·It has become.

さらに、最大保磁力を達成する単ロールの周速以上の冷
却条件で得られた薄帯を550℃および600℃で時効
した後の保磁力も第3図および第4図に示す。時効のデ
ータから、上記 F・75Mj5”1゜およびF・7BM、7BSなる組
成の合金は液体急冷状態では保磁力(iHc)が低くと
も時効によ〕高保磁力化することが分かる。
Furthermore, the coercivity after aging the ribbon at 550° C. and 600° C., which was obtained under cooling conditions at a circumferential speed of a single roll that achieves the maximum coercive force, is also shown in FIGS. 3 and 4. From the aging data, it can be seen that even though the coercive force (iHc) of the alloys having the compositions F.75Mj5''1°, F.7BM, and 7BS is low in the liquid quenched state, the coercive force increases with aging.

第3図および第4図を引用して上述した如きところから
(1)LaおよびC・以外の希土類元素が若干量存在し
ているときでもLaおよびCsの相乗効果があり、(2
)このような相乗効果は液体急冷および時効処理等のプ
ロセスに依存性を有していす組成に起因するものである
ことが分かる。
As mentioned above with reference to Figures 3 and 4, (1) even when rare earth elements other than La and C are present in small amounts, there is a synergistic effect of La and Cs;
) It can be seen that such a synergistic effect is dependent on processes such as liquid quenching and aging treatment and is caused by the chair composition.

本発明(以下、第2発明と称する)はこのような発見上
に成立しているものであって、その特徴とするところは
、 ((cexLa、−x)、R,−、)、(F・1−V 
Bv)j −z、 但し、Rは少なくとも1種の希土類
金1m!(Yを含む)、0.4≦x≦0.9、o、z<
y< 1.0.0.05≦z≦0.3,0.01≦v≦
0.03であり、RはC・およびL1以外の少なくとも
1種の希土類元素である組成と、4kO・以上の保磁力
(iHc )とにある。第2発明におけるX、!、マの
限定理由および好ましい範囲は第1発明と同様である。
The present invention (hereinafter referred to as the second invention) is based on such a discovery, and its characteristics are as follows: ((cexLa, -x), R, -,), (F・1-V
Bv) j −z, where R is 1 m of at least one rare earth metal! (including Y), 0.4≦x≦0.9, o, z<
y< 1.0.0.05≦z≦0.3, 0.01≦v≦
0.03, R has a composition of C. and at least one rare earth element other than L1, and a coercive force (iHc) of 4 kO. or more. X in the second invention! , Ma are the same as the first invention.

また、第2発明においてyを0.2超えるように(y>
0.2)定めたのはLa、C・の量が0.20以下では
希土類元素のコストが高くなるからである。またF (
1,0とし九のは、第1発明と第2発明の組成を区別す
るためである。好ましいyの範囲は0.5≦7 < 1
.0である。
In addition, in the second invention, y is set to exceed 0.2 (y>
0.2) is determined because the cost of rare earth elements increases if the amounts of La and C are less than 0.20. Also F (
The reason for the number 1,0 and 9 is to distinguish the compositions of the first invention and the second invention. The preferred range of y is 0.5≦7<1
.. It is 0.

第1発明および第2発明に係る合金には、At。The alloys according to the first invention and the second invention include At.

TI 、V、 Cr 、Mn 、Zr 、Hf *N’
b 、Ta 、MO、G@ 。
TI, V, Cr, Mn, Zr, Hf *N'
b, Ta, MO, G@.

Sb  、  So  、  Bl  、 Ni  、
 W、Cu  、 Ag等の元素を添加することができ
る。これらの元素は保磁力をさらに改善する効果がある
Sb, So, Bl, Ni,
Elements such as W, Cu, and Ag can be added. These elements have the effect of further improving coercive force.

さらに、第1発明および@2発明のBの一部を81 、
 C,At、 P、N、G・、S等で置換しても、Si
等で置換されたBはB単独と同様な効果を有する。
Furthermore, part of B of the first invention and @2 invention is 81,
Even if replaced with C, At, P, N, G., S, etc., Si
B substituted with etc. has the same effect as B alone.

加えて、 Coを第1発明および第2発明に係る合金を
添加すると、キュリ一温度が上昇し、磁気的性質、特に
Br、の温度特性が改善される。
In addition, when Co is added to the alloys according to the first and second inventions, the Curie temperature increases and the magnetic properties, especially the temperature characteristics of Br, are improved.

