JPS61159251A - Water spray cooling method of lining refractories of tundish - Google Patents

Water spray cooling method of lining refractories of tundish

Info

Publication number
JPS61159251A
JPS61159251A JP66385A JP66385A JPS61159251A JP S61159251 A JPS61159251 A JP S61159251A JP 66385 A JP66385 A JP 66385A JP 66385 A JP66385 A JP 66385A JP S61159251 A JPS61159251 A JP S61159251A
Authority
JP
Japan
Prior art keywords
tundish
cooling
water
lining
lining refractories
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP66385A
Other languages
Japanese (ja)
Other versions
JPS6358667B2 (en
Inventor
Hirotomo Hosokawa
細川 洋知
Masaki Nakamura
正樹 中村
Masami Niimori
新森 正己
Noritaka Matsubara
松原 宣隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IRIE KOSAN KK
Nippon Steel Corp
Original Assignee
IRIE KOSAN KK
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IRIE KOSAN KK, Nippon Steel Corp filed Critical IRIE KOSAN KK
Priority to JP66385A priority Critical patent/JPS61159251A/en
Publication of JPS61159251A publication Critical patent/JPS61159251A/en
Publication of JPS6358667B2 publication Critical patent/JPS6358667B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/02Linings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

PURPOSE:To cool uniformly and efficiently the surface of a tundish in a service stage for the tundish by adding water drop groups of the determined grain size and flow rate to air flow of a prescribed flow rate and spraying the same to the surface of the lining refractories of the tundish. CONSTITUTION:A machine frame 3 mounted with an axial flow fan 2 is installed to the center at the aperture of the tundish 1 and air is blown into the tundish 1 at 100-1,000m<3> per minute. The water drops having 20-300mum mist diameter are at the same time added into the above-mentioned air flow from spray nozzles 5 at a flow rate of 0.5-3.5l per minute and are sprayed to the surface 6' of the lining refractories 6 by which said surface is cooled. The surface of the tundish is thus uniformly and efficiently cooled and the exfoliation of the lining refractories is prevented.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は連続鋳造法において使用されたタンディツシュ
の内張り耐火物の冷却方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method for cooling a refractory lining of a tundish used in a continuous casting method.

「従来の技術」 従来、タンディツシュの整備に先立つ冷却は、例えば鉄
鋼便覧(昭和54年10月15日丸善発行第■巻798
頁左欄下から17行に記載があるように多量の水による
急冷処理が行なわれていた。
"Conventional technology" Conventionally, cooling prior to maintenance of tanditshu was performed, for example, in the Steel Handbook (Vol. 798, published by Maruzen, October 15, 1978).
As stated in the 17th line from the bottom of the left column of the page, quenching treatment using a large amount of water was performed.

「発明が解決しようとする問題点」 従来の方法は水をかけて耐火物表面を急冷するのでコー
テイング材のけつり除去後の母材の冷却状態は不均一と
なり、このために母材に層状剥離が生じてタンディツシ
ュは短寿命となると共に多量の水蒸気を発生して作業環
境上に間頒があった。
``Problems to be solved by the invention'' In the conventional method, the surface of the refractory is rapidly cooled by spraying water, so the cooling state of the base material after the coating material is removed is uneven, and this results in layer formation on the base material. Peeling occurred, shortening the lifespan of the tanditshu, and generating a large amount of water vapor, which caused problems in the working environment.

