JPS61155932A - Detection of gas leakage source - Google Patents

Detection of gas leakage source

Info

Publication number
JPS61155932A
JPS61155932A JP27871584A JP27871584A JPS61155932A JP S61155932 A JPS61155932 A JP S61155932A JP 27871584 A JP27871584 A JP 27871584A JP 27871584 A JP27871584 A JP 27871584A JP S61155932 A JPS61155932 A JP S61155932A
Authority
JP
Japan
Prior art keywords
gas
points
gas concentration
leak source
concn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27871584A
Other languages
Japanese (ja)
Other versions
JPH0240967B2 (en
Inventor
Katsutomo Hanakuma
花熊 克友
Kenichi Moritomo
守友 健一
Hiromitsu Yamaguchi
博光 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP27871584A priority Critical patent/JPH0240967B2/en
Publication of JPS61155932A publication Critical patent/JPS61155932A/en
Publication of JPH0240967B2 publication Critical patent/JPH0240967B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

PURPOSE:To rapidly and accurately detect a leakage source, by specifying three points in order of higher concn. from gas concn. data at three or more points and estimating the leakage source from the relation between gas concns. at said points and the attenuation in gas concn. corresponding to the distance from the leakage source. CONSTITUTION:When wind velocity is 2m/s or less, three points P1, P2, P3 are specified in order of higher concn. from gas concn. data at three or more points and said concn. are set to C1, C2, C2. An imaginary leakage source Q1 is calculated on the line connecting the max. concn. point P1 and the point P2 according to X1:(L1-X1)=(CB2:CB1(wherein B is a concn. attenuation constant). In the same way, an imaginary leakage source Q2 is calculated on the line connecting the points P1, P3 and the intersecting point of a straight ling A, B crossing the straight line passing the leakage sources Q1, Q2 and connecting the points P1-P3 is estimated as a gad leakage source Q. When wind velocity is 2m/s or more, the position of the gas leakage source Q is estimated from the distance L of a max. concn. region A2 and a second concn. region A1, the concn. of the max. concn. region-C2 and the concn. of a third concn. region A3-C3 according to one of X:L=CB2:CB3 or X:(L+X)=CB2:CB3.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ガス漏洩源の検知方法に係L、特に化学プラ
ント施設等において危険性ガスが漏洩した場合に、その
漏洩源の探索に利用できる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for detecting a gas leak source, and is particularly applicable to searching for the leak source when a hazardous gas leaks from a chemical plant facility, etc. can.

[背景技術とその問題点] 化学プラント施設等では、可燃性ガスや毒性ガス等の危
険性ガスが漏洩した場合、迅速にガス漏洩源を発見して
安全対策を施し、二次災害の発生を未然に防止しなけれ
ばならない。
[Background technology and its problems] When dangerous gases such as flammable gases and toxic gases leak in chemical plant facilities, etc., the source of the gas leakage is quickly discovered and safety measures are taken to prevent secondary disasters from occurring. We must prevent this from happening.

ところが、従来′はガス漏洩源を探索するのに適切な手
段がないため、人間の嗅覚を頼りに探索したL、多人数
によってガス検知を行いながら探索する等していた。
However, in the past, there was no suitable means for searching for the source of a gas leak, so the search was conducted by relying on the human sense of smell, or by a large number of people while detecting the gas.

しかしながら、このような方法はより迅速により適確に
ガス漏洩源を発見しなければならないという要求に対し
ては満足できるものではなかった。
However, such methods have not been able to satisfy the need to more quickly and accurately discover the source of gas leakage.

[発明の目的] ここに、本発明の目的は、上記要求に応え、ガス漏洩源
を迅速かつ適確に検知し得るガス漏洩源の検知方法を提
供することにある。
[Object of the Invention] An object of the present invention is to provide a gas leak source detection method that can quickly and accurately detect the gas leak source in response to the above-mentioned requirements.

[問題点を解決するための手段および作用]そのため、
第1の発明では、無風または無風番こ近い状態における
ガス漏洩源の検知方法であって、漏洩ガスが拡散してい
る区域内において異なる少なくとも3以上の地点におけ
るガス濃度をそれぞれ検出し、これらガス濃度データ群
の中から最もガス濃度が高い3つの地点を特定し、この
最高ガス濃度地点と他の2つの地点との間における仮想
漏洩源をそれぞれ求め、この各仮想漏洩源を通L、かつ
最高ガス濃度地点と他の2つの地点とを結ぶ直線に対し
て直交する垂線が互いに交差する位置を求め、この位置
を漏洩源として推定する。ことを特徴としている。
[Means and actions to solve the problem] Therefore,
The first invention is a method for detecting a gas leak source in a state of no wind or close to no wind, in which the gas concentration at at least three or more different points in an area where leaked gas is diffused is detected, and the gas Identify the three points with the highest gas concentration from the concentration data group, find each virtual leak source between this highest gas concentration point and the other two points, and pass each virtual leak source through L and The positions where perpendicular lines intersecting each other are determined to be perpendicular to the straight line connecting the highest gas concentration point and the other two points, and this position is estimated as the leak source. It is characterized by