(作用) 本発明に係る永久磁石の著しい特色は上述のように従来
の永久磁石と比較して組成上安価であるところにある。
(Function) As mentioned above, the remarkable feature of the permanent magnet according to the present invention is that it is cheaper in terms of composition than conventional permanent magnets.

すなわち、従来はFe−B−R系永久磁石の成分として
使用できないと考えられていたLa、C・を主体として
極めて安価な永久磁石を製造することが本発明の特色で
ある。而して、本発明においては、LaとC−の原子比
率が約0.35対約0.65において保磁力が最大にな
)、またかかる保磁力(iHc )はL&単独のものに
比較して約35倍、C・単独のものに比較して約3.5
倍となる。
That is, the feature of the present invention is to manufacture an extremely inexpensive permanent magnet mainly using La and C, which were conventionally considered to be unusable as components of Fe-B-R permanent magnets. Therefore, in the present invention, the coercive force is maximum when the atomic ratio of La and C- is about 0.35 to about 0.65), and the coercive force (iHc) is compared to that of L & alone. approximately 35 times, approximately 3.5 times compared to C. alone.
It will be doubled.

本発明者等はかかるLaとC・の共存による保磁力(i
Hc )の顕著な増大の原因を究明すべく、第1図で説
明した”78(”1−x”z)17BS の結晶構造を
X線で調べ、R2F・14B型結晶の存在を確認した。
The present inventors have discovered that the coercive force (i) due to the coexistence of La and C.
In order to investigate the cause of the remarkable increase in Hc), the crystal structure of "78("1-x"z)17BS explained in FIG. 1 was examined by X-rays, and the existence of R2F/14B type crystals was confirmed.

この結晶は従来Nd−F・−B系合金において検知され
ていたものと同じ結晶形を有するものであった。
This crystal had the same crystal form as that conventionally detected in Nd-F.-B alloys.

従来、LaはR2F・14B型結晶を作らないと考えら
れてお9.それ故LaはR−F・−B系永久磁石のR主
成分としては用いられていなかった。ところがLaとC
mが共存する本発明の組成においてはR2Fe14B 
 型結晶の存在が確認されたために、LmとC・が共存
するとR2F・、4BIJ!結晶が生成されることが分
かりた。よって、この結晶が保磁力(lHc)の向上に
寄与していると考えられる。
Conventionally, it has been thought that La does not form R2F/14B type crystals.9. Therefore, La has not been used as the main R component of R-F.-B permanent magnets. However, La and C
In the composition of the present invention in which m coexists, R2Fe14B
Since the existence of a type crystal was confirmed, if Lm and C. coexist, R2F., 4BIJ! It was found that crystals were formed. Therefore, it is considered that this crystal contributes to the improvement of coercive force (lHc).

また、 Ce2F*、4Bは格子定数16 =Q、g 
77の正方晶結晶を作シ、その保磁力(lHe )はL
JL −F・−Bよシは格段に高いことが知られている
。ところが、本発明によると、C・とLaを共存させる
ことによりて、C・2F・14Bよ)もはるかに高い保
磁力(iHc)が得られている。この点を考慮すると、
本発明によシ得られる高い保磁力(lHc )はLaと
C・がR2F・14B結晶中にある特定の割合で存在す
ることによる寄与もあると考えられる。このようなLl
とC・が結晶構造にどのような影響を及ぼすかは解明さ
れていない。その結晶学的機構解明については今後の研
究を待たなければならない。
Also, Ce2F*, 4B has a lattice constant of 16 = Q, g
77 tetragonal crystals were produced, and their coercive force (lHe) was L.
It is known that JL -F and -B values are significantly higher. However, according to the present invention, by making C. and La coexist, a much higher coercive force (iHc) can be obtained even for C.2F.14B. Considering this point,
It is believed that the high coercive force (lHc) obtained by the present invention is also due to the presence of La and C in a certain ratio in the R2F.14B crystal. Ll like this
It has not been elucidated how C and C affect the crystal structure. Elucidation of its crystallographic mechanism will have to wait for future research.

以下、単ロールを用いた液体急冷法によ)製造した本発
明の永久磁石の実施例を説明する。
Examples of permanent magnets of the present invention manufactured by a liquid quenching method using a single roll will be described below.