「問題点を解決するための手段」 本発明は高温物の噴霧冷却を行う場合、第4図、第5図
から望ましい範囲を得る適当な水量と粒径と搬送気体量
とを選定すれば微細な霧滴が核沸騰し、この核沸騰によ
り高温物に当る前に蒸発する現象に着目したものであっ
て、上記問題点を解決するために次のように構成されて
いる。即ち連続鋳造法で使用されたタンディツシュの整
備工程において、タンディツシュの内張り耐火物を冷却
する際、霧滴径20〜300 /ltf+の微小な水滴
群の水量0.5〜3.5l/分をタンディツシュ内部へ
の1OO〜tooom、”分の気流に添加してタンディ
ツシュ内張り耐火物表面を冷却することを特徴とするタ
ンディツシュ内張り耐火物の噴霧散水冷却方法にある。
``Means for Solving the Problems'' The present invention provides that when performing spray cooling of high-temperature materials, by selecting an appropriate amount of water, particle size, and amount of carrier gas to obtain the desired range from FIGS. 4 and 5, fine particles can be obtained. This method focuses on the phenomenon in which mist droplets undergo nucleate boiling and evaporate before hitting a high-temperature object due to this nucleate boiling, and is constructed as follows to solve the above problems. That is, in the maintenance process of a tundish used in the continuous casting method, when cooling the refractory lining of the tundish, a water volume of 0.5 to 3.5 l/min of minute water droplets with a diameter of 20 to 300/ltf+ is poured into the tundish. There is a method for cooling a tundish lining refractory by spraying water, which is characterized in that the surface of the tundish lining refractory is cooled by adding water to an air flow of 100 to 100,000 minutes into the interior.

1作用」 連続鋳造に使用される溶鋼を受けるタンディツシュは使
用後内面の手入れを行なうが使用直後は高’1M < 
300〜400°C)である。従ってタンディツシュ内
部に本発明者等の知見にもとすく上述の量の気流を送風
し、同気流内に上述の微小水滴群を添加すると同タンデ
ィツシュの内張り耐火物表面の温度は時間の経過に伴っ
て均等かつ円滑に下降する。これは上記微小水滴がそれ
ぞれ核沸騰し、上記表面に当る前に蒸発し、この蒸発時
にタンディツシュ内張りの熱を均等に吸収しこれを送風
によって持ち来る現象によるものであって上記表面温度
の円滑な下降は迅速かつ全面的に行なわれる。
1 action'' The inner surface of the tanditsh that receives molten steel used in continuous casting is cleaned after use, but immediately after use the tanditsu receives molten steel.
300-400°C). Therefore, when the above-mentioned amount of airflow is blown inside the tundish based on the knowledge of the present inventors, and the above-mentioned microscopic water droplets are added to the airflow, the temperature of the surface of the refractory lining of the tundish changes over time. descend evenly and smoothly. This is due to the phenomenon that each of the minute water droplets undergo nucleate boiling and evaporate before hitting the surface, and at the time of this evaporation, they evenly absorb the heat of the tundish lining and carry it away with air. The descent is rapid and complete.

[実施例J 連続鋳造法で使用されたタンディツシュ1(内張り耐火
物表面温度300〜400’C)の開口部中央部に軸流
用に機2を装着した機枠3を架設し、これを回転させる
ことによって第2図矢印方向の送風を行いその送風せけ
100〜I G (l Om”7分である。この状態に
おいて第1図仮想線位置にある送水管4.4を同図実線
位置に回動し送水してその先端の噴霧ノズル5(フォグ
ジェットノズル)から霧滴径20〜30011mの水滴
群0.5〜3.577分(第4図)を噴出すると同水滴
群は第2図矢印方向の送風に伴って移行し加熱されて微
細水滴は核沸騰し、内張り耐火物6の表面6′に当る前
に蒸発し一定時間冷却時の耐火物内部温度勾配tz(第
7図)に沿って同表面は冷却する。即ち噴霧冷却の場合
(tzの場合)け風冷の場合(1+の場合)や水冷の場
合(taの場合)と異り、霧滴を微小化することによっ
て耐火物表面6′を濡らさないために同表面6′に不均
一な急冷部を発生させず、送風に乗せて蒸気を除去する
ため作業環境における蒸  □気対流がなく、連続噴霧
が可能となり冷却時間が短縮され注水急冷に近い抜熱能
力を示す。第8図は本発明の噴霧冷却(上記t2の場合
)の比較例の一例で耐火物表面6′は徐冷され、水冷の
場合(第10図の場合)のような急冷・急熱は発生しな
い。
[Example J A machine frame 3 equipped with a machine 2 for axial flow is installed in the center of the opening of a tundish 1 (lined refractory surface temperature 300 to 400'C) used in the continuous casting method, and is rotated. As a result, air is blown in the direction of the arrow in Figure 2, and the air flow is 100~I G (l Om'' 7 minutes.In this state, the water pipe 4.4 located at the phantom line in Figure 1 is moved to the solid line position in the same figure. When it rotates and sends water, a group of water droplets of 0.5 to 3.577 minutes (Fig. 4) with a diameter of 20 to 30011 m is ejected from the spray nozzle 5 (fog jet nozzle) at the tip, and the group of water droplets is shown in Fig. 2. As the air is blown in the direction of the arrow, the fine water droplets move and are heated, resulting in nucleate boiling, and evaporate before hitting the surface 6' of the lining refractory 6, resulting in a temperature gradient tz inside the refractory during cooling for a certain period of time (Fig. 7). In other words, in the case of spray cooling (in the case of tz), unlike in the case of air cooling (in the case of 1+) or in the case of water cooling (in the case of ta), fire resistance is improved by making the mist droplets smaller. Since the object surface 6' is not wetted, uneven rapid cooling is not generated on the same surface 6', and the steam is removed by the air blast, so there is no steam convection in the work environment, and continuous spraying is possible, reducing the cooling time. Figure 8 shows an example of a comparative example of the spray cooling of the present invention (in the case of t2 above), in which the refractory surface 6' is slowly cooled, and in the case of water cooling (in the case of water cooling (t2)). Rapid cooling or rapid heating as in the case shown in the figure does not occur.