また、第2の発明では、風がある状態におけるガス漏洩
源の検知方法であって、漏洩ガスが拡散している区域内
において異なる少なくとも3以上の地点におけるガス濃
度または異なる少なくとも3以上の領域におけるそれぞ
れの平均ガス濃度を検出し、これらガス濃度データ群ま
たは平均ガス濃度データ群の中から最もガス濃度が高い
3つの地点または領域を特定し、この最高ガス濃度地点
または領域と次に高い地点または領域との距離を求め、
この距離をし、第2のガス濃度地点または領域と推定漏
洩源との距離をX、最高ガス濃度地点または領域と第3
のガス濃度地点または領域のガス濃度とをC2)”C3
、’ljB度減衰定数をBとしたとき、 X :  L = C2B: Cg” および X :  (L+X)=C2・: C3aの少なくとも
一方の式から前記距離xを求め、このXから漏洩源を推
定する、ことを特徴としている。
The second invention also provides a method for detecting a gas leak source in the presence of wind, which detects gas concentrations at at least three or more different points within an area where leaked gas is diffused or at least three or more different regions. Detect the respective average gas concentrations, identify the three points or areas with the highest gas concentrations from these gas concentration data groups or average gas concentration data groups, and compare this highest gas concentration point or area with the next highest point or area. Find the distance to the area,
Take this distance, set the distance between the second gas concentration point or area and the estimated leak source by X, and set the distance between the highest gas concentration point or area and the third
The gas concentration at the gas concentration point or area is C2)”C3
, 'ljB degree attenuation constant is B, then calculate the distance x from at least one of the following equations: It is characterized by the fact that it does.

[実施例] まず、第1の発明の検知方法の一実施例を第1図につい
て説明する0本検知方法では、まず、漏洩ガスが拡散し
ている区域Z内において、異なる少なくとも3以上の地
点におけるガス1度をそれぞれ測定する。この場合、ガ
ス濃度測定地点の選択は、予め決められたマトリックス
の各交点位置が好ましいが、任意に選択した複数地点で
もよい。
[Example] First, an example of the detection method of the first invention will be described with reference to FIG. Measure 1 degree of gas at each point. In this case, the selection of gas concentration measurement points is preferably at each intersection of a predetermined matrix, but a plurality of arbitrarily selected points may be used.

続いて、これらガス濃度データ群の中からガス濃度が高
い3つの地点、例えば3つの地点P+。
Next, three points with high gas concentrations are selected from among these gas concentration data groups, for example, three points P+.

P2.PIを特定する0通常、ガス漏洩が無い状態では
各地点のガス濃度はいずれも零かそれに近い値を示す、
しかし、一旦ガスの漏洩が発生した場合、拡散ガス濃度
は漏洩源からの距離をX、6度減衰定数をBとすると、
X−8に比例して減衰するので、各地点におけるガス濃
度は漏洩源に近い程高い値を示す、ちなみに、漏洩ガス
の漏洩量および風速に対する距faxによる濃度減衰定
数Bは次表の通りである。
P2. Identify PI 0 Normally, when there is no gas leak, the gas concentration at each point is zero or close to it.
However, once a gas leak occurs, the concentration of the diffused gas is as follows, where X is the distance from the leak source and B is the 6 degree attenuation constant.
Since it is attenuated in proportion to X-8, the gas concentration at each point shows a higher value as it is closer to the leak source.Incidentally, the concentration attenuation constant B according to the distance fax with respect to the leakage amount and wind speed of the leaked gas is as shown in the following table. be.

いま、気象条件が無風または無風に近い状態、例えば風
速が2 rs/sec未満の状態において、各地点P+
  、P2 、P3で測定されたガス濃度をC+  、
 C2)C3(C+ >C2>C3)とすると、まずこ
れらの地点の中から最もガス濃度が高い地点P+を特定
し、この最高ガス濃度地点P+と他の2つの地点P2.
P3との間における仮想漏洩源Q1 、Q2を求める。
Now, under weather conditions of no wind or near no wind, for example, when the wind speed is less than 2 rs/sec, each point P+
, P2, and P3 as C+,
C2) Assuming that C3 (C+ >C2>C3), first identify the point P+ with the highest gas concentration among these points, and then select this highest gas concentration point P+ and the other two points P2.
Find virtual leakage sources Q1 and Q2 between P3 and P3.

地点21〜22間における仮想漏洩源Q、を求めるには
、地点PI、P2間の距離L−を求め、かつ地点Ptか
ら仮!Am洩源Q1までの距離をXlとして、 XI :  (L+   XI )=C2: C+8・
・・・・・・・(IA) の関係からX−を求める。このようにして仮想漏洩源Q
、を求めた後、この仮想漏洩源Q、を通りかつ地点PI
、P2を結ぶ直線に対して直交する垂線を描く。
To find the virtual leak source Q between points 21 and 22, find the distance L- between the points PI and P2, and then calculate the distance L- from the point Pt. Letting the distance to the Am leakage source Q1 be Xl, XI: (L+XI)=C2: C+8・
...... Find X- from the relationship (IA). In this way, the virtual leakage source Q
, after passing through this virtual leak source Q and point PI
, P2. Draw a perpendicular line perpendicular to the straight line connecting P2.