なお1本発明に係る永久磁石は、液体急冷法のほかに、
液体急冷一時効法および焼結法によシ製造することがで
きる。これらの方法について述べると、液体急冷一時効
法は、熱処理によって保磁力(IHc )を高める方法
であシ、焼結法は所定組成の粉末を900〜1150℃
で焼結することによシ任意の形状の永久磁石を製造する
方法である。
In addition to the liquid quenching method, the permanent magnet according to the present invention can be produced by
It can be manufactured by a liquid quenching temporary effect method and a sintering method. Regarding these methods, the liquid quenching temporary effect method is a method to increase coercive force (IHc) by heat treatment, and the sintering method is a method in which powder of a predetermined composition is heated at 900 to 1150°C.
This is a method of manufacturing permanent magnets of any shape by sintering them.

さらに、粉末結合法は、液体急冷法によシ得たリボンま
たは粉末を必要ならばさらに時効処理および粉砕した後
に、樹脂等で結合してボンディッド磁石とする方法であ
る。
Furthermore, the powder bonding method is a method in which the ribbon or powder obtained by the liquid quenching method is further subjected to aging treatment and pulverization if necessary, and then bonded with a resin or the like to form a bonded magnet.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

第1表に組成を示すインゴットを溶解法により製造し、
インゴットを小片に砕き、これを片ロールを用いた液体
急冷法によりロールの表面速度を変化させてリボン状の
試料を製造した。保磁力(iHc)が最大となるロール
の表面速度において得られた試料の保磁力を次表に示す
An ingot whose composition is shown in Table 1 is produced by a melting method,
The ingot was broken into small pieces, and ribbon-shaped samples were produced by liquid quenching using a single roll and varying the surface speed of the roll. The following table shows the coercive force of the sample obtained at the surface speed of the roll where the coercive force (iHc) is maximum.

以下ぐZ臼 (発明の効果) 本発明に係る永久磁石は極めて安価であシまだ保磁力(
iHc )は満足すべき高い値を有するために各種用途
に使用されることが期待される。
The following Z-mill (effects of the invention) The permanent magnet according to the present invention is extremely inexpensive and has a coercive force (
iHc) has a satisfactorily high value and is therefore expected to be used in various applications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はFs 77 (Lm 1−、Co x) 17
B6のX値と保磁力(lHe)の関係を示すグラフ、 第2図はRO,135(”0.9358G、065 )
0.1365の減磁界曲線、 第3図および第4図はF・75M15B1゜および20
78M17BSの単冷却ロールの周速(V)と保磁力(
iHc )の関係を示すグ″y7である。
Figure 1 shows Fs 77 (Lm 1-, Cox) 17
A graph showing the relationship between B6's X value and coercive force (lHe), Figure 2 is RO, 135 ("0.9358G, 065)"
0.1365 demagnetizing field curves, Figures 3 and 4 are for F.75M15B1° and 20
Circumferential speed (V) and coercive force (of 78M17BS single cooling roll)
This is a graph ``y7'' showing the relationship between iHc).

Claims (1)

【特許請求の範囲】 1、(Ce_xLa_1_−_x)_z(Fe_1_−
_vB_v)_1_−_z、−但し、0.4≦x≦0.
9、 0.05≦z≦0.3、 0.01≦v≦0.3、−なる組成を有し、4kOe以
上の保磁力(iHc)を有することを特徴とする永久磁
石。 2、〔(Ce_xLa_1_−_x)_yR_1_−_
y〕_z(Fe_1_−_vB_v)_1_−_z、−
但し、RはCe、La以外の少なくとも1種の希土類金
属(Yを含む) 0.4≦x≦0.9、 0.2<y<1.0、 0.05≦z≦0.3、 0.01≦v≦0.3−なる組成を有し、 4kOe以上の保磁力(iHc)を有することを特徴と
する永久磁石。
[Claims] 1, (Ce_xLa_1_-_x)_z(Fe_1_-
_vB_v)_1_-_z, -However, 0.4≦x≦0.
9. A permanent magnet having a composition of -0.05≦z≦0.3, 0.01≦v≦0.3, and having a coercive force (iHc) of 4 kOe or more. 2, [(Ce_xLa_1_-_x)_yR_1_-_
y]_z(Fe_1_-_vB_v)_1_-_z, -
However, R is at least one rare earth metal other than Ce and La (including Y) 0.4≦x≦0.9, 0.2<y<1.0, 0.05≦z≦0.3, A permanent magnet having a composition of 0.01≦v≦0.3 and having a coercive force (iHc) of 4 kOe or more.
JP59280125A 1984-12-31 1984-12-31 permanent magnet Expired - Fee Related JPH0630295B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59280125A JPH0630295B2 (en) 1984-12-31 1984-12-31 permanent magnet
US06/814,183 US4765848A (en) 1984-12-31 1985-12-27 Permanent magnent and method for producing same
DE8585309532T DE3582048D1 (en) 1984-12-31 1985-12-30 PERMANENT MAGNET AND METHOD FOR THE PRODUCTION THEREOF.
EP85309532A EP0187538B1 (en) 1984-12-31 1985-12-30 Permanent magnet and method for producing same
US07/572,568 USRE34838E (en) 1984-12-31 1990-08-23 Permanent magnet and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59280125A JPH0630295B2 (en) 1984-12-31 1984-12-31 permanent magnet