但し霧滴径e流量が本発明が限定する範囲外であるため
耐火物表(1i6’を濡らさないように噴霧を断続的に
行ったものである。第3図は本発明の噴霧冷却(t工の
場合)の最適な例で霧滴径、流量、ノズル位置が本発明
が定める範囲内で実施され、連続噴霧によって・徐冷さ
れ300〜100℃冷却時間は180分であって第9図
に示す風冷のみの場合の260〜90°C冷却時間の2
40分と比較してきわめて短時間に徐冷されることがわ
かる。第7図中7で示すものは水滴、第6図中8け鉄皮
であるO この実施例の場合霧滴径20〜300μm1流量は0.
1〜3.517分であることは上述のとおりであり、ノ
ズル5の位置けL=1000〜30 f) 0鰭、H=
O〜800間であった(第2図)。第1図、第2図にノ
ズル位置設定の状態を示しタンディツシュ1内部は軸流
扇風機2により風冷されているためノズル5奈同扇風機
2に近づけると霧滴はタンディツシュ1の中央部で冷却
に供され炉材全体を一様に冷却することはできない。又
ノズル5を扇風機2から離し過ぎると霧滴の一部はタン
ティッシュlから外へ向う風のためタンディツシュ1内
に入らず有効な冷却ができない。よってタンディツシュ
1の内張り耐火物を噴霧により均等に冷却するためには
扇風機2のつくる空気流に適したノズル位ifL、Hを
設定する(:とが望ましい。
However, since the mist droplet diameter e flow rate is outside the range defined by the present invention, spraying was carried out intermittently so as not to wet the refractory table (1i6'). Figure 3 shows the spray cooling (t In the most suitable example, the droplet diameter, flow rate, and nozzle position are within the range specified by the present invention, and the cooling time is 180 minutes at 300-100°C by continuous spraying, and the cooling time is 180 minutes. 2 of the cooling time of 260 to 90°C using only air cooling as shown in
It can be seen that slow cooling is performed in an extremely short time compared to 40 minutes. What is shown by 7 in FIG. 7 is a water droplet, and what is shown by 8 in FIG. 6 is an iron shell.
As mentioned above, the time is 1 to 3.517 minutes, and the position of nozzle 5 L = 1000 to 30 f) 0 fin, H =
It was between 0 and 800 (Figure 2). Figures 1 and 2 show the state of the nozzle position settings.The inside of the tundish 1 is cooled by the axial fan 2, so when the nozzle 5 is brought close to the fan 2, the mist droplets are cooled in the center of the tundish 1. It is not possible to uniformly cool the entire furnace material. Furthermore, if the nozzle 5 is placed too far away from the electric fan 2, some of the mist droplets will not enter the tongue tissue 1 due to the wind blowing outward from the tongue tissue 1, making it impossible to achieve effective cooling. Therefore, in order to uniformly cool the refractory lining of the tundish 1 by spraying, the nozzle positions ifL and H are preferably set to suit the air flow generated by the electric fan 2.