同様にして、地点21〜23間における仮想漏洩源Q2
を求めるには、地点P+、P3間の距離L2を求め、か
つ地点P1から仮想漏洩源Q2までの距離をx2として
Similarly, a virtual leak source Q2 between points 21 and 23
To find, find the distance L2 between points P+ and P3, and set the distance from point P1 to virtual leak source Q2 as x2.

X2   二  (L2     X2  )   =
C:l   :  C+’・・・・・・・・(IB) の関係からx2を求める。このようにして仮想漏洩源Q
2を求めた後、この仮想漏洩源Q2を通りかつ地点PI
、P3を結ぶ直線に対して直交する垂線を描く。
X2 two (L2 X2) =
Find x2 from the relationship C:l:C+'...(IB). In this way, the virtual leakage source Q
2, pass through this virtual leak source Q2 and point PI
, P3. Draw a perpendicular line perpendicular to the straight line connecting P3.

これによL、雨垂線が交差した位置Qを求め、これを漏
洩源として推定するものである。
From this, the position Q where L and the rain perpendicular intersect is determined, and this is estimated as the leak source.

従って、本検知方法では、漏洩ガスが拡散している区域
内の少なくとも3以上の地点のガス濃度を測定し、かつ
最高ガス濃度地点から他の2地点までの距離を求めれば
、漏洩源を推定できるため、漏洩源の探索を迅速にかつ
容易に行うことができる。
Therefore, in this detection method, the source of the leak can be estimated by measuring the gas concentration at at least three points within the area where the leaked gas is spreading, and by determining the distance from the highest gas concentration point to the other two points. Therefore, the leak source can be searched quickly and easily.

なお、本検知方法では、仮想漏洩源QI 、Q2までの
距# X +  、 X 2を定めるに当って、最高ガ
ス濃度地点P+を基準としたが、基準点は他の2点でも
よい。
In addition, in this detection method, the highest gas concentration point P+ was used as a reference point in determining the distances #X + and X 2 to the virtual leak sources QI and Q2, but other two points may be used as the reference point.

以上説明した検知方法では、無風または無風に近い状態
を前提としているため、風速が所定値、例えば2m1s
ec以上ある状態では正確な漏洩源の探索は困難である
。このような状態下での探索を可能にしたのが第2の発
明である。
The detection method explained above assumes a state of no wind or near no wind, so the wind speed is set to a predetermined value, for example 2m1s.
It is difficult to search for the exact source of leakage in a state where there is more than ec. The second invention makes it possible to search under such conditions.

次に、第2の発明の検知方法の一実施例を第2図につい
て説明する0本検知方法では、漏洩ガスが拡散している
区域内において、異なる少なくとも3以上の領域におけ
る平均ガス濃度を測定する。この場合、予め決められた
マトリックスの各交点位置におけるガス濃度を測定し、
これらの各交点が囲む範囲を1つの領域としてその領域
の平均ガス濃度を算出してもよいが、例えば任意に決め
た3以上の各領域内の1または数地点でガス濃度を測定
し、これらを平均化して各領域の平均ガス濃度を算出し
てもよい。
Next, an embodiment of the detection method of the second invention will be described with reference to FIG. 2. In the zero-line detection method, the average gas concentration in at least three different areas is measured in the area where the leaked gas is diffused. do. In this case, the gas concentration at each intersection point of a predetermined matrix is measured,
The range surrounded by each of these intersection points may be regarded as one region and the average gas concentration in that region may be calculated, but for example, the gas concentration may be measured at one or several points within each of three or more arbitrarily determined regions, and the average gas concentration in that region may be calculated. The average gas concentration in each area may be calculated by averaging the values.

続いて、これら平均ガス濃度データ群の中から平均ガス
濃度が最も高い3つの領域、例えば3つの領域At  
、A2 、A3を特定する。この場合。
Next, from among these average gas concentration data groups, three regions with the highest average gas concentrations, for example, three regions At
, A2, and A3. in this case.

領域AI 、A1では2つの測定地点Pu、PL2)p
al  + PJ2があるため、これらの測定ガス濃度
を平均化して求めるが、領域A2では1・つの測定地点
Par  I、かないため、ここの測定ガス濃度を領域
A2の平均ガス濃度とじている。
In area AI, A1 there are two measurement points Pu, PL2)p
Since there is al + PJ2, these measured gas concentrations are averaged and determined, but since there is only one measurement point Par I in area A2, the measured gas concentration here is combined with the average gas concentration of area A2.