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP60205005A Division JPS61159710A (en) 1984-12-31 1985-09-17 Permanent magnet
JP60205006A Division JP2513994B2 (en) 1984-12-31 1985-09-17 permanent magnet
JP60205004A Division JPH0624163B2 (en) 1984-12-31 1985-09-17 permanent magnet

Publications (2)

Publication Number Publication Date
JPS61159708A true JPS61159708A (en) 1986-07-19
JPH0630295B2 JPH0630295B2 (en) 1994-04-20

Family

ID=17620681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59280125A Expired - Fee Related JPH0630295B2 (en) 1984-12-31 1984-12-31 permanent magnet

Country Status (1)

Country Link
JP (1) JPH0630295B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100155A (en) * 1986-10-10 1988-05-02 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Magnetic material consisting of iron, boron and rare earth metal and its production
JP2018082177A (en) * 2016-11-17 2018-05-24 トヨタ自動車株式会社 Rare earth magnet
JP2018110208A (en) * 2016-12-28 2018-07-12 トヨタ自動車株式会社 Rare earth magnet and manufacturing method of the same
US10892076B2 (en) 2016-12-28 2021-01-12 Toyota Jidosha Kabushiki Kaisha Rare earth magnet and method of producing the same
EP3919644A1 (en) 2020-06-01 2021-12-08 Toyota Jidosha Kabushiki Kaisha Rare earth magnet and production method thereof
EP3989244A1 (en) 2020-10-22 2022-04-27 Toyota Jidosha Kabushiki Kaisha Rare earth magnet and method for producing thereof
JP2023129176A (en) * 2022-03-02 2023-09-14 浙江大学 Method of increasing corrosion resistance of highly concentrated rare earth permanent magnet by high-temperature oxidation treatment
US11996219B2 (en) 2020-09-25 2024-05-28 Toyota Jidosha Kabushiki Kaisha Magnetic material and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210125316A (en) 2020-04-08 2021-10-18 현대자동차주식회사 Rare-earth permanent magnet and method for manufacturing the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123853A (en) * 1982-01-18 1983-07-23 Fujitsu Ltd Rare earth metal-iron type permanent magnet and its manufacture
JPS5946008A (en) * 1982-08-21 1984-03-15 Sumitomo Special Metals Co Ltd Permanent magnet
JPS5964733A (en) * 1982-09-27 1984-04-12 Sumitomo Special Metals Co Ltd Permanent magnet
JPS5964739A (en) * 1982-09-03 1984-04-12 ゼネラルモーターズコーポレーション High energy rare earth metal-transition metal magnetic alloy
JPS5976856A (en) * 1982-10-22 1984-05-02 Fujitsu Ltd Permanent magnet material and its manufacture
JPS59211549A (en) * 1983-05-09 1984-11-30 ゼネラル・モ−タ−ズ・コ−ポレ−シヨン Adhered rare earth element-iron magnet
JPS60145357A (en) * 1984-01-09 1985-07-31 コルモーゲン コーポレイション Magnetic alloy consisting of light rare earth elements, ironand boron with improved efficiency
JPS60221550A (en) * 1984-04-18 1985-11-06 Seiko Epson Corp Rare earth permanent magnet
JPS60238448A (en) * 1984-05-14 1985-11-27 Seiko Epson Corp Permanent magnet containing rare earth element
JPS6180805A (en) * 1984-09-27 1986-04-24 Daido Steel Co Ltd Permanent magnet material