上記実施例の結果を従来例と併記して第1表に示す。The results of the above embodiment are shown in Table 1 together with the conventional example.

hけ熱伝達率、TDはタンディツシュ。h is the heat transfer coefficient, TD is tanditshu.

「効果」 本発明は水量と粒径と搬送気体量を限定したのでタンデ
ィツシュの整備に先立つ内面冷却に際し、少ない冷却用
水量でタンディツシュ内張り表面を濡らすことなく冷却
することを口■能とし、これによってタンディツシュ内
張りを均等かつ効率よく冷却し得て母材の層状剥離を防
止し耐用命数を格段に向上すると共に排気機能も発生水
蒸気量が少いことから小形化でき、しかも作業環境を大
巾に改善することができる等産業上もたらす効果は大き
い。
``Effects'' The present invention limits the amount of water, particle size, and amount of carrier gas, so when cooling the inner surface of the tundish prior to maintenance, it is possible to cool the tundish lining surface with a small amount of cooling water without wetting it. It can evenly and efficiently cool the lining of the tundish, preventing delamination of the base material and significantly increasing the service life.The exhaust function can also be made smaller because it generates less water vapor, and the work environment has been greatly improved. It has great industrial effects, such as the ability to

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のタンディツシュ内張り耐火物の噴霧散
水冷却方法の実施状態を示す斜視図、第2図は上記方法
の説明図であって第1図A−A線による縦断面図、第3
図は本発明方法による炉材表面温度推移図、第4図は霧
滴径・水量による濡れ曲線図、第5図は霧滴径・冷却時
間曲線図、第6図はタンディツシュの縦断面図、第7図
は耐火物内部温度勾配図、第8図は本発明の比較例によ
る炉材表面温度推移図、第9図は風冷の場合の炉材表面
温度推移図、第10図は多量の水をかける場合の炉材表
面温度推移図である。 ■・・タンディツシュ、6・・内rjk−り耐火物。
Fig. 1 is a perspective view showing the implementation state of the spray cooling method for lining refractories of a tundish according to the present invention, Fig. 2 is an explanatory view of the above method, and Fig.
Figure 4 is a diagram of the furnace material surface temperature transition according to the method of the present invention, Figure 4 is a wetting curve diagram based on the diameter of the mist droplet and water amount, Figure 5 is a diagram of the diameter of the spray droplet and the cooling time curve, and Figure 6 is a longitudinal cross-sectional view of the tundish. Fig. 7 is a diagram of the temperature gradient inside the refractory, Fig. 8 is a diagram of the temperature change on the surface of the furnace material according to a comparative example of the present invention, Fig. 9 is a diagram of the temperature change on the surface of the furnace material in the case of wind cooling, and Fig. 10 is a diagram of the temperature gradient on the surface of the furnace material according to a comparative example of the present invention. FIG. 3 is a diagram of the temperature transition on the surface of the furnace material when water is poured on the furnace material. ■... Tanditshu, 6... Inner rjk-ri refractory.

Claims (1)

【特許請求の範囲】[Claims] (1)連続鋳造法で使用されたタンディッシュの整備工
程において、タンディッシュの内張り耐火物を冷却する
際、霧滴径20〜300μmの微小な水滴群の水量0.
5〜3.5l/分をタンディッシュ内部への100〜1
000m^3/分の気流に添加してタンディッシュ内張
り耐火物表面を冷却することを特徴とするタンディッシ
ュ内張り耐火物の噴霧散水冷却方法。
(1) In the maintenance process of a tundish used in the continuous casting method, when cooling the refractory lining of the tundish, the amount of water in a group of minute water droplets with a diameter of 20 to 300 μm is 0.
5-3.5 l/min into the tundish 100-1
A method for cooling a tundish lining refractory by spraying water, which comprises adding water to an air flow of 000 m^3/min to cool the surface of the tundish lining refractory.
JP66385A 1985-01-07 1985-01-07 Water spray cooling method of lining refractories of tundish Granted JPS61159251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP66385A JPS61159251A (en) 1985-01-07 1985-01-07 Water spray cooling method of lining refractories of tundish

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP66385A JPS61159251A (en) 1985-01-07 1985-01-07 Water spray cooling method of lining refractories of tundish

Publications (2)

Publication Number Publication Date
JPS61159251A true JPS61159251A (en) 1986-07-18
JPS6358667B2 JPS6358667B2 (en) 1988-11-16

Family

ID=11479964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP66385A Granted JPS61159251A (en) 1985-01-07 1985-01-07 Water spray cooling method of lining refractories of tundish

Country Status (1)

Country Link
JP (1) JPS61159251A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2699440A1 (en) * 1992-12-21 1994-06-24 Lorraine Laminage The evaporative cooling of metallurgical vessels
KR100706590B1 (en) * 2006-06-02 2007-04-13 제이에프이 스틸 가부시키가이샤 Method and spray nozzle for cooling refractories of refractory structures
JP2007111723A (en) * 2005-10-19 2007-05-10 Nippon Steel Corp Method and apparatus for maintenance of tundish

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2699440A1 (en) * 1992-12-21 1994-06-24 Lorraine Laminage The evaporative cooling of metallurgical vessels
JP2007111723A (en) * 2005-10-19 2007-05-10 Nippon Steel Corp Method and apparatus for maintenance of tundish
JP4712513B2 (en) * 2005-10-19 2011-06-29 新日本製鐵株式会社 Tundish maintenance equipment
KR100706590B1 (en) * 2006-06-02 2007-04-13 제이에프이 스틸 가부시키가이샤 Method and spray nozzle for cooling refractories of refractory structures

Also Published As

Publication number Publication date
JPS6358667B2 (en) 1988-11-16

Similar Documents

Publication Publication Date Title
JPH0791571B2 (en) Method for producing titanium particles
US8249439B2 (en) High-pressure gas heating device
CN109808049A (en) A kind of method that high-temperature gas aerosolization prepares spherical powder
JP5391210B2 (en) Anode casting method and apparatus
AU635353B2 (en) Cooling of cast billets
JP3065305B2 (en) Method of manufacturing large-diameter spray-molded article using auxiliary heating and apparatus used for the method
JPH03177508A (en) Device and method for pulverizing titanium material
KR101123547B1 (en) Method for treating high-temperature waste gas
US3182361A (en) Spraying apparatus and method
CN108436095A (en) A method of preparing metal powder using high-temperature evaporation, spheroidization processing
JPS61159251A (en) Water spray cooling method of lining refractories of tundish
CN103074563B (en) A kind of Y2O3The improved method of resistant to corrosion ceramic coating
WO2009153865A1 (en) Micropowder producing apparatus and process
JPH0968390A (en) Device and method for cooling sintered ore
JP6644070B2 (en) Thermal spraying method integrating selective removal of particles
US4217082A (en) Spin cup means for the production of metal powder
JPS58202062A (en) Thermal spray method and apparatus
JPS6227507A (en) Method for cooling metallic powder
CN106011716B (en) A kind of W-WSi2Functionally graded material and preparation method thereof
CN106735278B (en) A kind of atomization preparing apparatus of TiAl powder
USRE23538E (en) Process and apparatus for manufac
JPS6357755A (en) Ni-base alloy powder for thermal spraying and its production
CN109175284A (en) A kind of efficient, energy-efficient continuous casting secondary cooling method
SU924167A1 (en) Method for producing porous coatings
JPS63312961A (en) Formation of corrosion protective film for cast-iron pipe