次に、これら3つの領域A+ 、A2 、A3の中から
平均ガス濃度(ここでは、C2> CI> Caとする
。)が最も高い領域A2と次に高い領域A1とを特定す
る。
Next, from among these three regions A+, A2, and A3, a region A2 with the highest average gas concentration (here, C2>CI>Ca) and a region A1 with the next highest average gas concentration are specified.

ここで、最高平均ガス濃度領域A2と次に高い平均ガス
濃度領域A+との距fiLを求め、かつ第2の平均ガス
濃度領域A2から推定漏洩源Q1での距離をXとして、 X  二  L  =C2:   Cal   ”” 
  (2A)の関係から距離Xを求め、このXかも漏洩
源Qを定める。
Here, the distance fiL between the highest average gas concentration area A2 and the next highest average gas concentration area A+ is determined, and the distance from the second average gas concentration area A2 to the estimated leak source Q1 is set as X, X 2 L = C2: Cal “”
The distance X is determined from the relationship (2A), and the leak source Q is also determined from this X.

この場合、例えば風速が高い等の条件下では、−〇−B X :  (L+X)=C2: C3” (2B)の関
係から距#Xを求め、このXから漏洩源Qを定める。
In this case, under conditions such as high wind speed, the distance #X is determined from the relationship -0-BX: (L+X)=C2:C3'' (2B), and the leak source Q is determined from this X.

従って1本検知方法では、少なくとも3以上の領域にお
ける平均ガス濃度を測定し、かつ最高ガス濃度領域から
次に高い平均ガス濃度領域までの距離を求めれば、風速
が所定以上の場合でも、漏洩源を推定できるため、漏洩
源の探索を迅速にかつ容易に行なうことができる。
Therefore, in the single detection method, if you measure the average gas concentration in at least 3 or more areas and find the distance from the highest gas concentration area to the next highest average gas concentration area, even if the wind speed is higher than a specified value, you can detect the source of the leak. Since it is possible to estimate the leakage source, the leak source can be searched for quickly and easily.

なお、本検知方法では、少なくとも3以上の領域におけ
る平均ガス濃度を求めるようにしたが、異なる3つの地
点のガス壊変を測定するようにしてもよい。
In this detection method, the average gas concentration in at least three regions is determined, but gas decay at three different points may be measured.

次に、これらの検知方法によって化学プラント施設にお
けるガス漏洩源の探索を自動的に行う検知シシテムを、
第3図について説明する。同図において、l l I=
 l i nは化学プラント施設内の異なる位置に散在
して設置された複数のガス検知器、12は化学プラント
施設内の風向および風速を計測する風力計で、これらに
よって検知された信号は、A/D変換器13でデジタル
信号に変換された後、インター フェイス回路14を通
じて中央処理装置(以下、CPUという、)15へ取込
まれる。
Next, we will develop a detection system that automatically searches for gas leak sources in chemical plant facilities using these detection methods.
FIG. 3 will be explained. In the same figure, l l I=
l in is a plurality of gas detectors installed at different locations in the chemical plant facility, 12 is an anemometer that measures the wind direction and wind speed in the chemical plant facility, and the signals detected by these are A. After being converted into a digital signal by the /D converter 13, it is taken into the central processing unit (hereinafter referred to as CPU) 15 through the interface circuit 14.

CPUは、キーボード16より入力された各種定数を記
憶装置17へ記憶させた後、前記インターフェイス回路
14を通じて与えられるデータを基に漏洩源を演算し、
その結果をCR7表示装置18およびプリンタ19へ出
力する。
The CPU stores various constants input from the keyboard 16 in the storage device 17, and then calculates the source of leakage based on the data given through the interface circuit 14.
The results are output to the CR7 display device 18 and printer 19.

即ち、第4図のフローチャートに示す如く、所定サンプ
ル間隔毎に風力計12からの風速および風向データ、ガ
ス検知器11+〜Llnからのガス濃度データを取込み
、続いてこれらを平均化処理した後、風速が2■/se
c未満であるか否かを判断する。ここで、風速が21t
r/sec未満の場合には、漏洩源推測処理(I)の手
法(前詰第1図で述べた検知方法と同様であるが、具体
的には第5図のフローチャート参照)により漏洩源を推
測した後、それをCR7表示装置18またはプリンタ1
9へ出力させる。また、風速が2 ts/sec以上の
場合には、漏洩源推測処理(II)の手法(前記第2図
で述べた検知方法と同様であるが、具体的には第6図の
フローチャート参照)により漏洩源を推測した後、それ
をCR7表示装置18またはプリンタ19へ出力させる
That is, as shown in the flowchart of FIG. 4, wind speed and direction data from the anemometer 12 and gas concentration data from the gas detectors 11+ to Lln are acquired at predetermined sampling intervals, and then these are averaged. Wind speed is 2■/se
It is determined whether the value is less than c. Here, the wind speed is 21t
If it is less than r/sec, the leak source is detected using the leak source estimation process (I) method (same as the detection method described in Figure 1, but specifically refer to the flowchart in Figure 5). After guessing, display it on the CR7 display device 18 or printer 1.
Output to 9. In addition, if the wind speed is 2 ts/sec or more, the leak source estimation process (II) method (same as the detection method described in Figure 2 above, but specifically refer to the flowchart in Figure 6) After estimating the leak source, the leak source is output to the CR7 display device 18 or printer 19.

次に、本システムによって化学プラント施設におけるガ
ス漏洩源を実際に推測した一例について述べる。
Next, we will discuss an example in which the source of a gas leak in a chemical plant facility was actually estimated using this system.

第7図はエチレン製造装置を示している。同図において
、前工程からの原料が流量調整弁21を通って蒸留塔2
2へ供給されている。蒸留塔22の塔頂から抜出された
製品つま・リエチレンは、コンデンサ23を通ってレシ
ーバタンク24へ送られる。レシーバタンク24へ蓄え
られた製品は、リフラックスポンプ25によL、塔頂温
度検出器26からの指令によって開度調整される流量調
整弁27を通って蒸留塔22の頂部へ還流される一方、
タンク24の液面レベル検出器28からの指令によって
開度調整される流量調整弁29を通って貯蔵タンクへ送
られる。また、蒸留塔22の塔底より抜出された副製品
つまりエタンは、リポイラ30、ベーパライザ31およ
びスーパーヒータ32を経た後、革留塔22の液面レベ
ル検出器33によって開度調整される流量調整弁34を
通って排出される。
FIG. 7 shows an ethylene production device. In the same figure, the raw material from the previous process passes through the flow rate regulating valve 21 into the distillation column 2.
2. The product, ethylene, extracted from the top of the distillation column 22 is sent to a receiver tank 24 through a condenser 23. The product stored in the receiver tank 24 is refluxed to the top of the distillation column 22 by a reflux pump 25 and through a flow rate regulating valve 27 whose opening is adjusted according to a command from the top temperature detector 26. ,
The liquid is sent to the storage tank through a flow rate adjustment valve 29 whose opening degree is adjusted according to a command from the liquid level detector 28 of the tank 24. Further, the by-product, that is, ethane extracted from the bottom of the distillation column 22 passes through a repoiler 30, a vaporizer 31, and a super heater 32, and then the flow rate is adjusted by the liquid level detector 33 of the distillation column 22. It is discharged through the regulating valve 34.

いま、図に示すようなエチレン精留塔において、リフラ
ックスポンプ25のメカニカルシール部よL、突然、液
化エチレンガスが漏れ出した。
Now, in the ethylene rectification column shown in the figure, liquefied ethylene gas suddenly leaked from the mechanical seal part of the reflux pump 25.

そのときの気象条件は、風向が東向、風速がlyA/s
ec 、気温が19℃であった。また、漏洩源のりフラ
ックスポンプ25は、吸込圧10 Kg/cm’ G 
The weather conditions at that time were that the wind direction was eastward and the wind speed was lyA/s.
ec, the temperature was 19°C. In addition, the leakage source glue flux pump 25 has a suction pressure of 10 Kg/cm'G
.

吐出圧16 Kg/crn’ Gで、かつ取扱い流体が
液体エチレンであるため、メカニカルシール部より噴出
したエチレンはたちまち蒸発拡散し、漏洩発生から3分
後には第8図に示すように、リフラ・ンクスボンプ25
を中心に西へ20m、東へl1m、南北へ各12mまで
拡がった。
Since the discharge pressure is 16 Kg/crn'G and the fluid being handled is liquid ethylene, the ethylene ejected from the mechanical seal immediately evaporates and diffuses, and 3 minutes after the leak occurs, a reflux occurs as shown in Figure 8. Nx Bomp 25
It spread 20 meters west, 11 meters east, and 12 meters north and south from the center.

漏洩ガスが拡散した区域には、ガス検知器11++、1
l12.lloが配置されておL、それぞれの検出ガス
濃度は次の通りであった。
Gas detectors 11++, 1 are installed in the area where the leaked gas has spread.
l12. llo were arranged, and the respective detected gas concentrations were as follows.

検知器1lI2→25LEL% 検知器flu→32LEL% 検知器11o→49LEL% 本検知システムでは、まず、検知器11u〜11Oおよ
び風力計12によって検知された信号は、A/D変換器
13でデジタル信号に変換された後、インターフェイス
回路14を通じて中央処理装置(以下、CPUという、
)15へ取込まれる。
Detector 1lI2 → 25LEL% Detector flu → 32LEL% Detector 11o → 49LEL% In this detection system, first, the signals detected by the detectors 11u to 11O and the anemometer 12 are converted into digital signals by the A/D converter 13. After being converted into a central processing unit (hereinafter referred to as CPU), the
)15.

CPU15は、これらのデータを平均化処理した後、風
速が2 +o/sec未満であるか否かを判断する。こ
の場合は、風速が2 ra/sec未満であるため、漏
洩源推測処理(1)の手法によって漏洩源を推定する。
After averaging these data, the CPU 15 determines whether the wind speed is less than 2 + o/sec. In this case, since the wind speed is less than 2 ra/sec, the leak source is estimated by the leak source estimation process (1).

漏洩源推測処理(I)では、まず3つの検知器11+t
〜lloで測定されたガス濃度のうち、最高ガス濃度の
地点、つまり検知器11o位置が特定される。
In the leak source estimation process (I), first the three detectors 11+t
Among the gas concentrations measured at ~llo, the point with the highest gas concentration, that is, the position of the detector 11o is specified.

続いて、検知器11o、l11+間における仮想漏洩源
Q、が求められる。ここでは、検知器11゜、 l l
 o間の距離LIが18mであるから、これと検知器1
1σ、 11 uの測定濃度を前記式(1,A)ニ代入
してxIを求メルト、X + = 7−8mが求められ
る。ただし、濃度減衰定数Bは、エチレンの場合0.7
5である。これによL、検知器11oからX+#れた仮
想漏洩源Q+を通L、検知器11++、110間を結ぶ
直線に対して直交する垂線が求められる。
Subsequently, a virtual leakage source Q between the detectors 11o and l11+ is determined. Here, the detector 11°, l l
Since the distance LI between o is 18 m, this and detector 1
The measured concentration of 1σ and 11 u is substituted into the above equation (1, A) to find xI, and X + = 7-8m is obtained. However, the concentration decay constant B is 0.7 in the case of ethylene.
It is 5. As a result, a perpendicular line passing through the virtual leak source Q+ which is X+# from L and the detector 11o and perpendicular to the straight line connecting L and the detectors 11++ and 110 is obtained.

次に、検知器11o、1112間における仮想漏洩源Q
2が求められる。ここでは、検知器11n、1l12間
の距#L2が24mであるから、これと検知器11o、
11t2の測定濃度を前記式(IB)に代入してx2を
求メルト、X 2 = 9 。
Next, a virtual leak source Q between the detectors 11o and 1112
2 is required. Here, since the distance #L2 between the detectors 11n and 1l12 is 24 m, this and the detector 11o,
Substituting the measured concentration of 11t2 into the above formula (IB) to find x2, X2 = 9.

1mが求められる。ただし、濃度減衰定数Bは前記と同
様である。これによL、検知器11oからx2敲れた仮
想漏洩源Q2を通L、検知器11o、1lI2間を結ぶ
直線に対して直交する垂線が求められる(第9図参照)
1m is required. However, the concentration decay constant B is the same as above. As a result, a perpendicular line passing through the virtual leak source Q2 obtained by multiplying x2 from L and detector 11o and perpendicular to the straight line connecting L, detector 11o, and 1lI2 can be found (see Figure 9).
.

最後に、雨垂線が互いに交差する位置が求められた後、
これらのデータがCRT表示装置18へ出力される。
Finally, after finding the locations where the rain perpendicular lines intersect with each other,
These data are output to the CRT display device 18.

推定結果は、第10図に示す如く、実際の漏洩箇所より
僅か北西寄りとなったが、略満足できる結果である。
As shown in FIG. 10, the estimated result was slightly to the northwest of the actual leakage location, but the result is generally satisfactory.

従って、本システムでは、あらゆる気象条件の下でも、
漏洩源を自動的に検知できる利点がある。そのため、化
学プラントのエマ−ジエンシ一対策に有効である。
Therefore, with this system, even under all weather conditions,
It has the advantage of automatically detecting leak sources. Therefore, it is effective as an emergency countermeasure for chemical plants.

なお、本システムにおいて、ガス検知器を予め決められ
たマトリックス(例えば、間隔が20m)の各交点に配
置するようにすれば、より高精度に漏洩源を検知するこ
とができる。
In addition, in this system, if gas detectors are arranged at each intersection of a predetermined matrix (for example, at intervals of 20 m), leak sources can be detected with higher accuracy.

[発明の効果] 以上の通L、本発明によれば、漏洩源を迅速かつ適確に
探索できるガス漏洩源の検知方法を提供できる。
[Effects of the Invention] As described above, according to the present invention, it is possible to provide a gas leak source detection method that can quickly and accurately search for a leak source.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1の発明の一実施例を示す説明図、第2図は
第2の発明の一実施例を示す説明図、第3図は検知シス
テムを示すブロック図、第4図から第6図はフローチャ
ート、第7図はエチレン精留塔を示す系統図、第8図は
プラント施設の平面図、第9図は漏洩源の推定結果を示
す図、第10図は漏洩源の推定位置と実際の漏洩源位置
とを示す図である。
Fig. 1 is an explanatory diagram showing an embodiment of the first invention, Fig. 2 is an explanatory diagram showing an embodiment of the second invention, Fig. 3 is a block diagram showing a detection system, and Figs. Figure 6 is a flowchart, Figure 7 is a system diagram showing the ethylene rectification tower, Figure 8 is a plan view of the plant facility, Figure 9 is a diagram showing the leak source estimation results, and Figure 10 is the estimated location of the leak source. It is a figure which shows the actual leak source position.

Claims (3)

【特許請求の範囲】[Claims] (1)無風または無風に近い状態におけるガス漏洩源の
検知方法であって、 漏洩ガスが拡散している区域内において異なる少なくと
も3以上の地点におけるガス濃度をそれぞれ検出し、 これらガス濃度データ群の中から最もガス濃度が高い3
つの地点を特定し、 この最高ガス濃度地点と他の2つの地点との間における
仮想漏洩源をそれぞれ求め、 この各仮想漏洩源を通り、かつ最高ガス濃度地点と他の
2つの地点とを結ぶ直線に対して直交する垂線が互いに
交差する位置を求め、 この位置を漏洩源として推定する、 ことを特徴とするガス漏洩源の検知方法。
(1) A method for detecting gas leak sources in windless or near windless conditions, which detects gas concentrations at at least three different points within an area where leaked gas is diffused, and detects a group of these gas concentration data. Among them, the highest gas concentration is 3.
Identify two points, find each hypothetical leak source between this highest gas concentration point and the other two points, and connect the highest gas concentration point and the other two points by passing through each of these hypothetical leak sources. A method for detecting a gas leak source, comprising: determining a position where perpendicular lines perpendicular to a straight line intersect with each other, and estimating this position as a leak source.
(2)特許請求の範囲第1項において、前記仮想漏洩源
は、仮想漏洩源を挟む2地点の距離およびいずれか一方
の地点から仮想漏洩源までの距離と、各地点におけるガ
ス濃度の濃度減衰定数乗との比によって求めることを特
徴とするガス漏洩源の検知方法。
(2) In claim 1, the virtual leak source includes the distance between two points sandwiching the virtual leak source, the distance from either point to the virtual leak source, and the concentration attenuation of the gas concentration at each point. A method for detecting a gas leak source, characterized in that it is determined by a ratio to a constant power.
(3)風がある状態におけるガス漏洩源の検知方法であ
って、 漏洩ガスが拡散している区域内において異なる少なくと
も3以上の地点におけるガス濃度または異なる少なくと
も3以上の領域におけるそれぞれの平均ガス濃度を検出
し、 これらガス濃度データ群または平均ガス濃度データ群の
中から最もガス濃度が高い3つの地点または領域を特定
し、 この最高ガス濃度地点または領域と次に高い地点または
領域との距離を求め、 この距離をL、第2のガス濃度地点または領域と推定漏
洩源との距離をX、最高ガス濃度地点または領域と第3
のガス濃度地点または領域のガス濃度とをC_2、C_
3、濃度減衰定数をBとしたとき、 X:L=C_2^B:C_3^B および X:(L+X)=C_2^B:C_3^B の少なくとも一方の式から前記距離Xを求め、このXか
ら漏洩源を推定する、 ことを特徴とするガス漏洩源の検知方法。
(3) A method for detecting a gas leak source in the presence of wind, the gas concentration at at least three or more different points within an area where leaked gas is diffused, or the average gas concentration at each of at least three or more different areas. Detect the three points or areas with the highest gas concentrations from these gas concentration data groups or average gas concentration data groups, and calculate the distance between these highest gas concentration points or areas and the next highest point or area. This distance is L, the distance between the second gas concentration point or area and the estimated leak source is X, and the distance between the highest gas concentration point or area and the third
C_2, C_
3. When the concentration attenuation constant is B, calculate the distance X from at least one of the formulas: X:L=C_2^B:C_3^B and A method for detecting a gas leak source, characterized in that the leak source is estimated from the following.
JP27871584A 1984-12-28 1984-12-28 GASUROEIGENNOKENCHIHOHO Expired - Lifetime JPH0240967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27871584A JPH0240967B2 (en) 1984-12-28 1984-12-28 GASUROEIGENNOKENCHIHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27871584A JPH0240967B2 (en) 1984-12-28 1984-12-28 GASUROEIGENNOKENCHIHOHO

Publications (2)

Publication Number Publication Date
JPS61155932A true JPS61155932A (en) 1986-07-15
JPH0240967B2 JPH0240967B2 (en) 1990-09-14

Family

ID=17601179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27871584A Expired - Lifetime JPH0240967B2 (en) 1984-12-28 1984-12-28 GASUROEIGENNOKENCHIHOHO

Country Status (1)

Country Link
JP (1) JPH0240967B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01219533A (en) * 1988-02-26 1989-09-01 Riken Keiki Kk Device for estimating gas leaking area
JPH0247527A (en) * 1988-08-09 1990-02-16 Jgc Corp Supposing method of leaking spot of gas
US9645039B1 (en) 2012-05-14 2017-05-09 Picarro, Inc. Survey area indicators for gas leak detection
US9823231B1 (en) * 2014-06-30 2017-11-21 Picarro, Inc. Systems and methods for assembling a collection of peaks characterizing a gas leak source and selecting representative peaks for display
US10126200B1 (en) 2012-12-22 2018-11-13 Picarro, Inc. Systems and methods for likelihood-based mapping of areas surveyed for gas leaks using mobile survey equipment
US10386258B1 (en) 2015-04-30 2019-08-20 Picarro Inc. Systems and methods for detecting changes in emission rates of gas leaks in ensembles
US10598562B2 (en) 2014-11-21 2020-03-24 Picarro Inc. Gas detection systems and methods using measurement position uncertainty representations
US10948471B1 (en) 2017-06-01 2021-03-16 Picarro, Inc. Leak detection event aggregation and ranking systems and methods
US10962437B1 (en) 2017-06-27 2021-03-30 Picarro, Inc. Aggregate leak indicator display systems and methods

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7205780B2 (en) 2020-11-24 2023-01-17 株式会社タツノ safety fittings
JP7300111B2 (en) 2021-01-06 2023-06-29 株式会社タツノ safety fittings
JP7276721B2 (en) 2021-01-14 2023-05-18 株式会社タツノ safety fittings
JP7276720B2 (en) 2021-01-14 2023-05-18 株式会社タツノ safety fittings

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01219533A (en) * 1988-02-26 1989-09-01 Riken Keiki Kk Device for estimating gas leaking area
JPH0247527A (en) * 1988-08-09 1990-02-16 Jgc Corp Supposing method of leaking spot of gas
JP2687466B2 (en) * 1988-08-09 1997-12-08 日揮株式会社 How to estimate the location of gas leaks
US10330555B1 (en) 2012-05-14 2019-06-25 Picarro Inc. Systems and methods for determining a survey area for gas leak detection
US9645039B1 (en) 2012-05-14 2017-05-09 Picarro, Inc. Survey area indicators for gas leak detection
US9719879B1 (en) 2012-05-14 2017-08-01 Picarro, Inc. Gas detection systems and methods with search directions
US10337946B1 (en) 2012-05-14 2019-07-02 Picarro Inc. Gas Detection systems and methods using search area indicators
US10126200B1 (en) 2012-12-22 2018-11-13 Picarro, Inc. Systems and methods for likelihood-based mapping of areas surveyed for gas leaks using mobile survey equipment
US9823231B1 (en) * 2014-06-30 2017-11-21 Picarro, Inc. Systems and methods for assembling a collection of peaks characterizing a gas leak source and selecting representative peaks for display
US10598562B2 (en) 2014-11-21 2020-03-24 Picarro Inc. Gas detection systems and methods using measurement position uncertainty representations
US10386258B1 (en) 2015-04-30 2019-08-20 Picarro Inc. Systems and methods for detecting changes in emission rates of gas leaks in ensembles
US10948471B1 (en) 2017-06-01 2021-03-16 Picarro, Inc. Leak detection event aggregation and ranking systems and methods
US10962437B1 (en) 2017-06-27 2021-03-30 Picarro, Inc. Aggregate leak indicator display systems and methods

Also Published As

Publication number Publication date
JPH0240967B2 (en) 1990-09-14

Similar Documents

Publication Publication Date Title
JPS61155932A (en) Detection of gas leakage source
US4727748A (en) Method and apparatus for detecting leaks in a gas pipe line
CN108050394B (en) Gas pipeline leakage detection positioning experiment platform based on sound pressure signal identification
CN111706785B (en) Natural gas dendritic pipe network leakage pipe section identification method
EP0545450B1 (en) Statistically detecting leakage of fluid from a conduit
CN117079442A (en) Chemical industry park hazardous chemical gas leakage diffusion monitoring system based on data analysis
JPH02190733A (en) Method for predicting diffusion area of leakage gas
JP2687466B2 (en) How to estimate the location of gas leaks
JP2736669B2 (en) Method of estimating the location and amount of gas leakage
CN110057973B (en) Laboratory gas safety early warning system and method
JPH06265437A (en) Gas leak detecting method
JPS58215521A (en) Water leakage detector
JPS63215932A (en) Leakage detector
CN114076660B (en) Pipeline leakage point positioning detection device and method for closed space
JPS58150836A (en) Determining method for scale leakage of sodium
JPH02147931A (en) Detection of leak for pipeline
JPS5925199B2 (en) Leak detection device inside the reactor containment vessel
JPH0758239B2 (en) Leakage detection system for gas, steam, etc.
KR960042476A (en) Gas leakage detection automatic alarm control system (comparative detection method)
Thurston Gas drying by calcium chloride solutions: The mechanism of transfer
JPS6031278B2 (en) Leak detection device for high temperature and high pressure media
JPH036954B2 (en)
JPH02147932A (en) Leakage detection for pipeline
CN117828795A (en) Calculation method for gas small hole leakage equivalent diameter of gas transmission pipe network in region
JPS60225916A (en) Pressure control device of distributing water pipe network