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123853A (en) * 1982-01-18 1983-07-23 Fujitsu Ltd Rare earth metal-iron type permanent magnet and its manufacture
JPS5946008A (en) * 1982-08-21 1984-03-15 Sumitomo Special Metals Co Ltd Permanent magnet
JPS5964739A (en) * 1982-09-03 1984-04-12 ゼネラルモーターズコーポレーション High energy rare earth metal-transition metal magnetic alloy
JPS5964733A (en) * 1982-09-27 1984-04-12 Sumitomo Special Metals Co Ltd Permanent magnet
JPS5976856A (en) * 1982-10-22 1984-05-02 Fujitsu Ltd Permanent magnet material and its manufacture
JPS59211549A (en) * 1983-05-09 1984-11-30 ゼネラル・モ−タ−ズ・コ−ポレ−シヨン Adhered rare earth element-iron magnet
JPS60145357A (en) * 1984-01-09 1985-07-31 コルモーゲン コーポレイション Magnetic alloy consisting of light rare earth elements, ironand boron with improved efficiency
JPS60221550A (en) * 1984-04-18 1985-11-06 Seiko Epson Corp Rare earth permanent magnet
JPS60238448A (en) * 1984-05-14 1985-11-27 Seiko Epson Corp Permanent magnet containing rare earth element
JPS6180805A (en) * 1984-09-27 1986-04-24 Daido Steel Co Ltd Permanent magnet material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100155A (en) * 1986-10-10 1988-05-02 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Magnetic material consisting of iron, boron and rare earth metal and its production
JP2018082177A (en) * 2016-11-17 2018-05-24 トヨタ自動車株式会社 Rare earth magnet
JP2018110208A (en) * 2016-12-28 2018-07-12 トヨタ自動車株式会社 Rare earth magnet and manufacturing method of the same
JP2020202383A (en) * 2016-12-28 2020-12-17 トヨタ自動車株式会社 Rare earth magnet and manufacturing method of the same
US10892076B2 (en) 2016-12-28 2021-01-12 Toyota Jidosha Kabushiki Kaisha Rare earth magnet and method of producing the same
EP3919644A1 (en) 2020-06-01 2021-12-08 Toyota Jidosha Kabushiki Kaisha Rare earth magnet and production method thereof
US11996219B2 (en) 2020-09-25 2024-05-28 Toyota Jidosha Kabushiki Kaisha Magnetic material and manufacturing method thereof
EP3989244A1 (en) 2020-10-22 2022-04-27 Toyota Jidosha Kabushiki Kaisha Rare earth magnet and method for producing thereof
JP2023129176A (en) * 2022-03-02 2023-09-14 浙江大学 Method of increasing corrosion resistance of highly concentrated rare earth permanent magnet by high-temperature oxidation treatment

Also Published As

Publication number Publication date
JPH0630295B2 (en) 1994-04-20

Similar Documents

Publication Publication Date Title
EP0197712A1 (en) Rare earth-iron-boron-based permanent magnet
JPH0510806B2 (en)
JPH0510807B2 (en)
JPS62192566A (en) Permanent magnet material and its production
JPH0319296B2 (en)
JP2513994B2 (en) permanent magnet
JP2006100847A (en) R-t-b based rare earth permanent magnet
JPS61159708A (en) Permanent magnet
JP3762912B2 (en) R-T-B rare earth permanent magnet
JPH0616445B2 (en) Permanent magnet material and manufacturing method thereof
JPS63313807A (en) Of highly efficient permanent magnet with high-anticorrosivity, and manufacture thereof
JPH0561345B2 (en)
JPH0624163B2 (en) permanent magnet
JPH068488B2 (en) Permanent magnet alloy
JPS62281403A (en) Permanent magnet
JPH03170643A (en) Alloy for permanent magnet
JPH0536494B2 (en)
JPH0560241B2 (en)
JPS62257704A (en) Permanent magnet
JPS61159710A (en) Permanent magnet
JPH02201902A (en) Permanent magnet
JPH0633444B2 (en) Permanent magnet alloy
JPH089752B2 (en) Method for manufacturing R1R2FeCoB-based permanent magnet
JPH1088295A (en) Alloy for rare earth-iron-boron type bond magnet
JPH01261801A (en) Rare-earth permanent magnet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees